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Neurons recorded in behaving animals often do not discernibly respond to sensory 

input and are not overtly task-modulated. These nominally non-responsive neurons 

are difficult to interpret and are typically neglected from analysis, confounding 

attempts to connect neural activity to perception and behavior. Here we describe a 

trial-by-trial, spike-timing-based algorithm to reveal the hidden coding capacities of 

these neurons in auditory and frontal cortex of behaving rats. Responsive and 

nominally non-responsive cells contained significant information about sensory 

stimuli and behavioral decisions, and network modeling indicated that nominally 

non-responsive cells are important for task performance. Sensory input was more 

accurately represented in frontal cortex than auditory cortex, via ensembles of 

nominally non-responsive cells coordinating the behavioral meaning of spike timings 

on correct but not error trials. This unbiased approach allows the contribution of all 

recorded neurons – particularly those without obvious task-modulation – to be 

assessed for behavioral relevance on single trials.  
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Spike trains recorded from the cerebral cortex of behaving animals can be complex, highly 

variable from trial-to-trial, and therefore challenging to interpret. A fraction of recorded 

cells typically exhibit trial-averaged responses with obvious task-related features and can 

be considered ‘classically responsive’, such as neurons with tonal frequency tuning in the 

auditory cortex or orientation tuning in the visual cortex. Another population of responsive 

cells are modulated by multiple task parameters (‘mixed selectivity cells’), and have 

recently been shown to have computational advantages necessary for flexible behavior1.. 

However, a substantial number of cells have variable responses that fail to demonstrate any 

obvious trial-averaged relationship to task parameters2–5. These ‘nominally non-

responsive’ neurons are especially prevalent in frontal cortical regions but can also be 

found throughout the brain, including primary sensory cortex4–6. These response categories 

are not fixed but can be dynamic, with some cells apparently becoming nominally non-

responsive during task engagement without impairing behavioral performance7–9. The 

potential contribution of these cells to behavior remains to a large extent unknown and 

represents a major conceptual challenge to the field2.  

 

How do these nominally non-responsive cells relate to behavioral task variables on single 

trials? While there are sophisticated approaches for dissecting the precise correlations 

between responsive cells and task structure3,4,10–12 there is still a need for complementary 

and straightforward analytical tools for understanding any and all activity patterns 

encountered1,3,4. Moreover, most behavioral tasks produce dynamic activity patterns 

throughout multiple neural circuits, but we lack unified methods to compare activity across 

different regions, and to determine to what extent these neurons might individually or 
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collectively perform task-relevant computations. To address these limitations, we devised 

a novel trial-to-trial analysis using Bayesian inference that evaluates the extent to which 

single-unit responses and ensembles encode behavioral task variables.   

 

Results  

Nominally non-responsive cells prevalent in auditory and frontal cortex during 

behavior 

We trained 15 rats on an audiomotor frequency recognition go/no-go task8,13–15 that 

required them to nose poke to a single target tone for food reward and withhold from 

responding to other non-target tones (Fig. 1a). Tones were 100 msec in duration presented 

sequentially once every 5-8 seconds at 70 dB sound pressure level (SPL); the target tone 

was 4 kHz and non-target tones ranged from 0.5-32 kHz separated by one octave intervals. 

After a few weeks of training, rats had high hit rates to target tones and low false alarm 

rates to non-targets, leading to high d' values (mean performance shown in Fig. 1b; each 

individual rat included in this study shown in Supplementary Fig. 1).  

 

To correctly perform this task, animals must first recognize the stimulus and then execute 

an appropriate motor response. We hypothesized that two brain regions important for this 

behavior are the auditory cortex (AC) and frontal cortical area 2 (FR2). Many but not all 

auditory cortical neurons respond to pure tones with reliable, short-latency phasic 

responses6,16–21. These neurons can process sound in a dynamic and context-sensitive 

manner, and AC cells are also modulated by expectation, attention, and reward structure, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347617doi: bioRxiv preprint 

https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/


strongly suggesting that AC responses are important for auditory perception and 

cognition4,21–24. Previously we found that the go/no-go tone recognition task used here is 

sensitive to AC neuromodulation and plasticity13. In contrast, FR2 is not thought to be part 

of the canonical central auditory pathway, but is connected to many other cortical regions 

including AC25,26. This region has recently been shown to be involved in orienting 

responses, categorization of perceptual stimuli, and in suppressing AC responses during 

movement10,25,27. These characteristics suggest that FR2 may be important for goal-

oriented behavior.  

 

We first asked if activity in AC or FR2 is required for animals to successfully perform this 

audiomotor task. We implanted cannulas into AC or FR2 (Supplementary Fig. 2), and 

infused the GABA agonist muscimol bilaterally into AC or FR2, to inactivate either region 

prior to testing behavioral performance. We found that task performance was impaired if 

either of these regions was inactivated, although general motor functions, including 

motivation or ability to feed were not impaired (Supplementary Fig. 3; for AC p=0.03; 

for FR2 p=0.009 Student’s paired two-tailed t-test). Thus activity in both AC and FR2 may 

be important, perhaps in different ways, for successful task performance. 

 

Once animals reached behavioral criteria (hit rates ≥70% and d’ values ≥1.5), they were 

implanted with tetrode arrays in either AC or FR2 (Supplementary Fig. 4). After recovery, 

we made single-unit recordings from individual neurons or small ensembles of 2-8 cells 

during task performance. The trial-averaged responses of some cells exhibited obvious 

task-related features: neuronal activity was tone-modulated compared to inter-trial baseline 
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activity (Fig. 1c) or gradually increased over the course of the trial as measured by a 

ramping index (Fig. 1d; hereafter referred to as ‘ramping activity’). However, 60% of 

recorded cells were nominally non-responsive in that they were neither tone modulated nor 

ramping according to statistical criteria (Fig. 1e,f; Supplementary Fig. 5; 64/103 AC cells 

and 43/74 FR2 cells from 15 animals had neither significant tone-modulated activity or 

ramping activity; pre and post-stimulus mean activity compared via bootstrapping and 

considered significant when p<0.05; ramping activity measured with linear regression and 

considered significant via bootstrapping when p<0.05 and r>0.5; for overall population 

statistics see Supplementary Fig. 6). 

 

Novel single-trial, ISI-based algorithm for decoding non-responsive activity 

Given that the majority of our recordings were from nominally non-responsive cells, we 

developed a general method for interpreting neural responses even when trial-averaged 

responses were not obviously task-modulated which allowed us to compare coding 

schemes across different brain regions (here, AC and FR2). The algorithm is agnostic to 

the putative function of neurons as well as the task variable of interest (here, stimulus 

category or behavioral choice).  

 

Our algorithm uses the interspike intervals (ISIs) of individual neurons to decode the 

stimulus category (target or non-target) or behavioral choice (go or no-go) on each trial. In 

principle, any response property could be used with our method; however, we chose the 

ISI because its distribution could vary between task conditions even without changes in the 

firing rate building on previous work demonstrating that the ISI distribution contains 
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complementary information to the firing rate28–30.  The distinction between the ISI 

distribution and trial-averaged firing rate is subtle, yet important. While the ISI is obviously 

closely related to the instantaneous firing rate, decoding with the ISI distribution is not 

simply a proxy for using the time-varying, trial-averaged rate. To demonstrate this we 

constructed three model cells: a stimulus-evoked cell with distinct target and non-target ISI 

distributions (Fig. 2a), a stimulus-evoked cell with identical ISI distributions (Fig. 2b), and 

a nominally non-responsive cell with distinct target and non-target ISI distributions (Fig. 

2c). These models clearly demonstrate that trial-averaged rate modulation can occur with 

or without corresponding differences in the ISI distributions and cells without apparent 

trial-averaged rate-modulation can nevertheless have distinct ISI distributions. Taken 

together, these examples demonstrate that the ISI distribution and trial-averaged firing rate 

capture different spike train statistics. This has important implications for decoding non-

responsive cells that by definition do not exhibit large firing rate modulations but 

nevertheless may contain information hidden in their ISI distributions.  

 

For each recorded neuron, we built a library of ISIs observed during target trials and a 

library for non-target trials from a set of ‘training trials’. Two different cells from AC are 

shown in Fig. 3 and Supplementary Fig. 7a-d, and another cell from FR2 is shown in 

Supplementary Fig. 7e-h. These libraries were used to infer the probability of observing 

an ISI during a particular trial type (Fig. 3b,c; Supplementary Fig. 7c,g; left panels show 

target in red and non-target in blue). These conditional probabilities were inferred using 

non-parametric statistical methods to minimize assumptions about the underlying process 

generating the ISI distribution and better capture the heterogeneity of the observed ISI 
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distributions (Fig. 3b; Supplementary Fig.7c,g). We verified that our observed 

distributions were better modeled by non-parametric methods rather than standard 

parametric methods (e.g. rate-modulated Poisson process; Supplementary Fig. 8). 

Specifically, we found the distributions using Kernel Density Estimation where the kernel 

bandwidth for each distribution was set using 10-fold cross-validation. We then used these 

training set probability functions to decode a spike train from a previously unexamined 

individual trial from the set of remaining ‘test trials’. This process was repeated 124 times 

using 10-fold cross-validation with randomly generated folds. 

 

Importantly, while the probabilities of observing particular ISIs on target and non-target 

trials were similar (Fig. 3b; Supplementary Fig. 7c,g), small differences between the 

curves carried sufficient information to allow for decoding. To characterize these 

differences, we used the weighted log likelihood ratio (W. LLR; Fig. 3c; Supplementary 

Fig. 7c,g) to clearly represent which ISIs suggested target (W. LLR >0) or non-target (W. 

LLR <0) stimulus categories. Our algorithm relies only on statistical differences between 

task conditions; therefore, the W. LLR summarizes all spike timing information necessary 

for decoding. Similar ISI libraries were also computed for behavioral choice categories 

(Fig. 3b,c; Supplementary Fig. 7c,g; right panels show go decision in green and no-go in 

purple). These examples clearly illustrate that the relationship between the ISIs and task 

variables can be non-monotonic: in the cell shown in Fig. 3, short ISIs (ISI <50 msec) 

indicated non-target, medium ISIs (50 msec < ISI < 100 msec) indicated target, and longer 

ISIs indicated non-target (100 msec < ISI). This non-monotonic relationship would be 

impossible to capture with a simple ISI or firing rate threshold. 
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The algorithm uses the statistical prevalence of certain ISI values under particular task 

conditions (in this case the ISIs accompanying stimulus category or behavioral choice), to 

infer the task condition for each trial. Each trial begins with equally uncertain probabilities 

about the stimulus categories (i.e., p(target) = p(non-target) = 50%). As each ISI is 

observed sequentially within the trial, the algorithm applies Bayes’ rule to update 

p(target|ISI) and p(non-target|ISI) using the likelihood of the ISI under each stimulus 

category (p(ISI|target) and p(ISI|non-target) (Fig. 3b-d). As shown for one trial of the 

example cell in Fig. 3d, ISIs observed between 0-1.0 seconds consistently suggested the 

presence of the target tone, whereas ISIs observed between 1.0-1.4 seconds suggested the 

non-target category thereby also necessarily reducing the belief that a target tone was 

played (Fig. 3d, top trace). After this process was completed for all ISIs in the particular 

trial, we obtained the probability of a non-target tone and a target tone as a function of time 

during the trial (Fig. 3d). The prediction for the entire trial p(target|ISI) is evaluated at the 

end of the trial (in the example trial, p(target|ISI) = 61%; Fig 3d). This process is repeated 

for the behavioral choice (Fig 3b-d; right panels; trials separated according to go, no-go; 

probabilities of ISIs in each condition generated; conditional probabilities used as 

likelihood function to predict behavioral choice on a given trial). The single-trial decoding 

performance of each neuron is then averaged over all trials as a measure of the overall 

ability of each neuron to distinguish behavioral conditions (Fig. 4a).  

 

Nominally non-responsive cells reveal hidden task information 
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Can we uncover hidden task information from nominally non-responsive cells? We found 

that nominally non-responsive cells in both AC and FR2 provided significant information 

about each task variable (Fig. 4a,b, red). The ability to decode was independent of average 

firing rate (Supplementary Fig. 9a-f, 0.30 < r  < 0.46), z-score (Supplementary Fig. 9g-

i, -0.05 < r  < 0.05), and ramping activity (Supplementary Fig. 9j, -0.02 < r  < 0.28). 

Stimulus decoding performance was also independent of receptive field properties 

including best frequency and tuning curve bandwidth for AC neurons (Supplementary 

Fig. 10).  

 

We also observed that task information was distributed across both AC and FR2, and neural 

spike trains from individual units were multiplexed in that they often encoded information 

about both stimulus category and choice simultaneously (Fig. 4b). To establish that 

multiplexing was not simply a byproduct of the correlation between stimulus and choice 

variables, an independent measure of multiplexing relying on multiple regression was 

applied (Supplementary Fig. 11). Despite the broad sharing of information about 

behavioral conditions, there were notable systematic differences between AC and FR2. 

Surprisingly, neurons in FR2 were more informative about stimulus category than AC, and 

AC neurons were more informative about choice than stimulus category (Fig. 4a, 

pAC=0.016, pstim=0.0013, Mann-Whitney U test, two-sided). Both of these observations 

would not have been detected at the level of the PSTH, as most cells in AC were non-

responsive for behavioral choice (no ramping activity, 91/103), yet our decoder revealed 

that these same cells were as informative as choice responsive cells (Fig. 4c, p=0.32 Mann-

Whitney U test, two-sided; red circles indicate cells non-responsive for both variables, 
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dark-red cells are choice non-responsive, and black cells are responsive). Similarly, most 

cells in FR2 were sensory non-responsive (not tone modulated, 60/74), yet contained 

comparable stimulus information to sensory responsive cells (Fig. 4d, p=0.29 Mann-

Whitney U test, two-sided; red cells are non-responsive for both variables, dark-red cells 

are sensory non-responsive, black cells are responsive).  

 

To assess the statistical significance of these results, we tested our algorithm on two 

shuffled data sets. First, we ran our analysis using synthetically-generated trials that 

preserved trial length but randomly sampled ISIs with replacement from those observed 

during a session without regard to condition (Fig. 4e). Second, we left trial activity intact, 

but permuted the stimulus category and choice for each trial (Fig. 4f). We restricted 

analysis to cells with decoding performance significantly different from synthetic spike 

trains (all cells in Fig. 4a-d significantly different from synthetic condition shown in Fig. 

4e, p<0.05, bootstrapped 1240 times).  

 

To directly assess the extent to which information captured by the ISI distributions in our 

data set was distinct from the time-varying rate, we compared the performance from our 

ISI-based decoder to a conventional rate-modulated (inhomogeneous) Poisson decoder31  

which assumes that spikes are produced randomly with an instantaneous probability equal 

to the time-varying firing rate. As our model cells illustrate (Fig. 2), it is possible to decode 

using the ISI distributions even when firing rates are uninformative (Supplementary Fig. 

12a). When applied to our dataset, the ISI-based decoder generally outperformed this 

conventional rate-based decoder confirming that ISIs capture information distinct from that 
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of the firing rate (Supplementary Fig. 12b; Overall stimulus decoding performance: 

pAC=0.0001, pFR2=8×10-6; Overall choice decoding performance pAC=0.0057, pFR2=0.02, 

Mann-Whitney U test, two-sided). Moreover, comparing single trial decoding outcomes 

demonstrated weak to no correlations between the ISI-based decoder and the conventional 

rate decoder, further underscoring that these two methods rely on different features of the 

spike train to decode (Supplementary Fig. 12c; stimulus medians: AC=0.10 FR2=0.11; 

choice medians: AC=0.07, FR2=0.08).  

 

We hypothesize that ISI-based decoding is biologically plausible. Short-term synaptic 

plasticity and synaptic integration provide powerful mechanisms for differential and 

specific spike-timing-based coding. We illustrated this capacity by making whole-cell 

recordings from AC neurons in vivo and in brain slices (Supplementary Fig. 13a,b), as 

well as in FR2 brain slices (Supplementary Fig. 13c). In each case, different cells could 

have distinct response profiles to the same input pattern, with similar overall rates but 

different spike timings.  

 

Moreover, we note that this type of coding scheme requires few assumptions about 

implementation, and does not require additional separate integrative processes to compute 

rates or form generative models. Thus ISI-based decoding coding could be generally 

applicable across brain areas, as demonstrated here for AC and FR2.  

Nominally non-responsive cells reveal hidden selection rule information in a novel 

task-switching paradigm 
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To further demonstrate the generalizability and utility of our approach, we applied our 

decoding algorithm to neurons that were found to be non-responsive in a previously 

published study5. In this study, rats were trained on a novel auditory stimulus selection task 

where depending on the context animals had to respond to one of two cues while ignoring 

the other. Rats were presented with two simultaneous sounds (a white noise burst and a 

warble). In the “localization” context the animal was trained to ignore the warble and 

respond to the location of the white noise burst and in the “pitch” context it was trained to 

ignore the location of the white noise burst and respond to the pitch of the warble (Fig. 5a). 

The main finding of the study is that the pre-stimulus activity in both primary auditory 

cortex and prefrontal cortex encodes the selection rule (i.e. activity reflects whether the 

animal is in the localization or pitch context). This conclusion was entirely based on a 

difference in pre-stimulus firing rate between the two contexts. The authors reported, but 

did not further analyze, cells that did not modulate their pre-stimulus firing rate. In our 

nomenclature these cells are “non-responsive for the selection rule”. Using our algorithm 

we found that the ISI distributions of these cells encoded the selection rule and were 

significantly more informative than the responsive cells (Fig. 5b, pAC=5×10-6, 

pPFC<0.0002, Mann-Whitney U test, two-sided). This surprising result demonstrates that 

our algorithm generalizes to novel datasets, and may be used to uncover coding for 

cognitive variables that are hidden from conventional trial-averaged analyses. 

Furthermore, these results indicate that as task complexity increases nominally non-

responsive cells are differentially recruited for successful task execution.  

Nominally non-responsive ensembles are better predictors of behavioral errors   
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Downstream brain regions must integrate the activity of many neurons and this ISI-based 

approach naturally extends to simultaneously recorded ensembles. We therefore asked 

whether using small ensembles would change or improve decoding. To decode from 

ensembles, likelihood functions from each cell were calculated independently as before, 

but were used to simultaneously update the task condition probabilities (p(target | ISI) and 

p(go | ISI)) on each trial (Fig. 6a). Analyzing ensembles of 2-8 neurons in AC and FR2 

significantly improved decoding for both variables in FR2 and stimulus decoding in AC 

(Fig. 6b, pAC stim=0.04, pFR2 stim=1×10-5, pAC=0.29, pFR2 choice=7×10-5, Mann-Whitney U test, 

two-sided). This was not a trivial consequence of using more neurons, as the information 

provided by individual ISIs on single trials can be contradictory (e.g., compare LLR 

functions in Fig. 3c and Supplementary Fig. 7c for 50 ms < ISIs < 120 ms). For ensemble 

decoding to improve upon single neuron decoding, the ISIs of each member of the 

ensemble must indicate the same task variable.  

 

Can our decoding method predict errors on a trial-by-trial basis? In general, trial-averaged 

PSTHs did not reveal systematic differences between correct and error trials. However, 

when we examined single-trial performance with our algorithm, ensembles of neurons in 

AC and FR2 predicted behavioral errors (Fig. 6c). In general, ensembles in AC predicted 

behavioral errors significantly better than those in FR2 (Fig. 6c, for 3-member ensembles: 

p=1.2×10-5, for 4-member ensembles: p=0.03, Mann-Whitney U test, two-sided). 

Interestingly, decoding with an increasing number of nominally non-responsive cells 

improved error prediction in both AC and FR2 (Fig. 6d, (pAC=0.013, pFR2=0.046, Welch’s 

t-test).  
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Recurrent neural network model demonstrates nominally non-responsive cells are 

necessary for task performance and synergistically interact with responsive cells 

Our data indicate that nominally non-responsive activity encodes hidden task-information 

and can predict behavioral errors, but how does it impact task performance? Examining 

this question requires network modeling to further explore the dynamics of responsive and 

non-responsive cells. We carried out a series of simulated perturbation experiments on a 

recurrent neural network trained to perform our frequency recognition task (Fig. 7a,b). 

Inactivation of both responsive and non-responsive units impaired task performance (Fig. 

7c) indicating that both sub-populations are necessary to complete the task. Surprisingly, 

inactivation of a random subset of units (including both responsive and non-responsive 

units) resulted in larger performance decreases than what would be predicted from the 

psychometric inactivation curves of responsive and non-responsive units treated 

independently (Fig. 7d). This finding suggests that responsive and non-responsive units 

have a synergistic effect on overall task performance and that both sub-populations should 

be considered in concert to fully understand behavioral performance.   

 

Ensemble consensus-building dynamics underlie hidden task information 

While improvements were seen in decoding performance with increasing ensemble size, 

the ISI distributions/ISI-based likelihood functions were highly variable across individual 

ensemble members. Thus, we wondered if there was hidden task-related structure in the 

population activity that evolved over the course of the trial to instantiate behavior. To 

answer this question, we examined whether local ensembles share the same representation 
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of task variables over the course of the trial. Do they “reach consensus” on how to represent 

task variables using the ISI (Fig. 8a)? Without consensus, a downstream area would need 

to interpret ensemble activity using multiple disparate representations rather than one 

unified code (Fig. 8b). The firing rates and ISI distributions of simultaneously-recorded 

units were generally variable across cells requiring an exploratory approach to answer this 

question (Fig. 8c, example three-member ensemble with heterogeneous conditional ISI 

distributions). Therefore, we examined changes in the distributions of ISIs across task 

conditions, asking how the moment-to-moment changes in the log-likelihood ratio (LLR) 

of each cell were coordinated to encode task variables (Fig. 8c). We focused on the LLR 

because it quantifies how the ISI represents task variables for a given cell and summarizes 

all spike timing information needed by our algorithm (or a hypothetical downstream cell) 

to decode.   

 

We examined how ensembles coordinate their activity moment-to-moment over the course 

of the trial by quantifying the similarity of the LLRs across cells in a sliding window. 

Similarity was assessed by summing the LLRs of ensemble members, calculating the total 

area underneath the resulting curve, and normalizing this value by the sum of the areas of 

each individual LLR. We refer to this quantified similarity as ‘consensus’; a high consensus 

value indicates that the LLRs generally agree on stimulus or choice while a low value 

indicates disagreement at that moment (Fig. 8d). We should emphasize that successful 

ensemble decoding (Fig. 6) does not require the LLRs of ensemble members to be related 

in any way; therefore, structured LLR dynamics (Fig. 8) are not simply a consequence of 

how our algorithm is constructed.  
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While the conventional trial-averaged PSTH of non-responsive ensembles recorded in AC 

and FR2 showed no task-related modulation, our analysis revealed structured temporal 

dynamics of the LLRs (captured by the consensus value). In FR2, sensory non-responsive 

ensembles (ensembles in which at least two out of three cells were not tone-modulated) 

encode stimulus information using temporally-precise stimulus-related dynamics on 

correct trials. The stimulus representation of sensory non-responsive ensembles reached 

consensus rapidly after stimulus onset followed by divergence (Fig. 8e, stimulus-aligned, 

solid line, Dconsensus, t = 0 to 0.42 s, pSNR = 1.3×10-4 Wilcoxon test, two-sided). Sensory 

responsive ensembles in AC increased consensus beyond stimulus presentation, reaching 

a maximum ~750 ms after tone onset on correct trials (Fig. 8e stimulus-aligned, dotted 

line, Dconsensus, t = 0 to 0.81 s, pSR = 0.046 Wilcoxon test, two-sided). For choice-related 

activity, choice non-responsive ensembles in both regions as well as choice responsive 

ensembles in FR2 each reached consensus within 500 ms of the behavioral response (Fig. 

8e, response-aligned, Dconsensus, t = -1.0 to 0.0 s, pCNR = 6.6×10-6, pCR = 0.041 Wilcoxon 

test, two-sided). Importantly, this temporally precise pattern of consensus building is not 

present on error trials (Fig. 8f, Dconsensus, correct trials vs. error trials, stimulus: pSNR= 

0.007, pSR = 0.065, choice: pCNR = 0.0048, pCR = 0.065 Mann-Whitney U test, two-sided).  

 

These results reveal that consensus-building and divergence occur at key moments during 

the trial for successful execution of behavior in a manner that is invisible at the level of the 

PSTH. As sensory and choice non-responsive ensembles participated in these dynamics, 

changes in the consensus value cannot simply be a byproduct of correlated firing rate 
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modulation due to tone-evoked responses or ramping. While consensus-building can only 

indicate a shared representation, divergence can indicate one of two things: (1) the LLRs 

of each cell within an ensemble are completely dissimilar or (2) they are ‘out of phase’ 

with one another – the LLRs partition the ISIs the same way (Fig. 8d, dotted lines), but the 

same ISIs code for opposite behavioral variables. This distinction is important because (2) 

implies coordinated structure of ensemble activity (the partitions of the ISI align) whereas 

(1) does not. To distinguish between these two possibilities we used the ‘unsigned 

consensus’, a second measure sensitive to the ISI partitions but insensitive to the sign of 

the LLR. Both ‘in phase’ and perfectly ‘out of phase’ LLRs would produce an unsigned 

consensus of 1 whereas unrelated LLRs would be closer to 0 (Fig. 8d). For example, in the 

second row of Figure 8d, both cells agree that ISIs < 100 ms indicate one stimulus category 

and ISIs > 100 ms indicate another, but they disagree about which set of ISIs mean target 

and which mean non-target. This results in a consensus value of 0 (out of phase) but an 

unsigned consensus value of 1.  

 

Using this metric, we found that the unsigned consensus pattern for nominally non-

responsive ensembles (ensembles with two or more nominally non-responsive members) 

were shared between AC and FR2 – increasing until ~750 ms after tone onset on correct 

trials (Fig. 8g, stimulus-aligned, Dconsensus, t = 0 to 0.89 s, p = 1.7×10-5 Wilcoxon test, 

two-sided). This intriguing observation reveals the timed coordination of nominally non-

responsive ensembles coincident across brain regions and suggests that these cells may 

constitute a distinct functional network separate from that of responsive cells. Nominally 

non-responsive ensembles in AC and FR2 also increased their unsigned consensus 
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immediately before behavioral response (although values in AC were lower overall; Fig. 

8g, response-aligned, Dconsensus, t = -1.0 to 0.0 s, p = 0.0011 Wilcoxon test, two-sided). 

This pattern of consensus-building was only present on correct trials but not incorrect trials 

(Fig. 8h, Dconsensus compared to error trials, p = 1.9×10-9 Mann-Whitney U test, two-

sided) suggesting that behavioral errors might result from a general lack of consensus 

between ensemble members. In summary, we have shown that cells which appear 

unmodulated during behavior do not encode task information independently, but do so by 

synchronizing their representation of behavioral variables dynamically during the trial.  

 

Discussion 

Using a straightforward, single-trial, ISI decoding algorithm that makes few assumptions 

about the proper model for neural activity, we found task-specific information extensively 

represented by what appeared to be nominally non-responsive neurons in both AC and 

FR2. Furthermore, the degree to which single neurons were task-modulated was 

uncorrelated with conventional response properties including frequency tuning. AC and 

FR2 each represent both task-variables; furthermore, in both regions we identified many 

multiplexed neurons that simultaneously represented the sensory input and the upcoming 

behavioral choice including non-responsive cells. This highlights that the cortical circuits 

that generate behavior exist in a distributed network – blurring the traditional modular view 

of sensory and frontal cortical regions.  

 

Most notably, FR2 has a better representation of task-relevant auditory stimuli than AC. 

The prevalence of stimulus information in FR2 might be surprising given that AC reliably 
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responds to pure tones in untrained animals; however, when tones take on behavioral 

significance, this information is encoded more robustly in frontal cortex, suggesting that 

this region is critical for identifying the appropriate sensory-motor association. 

Furthermore, the stark improvement in stimulus encoding for small ensembles in FR2 

suggests that task-relevant stimulus information is reflected more homogeneously in local 

firing activity across FR2 (perhaps through large scale ensemble consensus-building) while 

this information is reflected in a more complex and distributed manner throughout AC.  

 

The finding that the ISI-based approach of our algorithm is not reducible to rate despite 

their close mathematical relationship raises the question of how downstream regions could 

respond preferentially to specific ISIs. Our whole cell recordings from both AC and FR2 

demonstrate that different postsynaptic cells can respond differently to the same input 

pattern with a fixed overall rate emphasizing the importance of considering a code sensitive 

to precise spike-timing (Supplementary Fig. 13). Furthermore, this is supported by 

experimental and theoretical work showing that single neurons can act as resonators tuned 

to a certain periodicity of firing input32. This view could also be expanded to larger 

neuronal populations comprised of feedback loops that would resonate in response to 

particular ISIs. In this case, cholinergic neuromodulation could offer a mechanism for 

adjusting the sensitivities of such a network during behavior on short time-scales by 

providing rapid phasic signals33.   

 

It is still unclear what the relevant timescales of decoding might be in relation to 

phenomena such as membrane time constants, periods of oscillatory activity, and 
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behavioral timescales. Given that our ISI-based decoder and conventional rate-modulated 

decoders reveal distinct information, future approaches might hybridize these rate-based 

and temporal-based decoding methods to span multiple timescales. 

 

We have also shown that underlying the task-relevant information encoded by each 

ensemble is a rich set of consensus-building dynamics that is invisible at the level of the 

PSTH. Ensembles in both FR2 and AC underwent stimulus and choice-related consensus 

building that was only observed when the animal correctly executed the task. Moreover, 

nominally non-responsive cells demonstrated temporal dynamics synchronized across 

regions which were distinct from responsive ensembles. This raises the possibility that 

nominally non-responsive ensembles constitute a discrete functional network 

distinguishable from responsive ensembles. These results underscore the importance of 

measuring neural activity in behaving animals and using unbiased and generally-applicable 

analytical methods, as the response properties of cortical neurons in a behavioral context 

become complex in ways that challenge our conventional assumptions7–9,34.      
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Methods 

Behavior 

All animal procedures were performed in accordance with National Institutes of Health 

standards and were conducted under a protocol approved by the New York University 

School of Medicine Institutional Animal Care and Use Committee. We used 23 adult 

Sprague-Dawley male and female rats (Charles River) in the behavioral studies. Animals 

were food restricted and kept at 85% of their initial body weight, and maintained at a 12 hr 

light/12 hr dark cycle.  

Animals were trained on a go/no-go audiomotor task8,13. Operant conditioning was 

performed within 12” L x 10” W x 10.5” H test chambers with stainless steel floors and 

clear polycarbonate walls (Med Associates), enclosed in a sound attenuation cubicle and 

lined with soundproofing acoustic foam (Med Associates). The nose and reward ports were 

both arranged on one of the walls with the speaker on the opposite wall. The nose port, 

reward port, and the speaker were controlled and monitored with a custom-programmed 

microcontroller. Nose port entries were detected with an infrared beam break detector. 

Auditory stimuli were delivered through an electromagnetic dynamic speaker (Med 

Associates) calibrated using a pressure field microphone (ACO Pacific).  

Animals were rewarded with food for nose poking within 2.5 seconds of 

presentation of the target tone (4 kHz) and given a short 7-second time-out for incorrectly 

responding to non-target tones (0.5, 1, 2, 8, 16, 32 kHz). Incorrect responses include either 

failure to enter the nose port after target tone presentation (miss trials) or entering the nose 

port after non-target tone presentation (false alarms). Tones were 100 msec in duration and 

sound intensity was set to 70 dB SPL. Tones were presented randomly with equal 
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probability such that each stimulus category was presented. The inter-trial interval delays 

used were 5, 6, 7, or 8 seconds.  

For experiments involving muscimol, we implanted bilateral cannulas in either FR2 

(+2.0 to +4.0 mm AP, ±1.3 mm ML from Bregma) of 7 animals or AC (-5.0 to -5.8 mm 

AP, 6.5-7.0 mm ML from Bregma) of 3 animals. We infused 1 µL of muscimol per side 

into FR2 or infused 2 µL of muscimol per side into AC, at a concentration of 1 mg/mL. 

For saline controls, equivalent volumes of saline were infused in each region. Behavioral 

testing was performed 30-60 minutes after infusions. Power analysis was performed to 

determine sample size for statistical significance with a power of b: 0.8; these studies 

required at least 3 animals, satisfied in the experiments of Supplementary Fig. 3b,e. For 

motor control study, animals could freely nose poke for food reward without presentation 

of auditory stimuli after muscimol and saline infusion.  

 

Implant preparation and surgery 

Animals were implanted with microdrive arrays (Versadrive-8 Neuralynx) in either AC (8 

animals) or FR2 (7 animals) after reaching behavioral criteria of d’ ≥ 1.0. For surgery, 

animals were anesthetized with ketamine (40 mg/kg) and dexmedetomidine (0.125 mg/kg). 

Stainless steel screws and dental cement were used to secure the microdrive to the skull, 

and one screw was used as ground. Each drive consisted of 8 independently adjustable 

tetrodes. The tetrodes were made by twisting and fusing four polyimide-coated nichrome 

wires (Sandvik Kanthal HP Reid Precision Fine Tetrode Wire; wire diameter 12.5 µm). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347617doi: bioRxiv preprint 

https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/


The tip of each tetrode was gold-plated to an impedance of 300-400 kOhms at 1 kHz 

(NanoZ, Neuralynx).  

 

Electrophysiological recordings & unit isolation 

Recordings in behaving rats were performed as previously described8. After the animal 

recovered from surgery (~7 days) recordings began once performance returned to pre-

surgery levels. Tetrodes were advanced ~60 µm 12 hours prior to each recording session, 

to a maximum of 2.5mm (for FR2) or 2.0 mm (for AC) from the pial surface. For recording, 

signals were first amplified onboard using a small 16-bit unity-gain preamplifier array 

(CerePlex M, Blackrock Microsystems) before reaching the acquisition system. Spikes 

were sampled at 30 kS/sec and bandpass filtered between 250 Hz and 5 kHz. Data were 

digitized and all above-threshold events with signal to noise ratios > 3:1 were stored for 

offline spike sorting. Single-units were identified on each tetrode using OfflineSorter 

(Plexon Inc.) by manually classifying spikes projected as points in 2D or 3D feature space. 

The parameters used for sorting included the waveforms projection onto the first two 

principal components, energy, and nonlinear energy. Artifacts were rejected based on 

refractory period violations (< 1 msec). Clustering quality was assessed based on the 

Isolation Distance and Lratio sorting quality metrics. To be initially included for analysis, 

cells had to have > 3 spikes per trial for 80% of trials to ensure that there were enough ISIs 

to reliably estimate the ISI probability density functions.  

 

Statistical tests for non-responsiveness 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347617doi: bioRxiv preprint 

https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/


We used two positive statistical tests for non-responsiveness: one to establish a lack of 

tone-modulation, the other to establish a lack of ramping activity. To accommodate the 

possibility of tone onset and offset responses, we performed our tone-modulation test on a 

100 ms long tone presentation window as well as the 100 ms window immediately after 

tone presentation. The test compared the number of spikes during each of these windows 

to inter-trial baseline activity as measured by three sequential 100 ms windows preceding 

tone onset. Three windows were chosen to account for variability in spontaneous spike 

counts. Given that spike counts are discrete, bounded, and non-normal, we used 

bootstrapping to evaluate whether the mean change in spikes during tone presentation was 

sufficiently close to zero (in our case 0.1 spikes). We subsampled 90% of the spike count 

changes from baseline, calculated the mean of these values, and repeated this process 5000 

times to construct an empirical distribution of means. If 95% of the subsampled means 

values were between -0.1 and 0.1 we considered the cell sensory non-responsive (p<0.05). 

The value of 0.1 spikes was chosen to be conservative as it is equivalent to an expected 

change of 1 spike every 10 trials. This is a conservative, rigorous method for establishing 

sensory non-responsiveness that is commensurate with more standard approaches for 

establishing tone responsiveness such as the z-score.  

To quantify the observed sustained increase in firing rate preceding the behavioral 

response a ramp index was calculated adapted from the ‘build-up rate’ used in previous 

literature31. First, the trial averaged firing rate was determined in 50 msec bins leading up 

to the behavioral response. We then calculated the slope of a linear regression in a 500 

msec long sliding window beginning 850 msec before behavioral response. The maximum 

value of these slopes was used as the ‘ramp index’ for each cell. Cells were classified as 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347617doi: bioRxiv preprint 

https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/


choice non-responsive if the ramp index did not indicate an appreciable change in the firing 

rate (less than 50% change) established via bootstrapping. Cells that were shown to be both 

sensory and choice non-responsive were considered nominally non-responsive overall 

(Fig. 4a,b, red circles). 

 

Additional firing statistics 

Spontaneous average firing rate was established by averaging spikes in a 100 msec time 

window immediately prior to tone onset on each trial. To quantify tone modulated 

responses observed during stimulus presentation, we calculated z-scores of changes in 

spike count from 100 msec before tone onset to 100 msec during tone presentation: 

𝑧 = 	
𝜇
𝜎 

where 𝜇 is the mean change in spike count and 𝜎 is the standard deviation of the change in 

spike count.  

 

Analysis of receptive field properties 

Receptive fields were constructed by calculating the average change in firing rate from 50 

ms before tone onset to 50 ms during tone presentation. The window used during tone 

presentation was identical to that used to calculate the z-score. Best frequency was defined 

as the frequency where the largest positive deviation in the evoked firing rate was observed. 

Tuning curve bandwidth was determined by calculating the width of the tuning curve 

measured at the mean of the maximum and minimum observed evoked firing rates.   
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In vivo whole-cell recordings 

Sprague-Dawley rats 3-5 months old were anesthetized with pentobarbital. Experiments 

were carried out in a sound-attenuating chamber. Series of pure tones (70 dB SPL, 0.5-32 

kHz, 50 msec, 3 msec cosine on/off ramps, inter-tone intervals between 50-500 msec) were 

delivered in pseudo-random sequence. Primary AC location was determined by mapping 

multiunit responses 500-700 µm below the surface using tungsten electrodes. In vivo 

whole-cell voltage-clamp recordings were then obtained from neurons located 400-1100 

µm below the pial surface. Recordings were made with an AxoClamp 2B (Molecular 

Devices). Whole-cell pipettes (5-9 MΩ) contained (in mM): 125 Cs-gluconate, 5 TEACl, 

4 MgATP, 0.3 GTP, 10 phosphocreatine, 10 HEPES, 0.5 EGTA, 3.5 QX-314, 2 CsCl, pH 

7.2. Data were filtered at 2 kHz, digitized at 10 kHz, and analyzed with Clampfit 10 

(Molecular Devices). Tone-evoked excitatory postsynaptic currents were recorded at –70 

mV. 

 

In vitro whole-cell recordings  

Acute brain slices of AC or FR2 were prepared from 2-5 month old Sprague-Dawley rats. 

Animals were deeply anesthetized with a 1:1 ketamine/xylazine cocktail and decapitated. 

The brain was rapidly placed in ice-cold dissection buffer containing (in mM): 87 NaCl, 

75 sucrose, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 7 MgCl2, 25 NaHCO3, 1.3 ascorbic acid, 

and 10 dextrose, bubbled with 95%/5% O2/CO2 (pH 7.4). Slices (300–400 µm thick) were 

prepared with a vibratome (Leica), placed in warm dissection buffer (32-35°C) for 10 min, 

then transferred to a holding chamber containing artificial cerebrospinal fluid at room 
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temperature (ACSF, in mM: 124 NaCl, 2.5 KCl, 1.5 MgSO4, 1.25 NaH2PO4, 2.5 CaCl2, 

and 26 NaHCO3,). Slices were kept at room temperature (22-24°C) for at least 30 minutes 

before use. For experiments, slices were transferred to the recording chamber and perfused 

(2–2.5 ml min-1) with oxygenated ACSF at 33°C. Somatic whole-cell current-clamp 

recordings were made from layer 5 pyramidal cells with a Multiclamp 700B amplifier 

(Molecular Devices) using IR-DIC video microscopy (Olympus). Patch pipettes (3-8 MW) 

were filled with intracellular solution containing (in mM): 120 K-gluconate, 5 NaCl, 10 

HEPES, 5 MgATP, 10 phosphocreatine, and 0.3 GTP. Data were filtered at 2 kHz, digitized 

at 10 kHz, and analyzed with Clampfit 10 (Molecular Devices). Focal extracellular 

stimulation was applied with a bipolar glass electrode (AMPI Master-9, stimulation 

strengths of 0.1-10 V for 0.3 msec). Spike trains recorded from AC and FR2 units during 

behavior were then divided into 150-1000 msec fragments, and used as extracellular input 

patterns for these recordings. 

 

ISI-based single-trial Bayesian decoding 

Our decoding method was motivated by the following principles: First, single-trial spike 

timing is one of the only variables available to downstream neurons. Any observations 

about trial-averaged activity must ultimately be useful for single-trial decoding, in order to 

have behavioral significance. Second, there may not be obvious structure in the trial-

averaged activity to suggest how non-responsive cells participate in behaviorally-important 

computations. This consideration distinguishes our method from other approaches that rely 

explicitly or implicitly on the PSTH for interpretation or decoding4,10,11,35–37. Third, we 

required a unified approach capable of decoding from both responsive and non-responsive 
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cells in sensory and frontal areas with potentially different response profiles. Fourth, our 

model should contain as few parameters as possible to account for all relevant behavioral 

variables (stimulus category and behavioral choice). This model-free approach also 

distinguishes our method from others that rely on parametric models of neural activity.  

These requirements motivated our use of ISIs to characterize neuronal activity. For 

non-responsive cells with PSTHs that displayed no systematic changes over trials or 

between task conditions, the ISI distributions can be variable. The ISI defines spike timing 

relative to the previous spike and thus does not require reference to an external task variable 

such as tone onset or behavioral response. In modeling the distribution of ISIs, we use a 

non-parametric Kernel Density Estimator that avoids assumptions about whether or not 

firing occurs according to a Poisson (or another) parameterized distribution. We used 

maximum likelihood to estimate the bandwidth of the Kernel Density Estimator in a data-

driven manner. Finally, the use of the ISI was also motivated by previous work 

demonstrating that the ISI can encode sensory information28–30 and that precise spike 

timing has been shown to be important for sensory processing in rat auditory cortex38,39. 

Training probabilistic model: Individual trials were defined as the time from 

stimulus onset to the response time of the animal (or average response time in the case of 

no-go trials). Trials were divided into four categories corresponding to each of the four 

possible variable combinations (target/go, target/no-go, non-target/go, non-target/no-go). 

Approximately 90% of each category was set aside as a training set in order to determine 

the statistical relationship between the ISI and the two task variables (stimulus category, 

behavioral choice).   
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Each ISI observed was sorted into libraries according to the stimulus category and 

behavioral choice of the trial. The continuous probability distribution of finding a particular 

ISI given the task condition of interest (target or non-target, go or no-go) was then inferred 

using nonparametric Kernel Density Estimation with a Gaussian kernel of bandwidth set 

using a 10-fold cross-validation40. Because the domain of the distribution of ISIs is by 

definition positive (ISI > 0), the logarithm of the ISI was used to transform the domain to 

all real numbers. In the end, we produced four continuous probability distributions 

quantifying the probability of observing an ISI on a trial of a given type: p(ISI|target), 

p(ISI|non-target),  p(ISI|go), and p(ISI|no-go). These distributions were estimated in a 1 

second sliding window starting at the beginning of the trial to account for dynamic changes 

in the ISI distributions over the course of the trial.   

Decoding: The remaining 10% of trials in the test set are then decoded using the 

ISI likelihood function described in the previous section. Each trial begins with agnostic 

beliefs about the stimulus category and the upcoming behavioral choice (p(target) = p(non-

target) = 50%). Each time an ISI was observed, beliefs were updated according to Bayes’ 

rule with the four probability distributions obtained in the previous section serving as the 

likelihood function. To update beliefs in the probability of the target tone when a particular 

ISI has been observed we used the following relationship: 

p(target|ISI, t) = 	
p(ISI|target, t)p(target, t)

p(ISI|target, t)p(target, t) + p(ISI|non-target,	t)p(non-target,	t) 

On the left hand side are the updated beliefs about the probability of a target. When the 

next ISI is observed this value would be inserted as p(target, t) on the right side of the 
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equation and updated once more. Using the probability normalization, p(non-target, t) can 

be determined, 

p(target, t) + p(non-target,	t) = 1 

Similarly, for choice, 

p(go|ISI, t) = 	
p(ISI|go, t)p(go, t)

p(ISI|go, t)p(go, t) + p(ISI|no-go,	t)p(no-go,	t) 

and 

p(go, t) + p(no-go,	t) = 1 

Continuing this process over the course of the trial, we obtain four probabilities – one for 

each of the variable outcomes – as a function of time during the trial: p(target, t),  p(non-

target, t),  p(go, t),  and p(no-go, t). At each moment, the total probability of both stimuli 

and both choices are 1. The prediction for the entire trial was assessed at the end of the 

trial. For comparison to choice probability and latency decoding, the certainty was ignored 

and the preferred variable was taken as the prediction with 100% certainty.   

The overall likelihood for a spike train is then simply equal to product of the 

likelihoods for each ISI observed over the course of the trial,   

p({ISI8}	|	target) =:p(ISI8	|	target, t8)
;

8<=

. 

We used 10-fold cross-validation, meaning the trials in the four stimulus categories 

were randomly divided into ten parts and each part took a turn acting as the test set with 

the remaining 90% of trials acting as a training set. To estimate the statistical certainty of 
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these results we used bootstrapping with 124 repetitions (except in the case of the null 

hypotheses where 1240 repetitions were used).   

Ensemble decoding: Ensemble decoding proceeded very similarly to the single-unit 

case. The ISI probability distributions for each neuron in the ensemble were calculated 

independently as described above. However, while decoding a given trial, the spike trains 

of all neurons in the ensemble were used to simultaneously update the beliefs about 

stimulus category and behavioral choice. In other words, p(stimulus, t) and p(choice, t) 

were shared for the entire ensemble but each neuron updated them independently using 

Bayes’ rule whenever a new ISI was encountered. The joint likelihood of observing a set 

of ISIs during a trial is then the product of the likelihoods of each neuron independently. 

For example, for a two neuron ensemble, the combined likelihood, p=?, of observing the 

set {ISI8}= from neuron 1 and  {ISI8}? from neuron 2 is 

p=?({ISI8}=, {ISI8}?|	target) = p=({ISI8}=	|	target)	p?({ISI8}?	|	target) 

where pj is the likelihood of observing a given set of ISIs from neuron j. 

 

Synthetic spike trains  

To test the null hypothesis that the ISI-based single-trial Bayesian decoder performance 

was indistinguishable from chance, synthetic spike trains were constructed for each trial of 

a given unit by randomly sampling with replacement from the set of all observed ISIs 

regardless of the original task variable values (synthetic spike trains, Fig. 4e). In principle 

under this condition, ISIs should no longer bear any relationship to the task variables and 

decoding performance should be close to 50%. For single-unit responses, this 
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randomization was completed 1240 times. Significance from the null was assessed by a 

direct comparison to the 124 bootstrapped values observed from the true data to the 1240 

values observed under the null hypotheses. The p-value was determined as the probability 

of finding a value from this synthetic condition that produced better decoding performance 

than the values actually observed as in a standard permutation test.  

As a secondary control, we used a traditional permutation test whereby observed 

spike trains were left intact, but the task variables that correspond to each spike train were 

randomly permuted (condition permutation, Fig. 4f). This process was completed 1240 

times.    

 

Rate-modulated Poisson decoding 

To decode using the trial-averaged firing rate, we implemented a standard method31 which 

uses the probability of observing a set of n spikes at times t1, … , tn assuming those spikes 

were generated by a rate-modulated Poisson process (Supplementary Fig. 12). First, we 

use a training set comprising 90% of trials to estimate the time-varying firing rate for each 

condition from the PSTH ( 𝑟target(𝑡), 𝑟non-target(𝑡), 𝑟go(𝑡), 𝑟no-go(𝑡))  by Kernel Density 

Estimation with 10-fold cross-validation. The remaining 10% of spike trains are then 

decoded using the probability of observing each spike train on each condition assuming 

they were generated according to a rate-modulated Poisson process 

p({𝑡8}	|	target) =
1
𝑁! (𝑟target

(𝑡=)	𝑟target(𝑡?)… 𝑟target(𝑡;)) exp F−H 𝑟target(𝑡)	𝑑𝑡
JK

JL
M ,	

where 𝑇8 and 𝑇O are the beginning and end of the trial respectively. This likelihood function 

is straightforward to interpret: the first product is the probability of observing spikes the 
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spikes at the times they were observed (where the 1/N! term serves to divide out by the 

number of permutations of spike labels) and the exponential term represents the probability 

of silence in the periods between spikes. For comparison with our method, we can 

reformulate this equation using interspike intervals, if we first break up the exponential 

integral into domains that span the observed interspike intervals.  	

p({𝑡8}		|	target) =
1
𝑁! F𝑟target

(𝑡=)exp F−H 𝑟target(𝑡)	𝑑𝑡
PQ

JL
MM × F𝑟target(𝑡?)exp F−H 𝑟target(𝑡)	𝑑𝑡

PS

PQ
MM…

× (exp F−H 𝑟target(𝑡)	𝑑𝑡
JK

PT
M	). 

Collecting the first and last terms relating to trial start and trial end as  

𝐿8(𝑡=, 𝑇8) ≡ 𝑟target(𝑡=) exp F−H 𝑟target(𝑡)	𝑑𝑡
PQ

JL
M 

𝐿OW𝑡;,𝑇OX ≡ expF−H 𝑟target(𝑡)	𝑑𝑡
JK

PT
M	, 

this becomes 	

p({𝑡8}		|	target) 	=
1
𝑁! 𝐿8

Y:𝑟target(𝑡8 + Δ𝑡8)
;[=

8<=

	exp F−H 𝑟target(𝑡)	𝑑𝑡
PL\]PL

PL
M^𝐿O, 

where Δti is the time difference between spikes ti and ti+1. The interpretation of each term 

in the product is straightforward: it is the infinitesimal probability of observing a spike a 

time Δt after a spike at time t  multiplied by the probability of observing no spikes in the 

intervening time. In other words, it is simply p(ISI	|	target,	𝑡), the probability of 

observing an ISI conditioned on observing the first spike at time t, as predicted by the 

assumption of a rate-modulated Poisson process. We can easily verify that this term is 

normalized which allows us to write,  
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p(ISI	|	target,	𝑡) = 𝑟target(𝑡 + ISI)	exp F−H 𝑟target(𝑡)	𝑑𝑡
P\ISI

P
M. 

With the exception of the terms relating to trial start and end, we can then view the 

likelihood of a spike train as resulting from the likelihood of the individual ISIs (just as 

with our ISI-decoder),  

p({𝑡8}		|	target) =
1
𝑁! 𝐿8	𝐿O

Y:p(ISI8	|	target, 𝑡8)
;[=

8<=

^, 

with the key difference that these ISI probabilities are inferred from the firing rate rather 

than estimated directly using non-parametric methods.  

 

Inferring the ISI distribution predicted by a rate-modulated Poisson process 

To compare the ISI distribution inferred using non-parametric methods to one predicted by 

a rate-modulated Poisson process we use the relationship above to calculate the predicted 

probability of observing an ISI of given length within the 1 second window used for our 

non-parametric estimates. The formula above assumes a spike has already occurred at time 

t, so we multiply by the probability of observing a spike at time t, p(𝑡	|	target) = 𝑟target(𝑡), 

to obtain the total probability of finding an ISI at any given point in the trial.    

p(ISI, 𝑡	|	target) = p(ISI	|	target,	t)	p(t	|	target)	 

= 	𝑟target(𝑡)	𝑟target(𝑡 + ISI)	exp F−H 𝑟target(𝑡)	𝑑𝑡
P\ISI

P
M. 

In other words, the probability of observing an ISI beginning at time t is simply the 

probability of observing spikes at times t and t + ISI with silence in between.   
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The probability of observing an ISI at any time within a time window spanning wi 

to wf is simply the integral of this ISI probability as a function of time across the window.  

To ensure the final spike occurs before wf the integral spans wi to (wf  - ISI),   

p(ISI	|	𝑤8,	𝑤O,	target) = 𝐶[= H p(ISI, 𝑡	|	target)	𝑑𝑡
aK[ISI

aL
 

where C is a normalization constant which ensures p(ISI | wi, wf, target) integrates to 1,   

C	=	H FH p(ISI, 𝑡	|	target)	𝑑𝑡
aK[ISI

aL
M 	𝑑ISI

aK[aL

c
	. 

 

Regression based method for verifying multiplexing 

For each cell, we fit a Logit model for both the stimulus and choice decoding probabilities 

on individual trials with the true stimulus category and behavioral choice as regressors. We 

then calculated the extent to which the stimulus decoding probability was determined by 

true stimulus category by subtracting the regression coefficient for stimulus from that of 

choice (Supplementary Fig. 11a, x-axis, stimulus selectivity index); when this number is 

positive it indicates that stimulus was a stronger predictor of stimulus decoding on a trial-

by-trial basis. The same process was repeated for choice (Supplementary Fig. 11a, y-axis, 

choice selectivity index). According to this analysis we took multiplexed cells to be those 

that were positive for both measures (Supplementary Fig. 11a, orange symbols, 19/90 

cells). In other words, multiplexed cells were cells for which stimulus decoding 

probabilities were primarily a result of true stimulus category and choice decoding 

probabilities were primarily a result of true behavioral choice.  

 Given the moderate negative correlation for these indices we projected each of 

these points onto their linear regression to create a one-dimensional regression-based 
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uniplexing index. Cells with a value near zero are the multiplexed cells described above 

and cells with positive or negative values are primarily stimulus or choice selective 

(Supplementary Fig. 11a).   

 We compared the uniplexing values produced by this regression method to those 

produced by examining only the average decoding performance for stimulus and choice 

(Supplementary Fig. 11b). A decoding-based uniplexing index was defined as the 

difference between average stimulus and choice decoding for each cell. When these two 

values are comparable this measure returns a value close to zero and the cell is considered 

multiplexed; moreover, cells that are uniplexed for stimulus or choice receive positive and 

negative values respectively just as with the regression based measure. While the overall 

magnitude of these two measures need not be related, both measures of multi/uniplexing 

rank cells on a one-dimensional axis from choice uniplexed to multiplexed to stimulus 

uniplexed centered on zero.  

 

 
Weighted log likelihood ratio 

The log likelihood ratio (LLR) was calculated by first calculating the conditional ISI 

probabilities and then taking the difference of the logarithm of these distributions. For 

stimulus, 

LLRstimulus(ISI) = 	 log?Wp(ISI|target)X − log?Wp(ISI|non-target)X, 

and for choice, 

LLRchoice(ISI) = 	 log?Wp(ISI|go)X − log?Wp(ISI|no-go)X. 

The weighted LLR weights the LLR according to the prevalence of a given ISI. For 

stimulus, 
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W.	LLRstimulus(ISI) = 	p(ISI)nlog?Wp(ISI|target)X − log?Wp(ISI|non-target)Xo, 

and for choice, 

W.	LLRchoice(ISI) = 	p(ISI)nlog?Wp(ISI|go)X − log?Wp(ISI|no-go)Xo. 

 

Consensus and unsigned consensus 

The consensus value evaluates the extent to which the LLR (or weighted LLR) is shared 

across an ensemble. It is the norm of the sum of the LLRs (W. LLRs) divided by the sum 

of the norms. In principle, the functional norm can be anything but in this case we used the 

ℓ1 norm (the absolute area under the curve),  

‖𝑓‖= ≡ H|𝑓(𝑥)|	𝑑𝑥. 

The for an n-member ensemble, the consensus is then 

Consensus	≡	
‖∑ LLR8;

8<= ‖=
∑ ‖LLR8‖;
8<= =

. 

For the unsigned consensus, we first generate every permutation of the LLRs used and their 

inverses, -LLR, up to an overall sign. For example, for a pair of LLRs there are only two 

options,  

(LLR1, LLR2) or (LLR1, -LLR2),  

and for three LLRs there are four options,  

(LLR1, LLR2, LLR3), (-LLR1, LLR2, LLR3), (LLR1, -LLR2, LLR3),  

or (LLR1, LLR2, -LLR3).  

The consensus is then calculated over each these sets and the maximum value is taken to 

be the value of the unsigned consensus.  
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Recurrent neural network model 

1. Network elements 

We construct a network of N recurrently connected “firing rate” model neurons to perform 

a facsimile of the auditory discrimination task. Each model neuron is characterized by an 

activation variable 𝑥8 and nonlinear response function 𝜙(𝑥) = 	tanh	(𝑥) that describes its 

firing rate. N = 1000 neurons for Fig. 7. Our results are independent of network size (tested 

on a range from N=1000–10,000) and instead depend on the relative fraction of neurons 

with specific response properties (to be described). 

We denote the connections between model neurons by the NxN synaptic weight 

matrix 𝑱 (Fig. 7a) The individual synaptic weights are initially chosen independently and 

randomly from a Gaussian distribution with mean and variance given by  〈𝐽8y〉 	= 0 and  

, where g sets the initial strength of recurrent synapses. We used g values 

between 0.5 and 0.7 so that units are weakly connected prior to training. The entries of J 

are either held fixed or modified during training depending on the fraction of plastic 

synapses41.  

 The activation variable for each network neuron 𝑥8 is determined by 

𝜏
𝑑𝑥8
𝑑𝑡 = 	−𝑥8 + 𝑔~𝐽8y𝜙(𝑥y)

�

y<=

+ ℎ8. 

In the above equation, 𝜏 = 10	𝑚𝑠 is the time constant of each unit in the network which 

sets the time scale of network dynamics and ℎ8 is the external input to unit i. The network 

equations are integrated using Euler method with an integration time step, dt = 1 ms.  

 

2. Design of Inputs and Network Outputs 

〈Jij 〉J
2 = g2 / N
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Auditory input, ℎ8 = 𝑢8𝑓in is provided to 10% of the network units through the vector of 

input weights, 𝐮.	To represent the auditory stimuli used in the experiment, 𝑓in is modeled 

as a square pulse of duration 100 ms and amplitude proportional to the frequency of the 

sound used experimentally, ranging from 0.5 kHz to 32 kHz in octave increments (see left 

panel of Fig. 7a). On each trial the network receives one of these “auditory” inputs. After 

network training, it should respond only to the “target tone” of 4 kHz with an output pulse 

modeled by 𝑓out(𝑡) and produce no response to the other, “non-target tones” (see right 

panel of Fig. 7a).  

The output of the network	𝑧(𝑡) is defined as a sum of unit firing rates from the 90% 

of the units not directly driven by the tone, and weighted by a vector of readout weights, 

w, such that	𝑧(𝑡) = 	∑ 𝑤yy 𝜙(𝑥y). Successful performance is achieved by matching 𝑧(𝑡)	to 

the overall output 𝑓out(𝑡)  by modifying the readout weights w using recursive least 

squares38 (see also section 3 below) .  

In addition to the auditory inputs ℎ8, a fraction (75% of N) of the network units 

sometimes receive stochastic noise during training to ascertain through decoding that they 

were nominally non-responsive units (see section 3 below). This injected noise varies 

randomly and independently at every time step as a Gaussian random variable between 0 

and 1, drawn from a zero mean and unit variance distribution. Its amplitude is scaled by 

0.5*�𝑑𝑡/𝜏.  

 

3. Network Training and Evaluating Performance 

During training, inputs of individual neurons whose weights are plastic are compared 

directly with target functions to compute a set of error functions. In fullFORCE38, these 
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target functions are generated by the units in an almost identical, auxillary network in 

which there are no plastic synapses. However, this network receives the target output 

𝑓��P(𝑡) as an external input, which allows it to perform the task trivially. The recurrent 

connections of the auxillary network are also sampled as described above, but with a g 

value between 1.2 and 1.5, which have been shown to be effective for this method41. 

Only the weights between 25% of the network units are modified through 

fullFORCE41 (typically picked at random from the network, but in the cases when noise is 

used during training, these are noise-free). During training, these synapses undergo 

modification by a recursive least squares procedure, comparing the activity of the selected 

units to the activity of neurons in the auxiliary network. As a result of this partial 

reconfiguration of the network, the trained units evolve into the subpopulation of 

responsive (R) units, whereas the remaining 75% remain nominally non-responsive 

(NNR). Units are confirmed to be nominally non-responsive using the following two 

methods: first, in noise-free simulations, by verifying that their activity fluctuations 

remained below a threshold of 10% (responsive neurons demonstrated fluctuations greater 

than this threshold); and second, by attempting to decode the output from the activity of 

different subpopulations.  

The convergence of the fullFORCE algorithm was assayed by 1) directly 

comparing the output of the network 𝑧(𝑡) with the target function, 𝑓��P(𝑡), and 2) by 

calculating and tracking the squared error between the individual unit rates and their 

targets, both during training and at the end of the simulation. Starting from a random initial 

state, each network is trained for 500 trials of duration 300 ms (3,000 time steps) in Fig. 7.  

The behavioral performance of the trained network is computed as a percentage of 
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trials in which the network produced a pulsed output (green trace in the right panel of Fig. 

7a) in response to the target tone (input schematized in the left panel of Fig. 7a) and 

produced 0 in response to the non-target tone (purple trace in right panel of Fig. 7a). A 

typical trained network of 1000 neurons was able to perform the task to a percent correct 

level of 100% (Fig. 7b). Performance was evaluated in the same way after silencing 

neurons in the responsive or nominally nonresponsive cohort, or alternatively, in a 

randomly selected fraction of network neurons (Fig. 7c,d).  

The predicted decrease in decoding performance for a random subset of the network 

seen in panel Fig. 7d (𝐷pred.)	was derived from the psychometric inactivation curves of 

each subpopulation treated independently. 𝐷pred. was calculated by assuming the decrease 

in decoding performance is a linear sum of the decreases due to the inactivated responsive 

cells (𝐷R)	and the decreases due to the nonresponsive cells (𝐷NNR)	present in the mixed 

ensembles,  

𝐷pred.(𝑁) = 	𝐷R(𝑁�) + 𝐷NNR(𝑁NNR),		 

where 𝑁  is the total number of neurons inactivated and 𝑁�  (𝑁���)  are the expected 

number of responsive (nominally non-responsive) units included in the randomly 

inactivated fraction (In our case, 𝑁� = 0.25	𝑁 and 𝑁��� = 0.75	𝑁). 

 

Analysis of selection rule encoding from Rodgers & DeWeese 2014 

Using our novel ISI-based decoding algorithm, we analyzed cells found to be non-

responsive in a previously published study5. Briefly, rats were trained on a novel auditory 

stimulus selection task where animals had to respond to one of two cues while ignoring the 

other depending on the context. Rats held their nose in a center port for 250 to 350 ms and 
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were then presented with two simultaneous sounds (a white noise burst played from only 

the left or right speaker and a high or low pitched warble played from both speakers). In 

the “localization” context animals were trained to ignore the warble and respond to the 

location of the white noise burst and in the “pitch” context they were trained to ignore the 

location of the white noise burst and respond to the pitch of the warble. Cells recorded from 

both primary auditory cortex and prefrontal cortex (prelimbic region) were shown to be 

responsive to the selection rule during the pre-stimulus period (i.e. firing rates differed 

between the two contexts). Non-responsive cells were reported but not further analyzed. 

 We confirmed that these nominally non-responsive cells satisfied our own positive 

statistical criteria for non-responsiveness (described above) by comparing their average 

spiking activity in the 100 ms immediately preceding stimulus onset across contexts. To 

determine whether the prestimulus activity of nominally non-responsive cells also encoded 

the selection rule, we decoded the task context (localization vs. pitch) on single-trials using 

our ISI-based decoding algorithm. Cells shown in Fig. 5b were deemed statistically 

significant when compared to the decoding performance of a control using synthetically 

generated data (p<0.05).   

  

Statistical analysis 

All statistical analyses were performed in Python, MATLAB, or GraphPad Prism 6. 

Datasets were tested for normality, and appropriate statistical tests applied as described in 

the text (e.g., Student’s paired t-test for normally distributed data, Mann-Whitney U test 

and Wilcoxon matched-pairs signed rank test for non-parametric data).  
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Figure 1. Recording from AC or FR2 during go/no-go audiomotor task. a. Behavioral schematic 

for the go/no-go frequency recognition task. Animals were rewarded with food for entering the 

nose port within 2.5 seconds after presentation of a target tone (4 kHz) or given a 7- second time-

out if they incorrectly responded to non-target tones (0.5, 1, 2, 8,16, or 32 kHz). b. Behavioral 

responses (nose pokes) to target and non-target tones (hit rates: 88 ± 7%, false alarms: 7 ± 5%, 

N=15 rats). c. Left, AC unit with significant tone modulated responses during target trials (red; top 
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panel, average evoked spikes = 0.55) and non-target trials (blue; bottom panel, average evoked 

spikes = 0.92). Rasters of individual trials as well as the firing rate histogram and moving average 

are shown. Histograms of average firing rate during a trial were constructed using 50 ms time bins. 

A moving average of the firing rate was constructed using a Gaussian kernel with a 20 ms standard 

deviation. Black circles represent correct responses. Right, population averages for all target 

(n=23) or nontarget (n=34) responsive singe-units from AC. d. Left, FR2 unit with ramping 

activity (green; ramp index = 2.82). Trials here are aligned to response time. Diamonds indicate 

stimulus onset. Right, population average for all ramping single-units from FR2 (n=21). e. Left, 

FR2 unit that was not significantly modulated during target trials (red; average evoked spikes = 

.041, p<.001, 2,000 bootstraps). Black circles here represent incorrect responses. Right, population 

averages for all target (n=44) or non-target (n=44) non-responsive single-units from FR2 f. Left, 

FR2 unit lacking ramping activity (green, ramp index = -1.0, p<.001, 2,000 bootstraps). Right, 

population average for all non-ramping single-units from FR2 (n=44).  
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Figure 2. ISIs capture information distinct from trial-averaged rate. Three simulated example 

neurons demonstrating that differences in the ISI are not necessary for differences in the trial-

averaged firing rate to occur (and vice versa). Each trial was generated by randomly sampling 

from the appropriate conditional ISI distribution. Evoked responses were generated by shifting 

trials without altering the ISI distributions such that one spike during stimulus presentation is 
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found at approximately 30 ms (with a variance of 10 ms). a. Example neuron with both an 

evoked target response and a difference in the conditional ISI distributions on target and non-

target trials.  b. Example neuron with an evoked target response but identical conditional ISI 

distributions.  c. Example nominally non-responsive neuron with no distinct trial-averaged 

activity relative to the pre-stimulus period that nevertheless is generated by distinct ISI 

distributions.   
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Figure 3. ISI-based algorithm for decoding behavioral variables from AC and FR2 single-units. 

a. Single-unit activity was first sorted by task condition, here for target trials (red) and non-target 

trials (blue). All ISIs following stimulus onset and before behavioral choice were aggregated into 

libraries for each condition (average response time is used on no-go trials) as shown for a sample 

trial. b. Probability of observing a given ISI on each condition was generated via Kernel Density 

Estimation on libraries from a. Left, target (red) and non-target (blue) probabilities. Right, go 

(green) and no-go (purple). c. Relative differences between the two stimulus conditions (or choice 

conditions) was used to infer the actual stimulus category (or choice) from an observed spike train, 

in terms of weighted log likelihood ratio (W. LLR) for stimulus category (p(ISI)*(log2p(ISI|target) 

- log2(ISI|non-target)); on left) and behavioral choice (p(ISI)*(log p2(ISI|go) - log2(ISI|no-go)); on 
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right). When curve is above zero the ISI suggests target (go) and when below zero the ISI suggests 

non-target (no-go). d. Probability functions from c were used as the likelihood function to estimate 

the prediction of a spike train on an individual trial (bottom). Bayes’ rule was used to update the 

probability of a stimulus (top) or choice (bottom) as the trial progressed and more ISIs were 

observed. The prediction for the trial was assessed at the end of the trial.  
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Figure 4. Decoding performance of single-units recorded from AC or FR2. a. Decoding 

performance of single-units for stimulus category and behavioral choice in AC (open circles) and 

FR2 (filled circles) restricted to those statistically significant relative to synthetically-generated 

spike trains (p<0.05, permutation test, two-sided). Central symbol with error bars represents group 

medians and top and bottom quartiles (*p=0.02, **p=0.001, Mann-Whitney U test, two-sided). 

Black symbols, responsive cells; red symbols, nominally non-responsive cells. b. Decoding 

performance for choice versus stimulus, restricted to those statistically significant relative to 

synthetically-generated spike trains for either stimulus, choice, or both (p<0.05, permutation test, 

two-sided). Black symbols, responsive cells; red symbols, nominally non-responsive cells. c. 
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Choice decoding performance in AC of nominally non-responsive cells (red) and choice non-

responsive (dark-red) versus choice responsive cells (black; i.e. ramping cells). Decoding 

performance was not statistically different (p=0.32 Mann-Whitney U test, two-sided). Central 

symbol with error bars represents group medians and top and bottom quartiles. d. Stimulus 

decoding performance in FR2 for nominally non-responsive cells (red) and sensory non-responsive 

(dark-red) versus choice responsive cells (black; i.e. ramping cells). Decoding performance was 

not statistically different (p=0.29, Mann-Whitney U test, two-sided). Central symbol with error 

bars represents group medians and top and bottom quartiles. e. Decoding performance for choice 

versus stimulus, applied to spike trains synthetically generated from sampling (with replacement) 

over all ISIs observed without regard to stimulus category or behavioral choice. Black, responsive 

cells; red, nominally non-responsive cells. Error bars represent standard deviation. f. Decoding 

performance for choice versus stimulus, applied to spike trains left intact but trial conditions 

(stimulus category and behavioral choice) were randomly permuted (1000 permutations per unit). 

Error bars represent standard deviation. 
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Figure 5.  Nominally non-responsive cells in both auditory cortex and prefrontal cortex (PFC) 

encode selection rule better than responsive cells. a. Schematic of novel auditory stimulus 

selection task. Animals were presented with two simultaneous tones (a white noise burst and 

warble) and trained to respond to the location of the sound in the  “localization” context while 

ignoring pitch and respond to the pitch while ignoring the location in the “pitch” context (figure 

adapted from Rodgers & DeWeese 2014, Neuron). b. Decoding performance for nominally non-

responsive cells (similar pre-stimulus firing rates for both pitch and localization blocks) in 

primary auditory cortex and prefrontal cortex previously reported but not further analyzed in this 

study (red cells), responsive cells in black (***pAC=5×10-6, ***pPFC<0.0002, Mann-Whitney U 

test, two-sided). 
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Figure 6. Decoding performance of neuronal ensembles recorded in AC or FR2. a. Schematic of 

ensemble decoding. Left, conditional ISI distributions and corresponding weighted LLR shown 

for two simultaneously recorded neurons. Right, an example trial where each neuron’s ISIs and 

LLRs are used to independently update stimulus category according to Bayes’ rule. Arrows 

indicate the first updates from each neuron. b. Stimulus and choice decoding performance for 

ensembles in AC and FR2 for ensembles of increasing size (Comparing smallest with largest 

ensembles. Stimulus: *pAC=0.04, ***pFR2=1×10-5, Choice: pAC=0.29, ***pFR2=7×10-5, Mann-
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Whitney U test, two-sided) c. Error prediction performance in AC and FR2 as a function of 

ensemble size (*pAC=0.03, **pFR2=0.002; comparison between AC and FR2, for 3-member 

ensembles: p=1.2×10-5, for 4-member ensembles: p=0.03, Mann-Whitney U test, two-sided) d. 

Error prediction performance in AC and FR2 as a function of the number of non-responsive cells 

in the ensemble (*pAC=0.013, *pFR2=0.046, Welch’s t-test), 3 and 5 member ensembles in c. shown 

for AC and FR2 respectively.  
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Figure 7. Recurrent neural network model demonstrates nominally non-responsive cells are 

necessary for task performance and synergistically interact with responsive cells. a. Schematic of 

network design and task details. A recurrent network of model neurons (N = 1000 units, shown 

here with fewer units for illustration purposes) was trained to produce a choice only in response to 

a target input (go condition) and no response to non-target inputs (no-go condition). 10% of model 

neurons (100 units) received the “auditory” input on each 300ms trial, either a target or a non-

target tone presented from 100 - 200 ms (left panel, fin) with weights (u), which were generated 
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randomly and left fixed during training. Training was done by activity-dependent modification of 

the recurrent synaptic weights (black) between responsive units only (R, in gray) and the readout 

weights (w, maroon) from all network units. The overall behavioral choice is read out from the 

entire network using a readout unit (maroon, fout). Bottom panel, activity of an example responsive 

and non-responsive unit on a single trial. b. Task performance of trained versus untrained 

network. Once trained for 500 steps, these networks were tested for a further 1000 steps or 

simulated “trials.” Trained networks demonstrated reliable responses only to the target tone (solid 

line and shading indicate mean ± standard deviation for 10 instantiations of the network). For 

comparison, untrained networks (dotted line and shading indicate mean ± standard deviation) 

operating under the same stimulation conditions (run for 1000 trials without training) did not 

respond to any of the presented “tone” inputs.  c. Psychometric inactivation curves representing 

task performance as a function of the number of inactivated responsive cells (black), nominally 

non-responsive cells (red), and a random subset (dashed red and black line). After training, 

different fractions of units (between 0 and 10% of units in N=1000 networks, in 0.5% 

increments) were selected randomly for inactivation from each subpopulation or the entire network 

(i.e., their currents were set to 0). These partially inactivated networks were then tested for an 

additional 1000 trials. Data collected from 10 network instantiations (solid line and shading 

indicate mean ± standard deviation). d. Comparison of the psychometric inactivation curve for 

random subsets (dashed red and black line) with the predicted curve derived from the responsive 

and non-responsive curves treated independently (dashed red and white line).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347617doi: bioRxiv preprint 

https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347617doi: bioRxiv preprint 

https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8. Ensemble consensus-building during behavior. a. Schematic of consensus building in a 

three-member ensemble. When the LLRs of ensemble members are similar the meaning of any ISI 

is unambiguous to a downstream neuron.  b. Schematic of a three-member ensemble without 

consensus. The meaning of an ISI depends on the upstream neuron it originates from c. ISI 

distributions, and LLRs for three members of a sample ensemble. Note that despite differences in 

ISI distributions, neuron #1 and neuron #2 have similar weighted log-likelihood ratios (ISIs > 200 

ms indicate target, ISIs < 200 ms indicate non-target). d. Consensus values for three illustrative 

two-member ensembles. Ensemble 1 members have identical LLRs, agreeing on the meaning of 

all ISIs (consensus = 1) and on how the ISIs should be partitioned (unsigned consensus = 1). 

Ensemble 2 contains cells with LLRs where the ISI meanings are reversed, disagreeing on meaning 

of the ISIs (consensus = 0) but still agree on how the ISIs should be partitioned (unsigned 

consensus = 1).  Ensemble 3 contains two cells with moderate agreement about the ISI meanings 

and partitioning, leading to intermediate consensus and unsigned consensus values (0.5 for each). 

e. Left, mean consensus as a function of time from tone onset (stimulus-aligned) on correct trials 

for three-member sensory responsive ensembles in AC (two or more members sensory responsive; 

black dotted line; n=11 ensembles) and sensory non-responsive ensembles in FR2  (two or more 

members sensory non-responsive; dark red solid line; n=101 ensembles). Standard deviation 

shown around each mean trendline. FR2 sensory non-responsive cells consistently reached 

consensus and then diverged immediately after stimulus presentation (Dconsensus, t = 0 to 0.42 s, 

pSNR = 1.3×10-4 Wilcoxon test, two-sided). AC responsive ensembles (black) increase consensus 

until 750 ms (Δconsensus, t = 0 to 0.81 s, pSR = 0.046 Wilcoxon test, two-sided). Right, mean 

consensus as a function of time to behavioral response (response-aligned) on correct trials for 

three-member choice responsive ensembles (two or more members choice responsive; black) in 
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FR2 (solid line; n=47 ensembles) and choice non-responsive (two or more members choice non-

responsive; dark red) in AC (dotted line; n=11 ensembles) and FR2 (solid line; n=57 ensembles). 

Standard deviation shown around each mean trendline. On correct trials, choice responsive (black) 

and choice non-responsive ensembles (dark red) in both regions reached high consensus values 

~500 ms before response (Δconsensus, t = -1.0 to 0.0 s, pCNR = 6.6×10-6, pCR = 0.041 Wilcoxon 

test, two-sided). f. As in e, but for error trials (Δconsensus, correct vs. error trials, stimulus: pSNR= 

0.007, pSR = 0.065, choice: pCNR = 0.0048, pCR = 0.065 Mann-Whitney U test, two-sided). g. 

Unsigned consensus index for nominally non-responsive ensembles (two or more members 

nominally non-responsive) in AC (dotted line; n=13 ensembles) and FR2 (solid line; n=36 

ensembles), stimulus-aligned (left, Δconsensus, t = 0 to 0.89 s, p = 1.7×10-5 Wilcoxon test, two-

sided) and response-aligned (right, Δconsensus, t = -1.0 to 0.0 s, p = 0.0011 Wilcoxon test, two-

sided). On correct trials, ensembles reach high values of unsigned consensus ~750 ms after tone 

onset and within 500 ms of behavioral response. h. As in g, but for error trials (Δconsensus, correct 

vs. error trials, p = 1.9×10-9 Mann-Whitney U test, two-sided).  
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Supplementary Figure 1. Individual response curves from 15 animals included in this study. Each 

panel shows data from a different animal including behavioral d' for distinguishing target from 

non-target tones. We used a criteria of d' ≥1 for inclusion in this study. Response curves here are 

for an average of 3-4 sessions. Error bars represent S.E.M.   
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Supplementary Figure 2. Histological placement of cannulas in AC and FR2. a. Example of a 

coronal section of a rat implanted with cannulas in primary auditory cortex (AC). The white lines 

represent the borders of AC38. b. Example of a coronal section of a rat implanted with cannulas in 

FR2. The white lines represent the borders of FR238.  
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Supplementary Figure 3. Bilateral infusion of muscimol into either AC or FR2 significantly 

impairs task performance. a. Behavioral performance after muscimol infusion (red) or saline 

control (black) in AC from two individual animals. b. Summary of performance on day before 

infusion, after muscimol infusion into AC, and after saline control infusion (N=3 animals). 

Performance was impaired after muscimol infusion (p=0.03 Student’s paired two-tailed t-test, *p 

<0.05). c. Behavior of one animal allowed to freely nose poke for food without tones being 

presented. This behavior was not affected by muscimol inactivation (average of 3 sessions, p>0.99 

Wilcoxon matched-pairs signed rank test). Error bars represent S.E.M. d. Behavioral performance 

for two animals infused bilaterally with muscimol into FR2. e. Summary of performance before, 

during, and after muscimol infusion into FR2 (N=5 animals). Performance was impaired after 

muscimol infusion (p=0.009 Student’s paired two-tailed t-test, **p<0.01). f. Muscimol in FR2 did 

not impair free nose poking for food without tones being presented in two animals (average of 4 

sessions, p=0.62, Wilcoxon matched-pairs signed rank test).  
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Supplementary Figure 4. Histological placement of electrodes in AC and FR2. a. Example of 

electrode tracks and electrolytic lesions in AC. The white lines represent the borders of AC. b. 

Example of an electrode track in FR2. The white lines represent the borders of FR2. Left, section 

imaged at 10X. Right, the same section imaged at 40X.  
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Supplementary Figure 5. Examples of tone evoked, ramping, and nominally non-responsive cells 

from AC and FR2. a. Two example tone-evoked cells recorded from AC. Rasters and PSTHs of 

target (red) and non-target (blue) trials shown. Stimulus shown as grey bar and black circles 

represent behavioral response. (Example #1: average evoked spikes on target tones = 0.55, on non-

target = 0.92. Example #2: average evoked spikes on target tones = 0.096, on non-target = 0.12; 

note that example #2 is only non-target tone evoked). b. Example target tone-evoked cell recorded 

from FR2. Rasters and PSTHs of target (red) and non-target (blue) trials shown (average evoked 

spikes on target tones = 0.37, on non-target = 0.20). c. Example ramping cell recorded from AC. 

Rasters and PSTH of go trials (green) shown (ramp index = 2.8). d. Example ramping cell recorded 

from FR2 (ramp index = 4.9). Rasters and PSTH of go trials (green) shown. e. Two example 

nominally non-responsive cells recorded from AC. Rasters and PSTH of target (red), non-target 

(blue), and go (green) trials shown. (Example #1: average evoked spikes on target tones = 0.12, 

on non-target = -0.12, ramp index = -0.85; ptone<0.001, pramp=0.010, 2,000 bootstraps; Example 

#2: average evoked spikes on target tones = -0.020, on non-target = -0.038, ramp index = 1.1; 

ptone<0.001, pramp=0.004, 2,000 bootstraps). f. Two example nominally non-responsive cells 

recorded from FR2 (Example #1: average evoked spikes on target tones = 0.081, on non-target = 

-0.15, ramp index = 1.4; ptone<0.001, pramp=0.019, 2,000 bootstraps; Example #2: average evoked 

spikes on target tones = 0.046, on non-target = -0.070, ramp index = 1.8; ptone<0.001, pramp=0.033, 

2,000 bootstraps). Rasters and PSTH of target (red), non-target (blue), and go (green) trials shown.  
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Supplementary Figure 6. Histograms of a. spontaneous firing rate, b. average number of tone-

evoked spikes, and c. ramp index for AC (top) and FR2 (bottom).    
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Supplementary Figure 7. Decoding algorithm to determine stimulus category and choice in 

single-unit ISIs from AC and FR2 for two additional neurons. a-d. Decoding algorithm applied to 

a sample neuron in AC. a. Single-unit activity sorted by stimulus condition: target trials (red) and 

non-target trials (blue). Black circles represent the behavioral response. b. Trials aligned to 

behavioral response: go (green) and no-go (purple). Black diamonds in both go and no-go trials 

represent stimulus onset. c. All ISIs during the trial (following stimulus onset and before 

behavioral choice) are aggregated into libraries for each condition (average response time is used 

on no-go trials). Probability of observing a given ISI on each condition was generated by using 

Kernel Density Estimation on the libraries from a. Top left are target (red) and non-target (blue) 

probabilities and on right are go (green) and no-go (purple). Below left (right) are the log likelihood 

ratios (LLR) for the ISIs conditioned on stimulus category (behavioral choice). When curve is 

above zero the ISI suggests target (go); when it is below zero the ISI suggests non-target (no-go). 

d. Probability functions from c. were used as the likelihood function to estimate the prediction of 

a spike train on an individual trial (bottom). Bayes’ rule was used to update the probability of a 

stimulus (top) or choice (bottom) as the trial progresses and more ISIs were observed. Prediction 

for the trial was assessed at the end of the trial as depicted by the highlighted dot. e-h. as in a-d 

except the decoding algorithm is applied to a neuron from FR2.   
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Supplementary Figure 8. Empirical ISI distributions are better modeled using non-parametric 

methods. a. ISI histograms from two example cells on target trials with the corresponding non-

parametric Kernel Density Estimate (KDE) distribution (solid lines) and the distribution derived 

from a rate-modulated Poisson process (dashed lines). Above each example is the Kullback-

Leibler divergence (DKL) quantifying the difference between these two distributions, and the 

difference in the average log-likelihood of the data (ΔLL) where positive values indicate that the 
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data is better described by the non-parametric KDE distribution. b. Constructed examples of the 

KL divergence for four pairs of normal distributions with equal standard deviations and various 

mean offsets as a visual reference c. Summary of all KL divergence values for both stimulus and 

choice in AC (white) and FR2 (grey). Bar indicates median and error bars indicate bottom and top 

quartiles. d. Summary of difference between log-likelihood of observed data under non-parametric 

KDE and rate-modulated Poisson distributions. Positive values indicate KDE distributions are 

generically a superior fit for the data (AC: p = 1.1×10-15 FR2: p = 1.2×10-16, Wilcoxon signed-rank 

test).   
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Supplementary Figure 9. Lack of correlations between classical firing rate metrics and stimulus 

or choice decoding performance. a. Stimulus and choice decoding performance versus the 

spontaneous firing rate for both target and non-target trials, (rAC = 0.37, 0.35; rFR2 = 0.38, 0.30). b. 

Stimulus and choice decoding performance versus average firing rate for both target and non-target 

trials, (rAC = 0.39, 0.36; rFR2 = 0.42, 0.33). c. Stimulus and choice decoding performance versus 

average firing rate for target trials only, (rAC = 0.38, 0.35; rFR2 = 0.34, 0.30). d. Stimulus and choice 

decoding performance versus average firing rate for non-target trials only, (rAC = 0.40, 0.35; rFR2 = 

0.39, 0.30). e. Stimulus and choice decoding performance versus average firing rate for go trials 

only, (rAC = 0.38, 0.37; rFR2 = 0.46, 0.36). f. Stimulus and choice decoding performance versus 

average firing rate for no-go trials only, (rAC = 0.40, 0.35; rFR2 = 0.39, 0.30). g. Stimulus and choice 

decoding performance versus z-score for all trials, (rAC = 0.01, -0.02; rFR2 = 0.01, -0.01). h. 

Stimulus and choice decoding performance versus z-score for target trials only, (rAC = -0.04, -0.01; 

rFR2 = -0.03, -0.002). i. Stimulus and choice decoding performance versus z-score for non-target 

trials only, (rAC = 0.01, -0.05; rFR2 = 0.05, 0.02). j. Stimulus and choice decoding performance 

versus ramp index, (rAC = 0.28, 0.07; rFR2 = 0.18, 0.09). 
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Supplementary Figure 10. Stimulus decoding in AC independent of receptive field properties. a. 

Examples of tuning curves from four different neurons constructed from responses in AC. Gray 

regions represent S.E.M. b. Stimulus decoding performance as a function of best frequency as 

measured relative to the target tone frequency. No significant differences were found between 

groups (p>0.2, Mann Whitney U test, two-sided). c. Stimulus decoding performance as a function 
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of receptive field bandwidth tuning. No significant differences were found between groups (p>0.1, 

Mann Whitney U test, two-sided).  
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Supplementary Figure 11. Decoding performance is a sufficient measure of uni/multiplexing. 

Given the correlation between stimulus category and behavioral choice we used a regression based 

analysis to determine whether decoding performance alone was sufficient to establish whether 

cells were multiplexed for both behavioral variables. We used multiple regression to create an 

alternative definition of multiplexing and uniplexing and then demonstrated this definition 

coincides with the one used in the paper based solely on decoding performance. a. Choice 

selectivity index versus stimulus selectivity index for single cells. Each index quantifies the extent 

to which the corresponding variable was predictive of decoding performance. Multiplexed cells 
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(orange symbols) have positive values on both indices. Uniplexed cells (blue symbols) are only 

positive for one of the two indices. Each cell was projected on the linear regression (grey line) to 

construct a regression-based uniplexing index. Multiplexed cells were close to zero on this 

measure and cells uniplexed for stimulus or choice were positive or negative respectively. b. The 

decoding-based uniplexing index (difference between stimulus and choice decoding performance) 

versus the regression-based index defined in a for AC (left, open symbols) and FR2 (right, filled 

symbols). In both regions, these two measures of uni/multiplexing were correlated. c. Overall 

decoding performance (average of stimulus and choice decoding) for multiplexed cells versus 

uniplexed cells in AC (left) and FR2 (right). There were no systematic differences in decoding 

performance between multiplexed and uniplexed units (n.s. pAC=0.22, pFR2=0.11, Mann-Whitney 

U test, two-sided). 
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Supplementary Figure 12. Information captured by ISI-based decoder distinct from conventional 

rate-modulated (inhomogeneous) Poisson decoder. a. Decoding performance comparison for 

example neurons shown in Figure 2. Left, Both the trial-averaged firing rate and the ISI 

distributions can be used to decode stimulus category for this example neuron. Middle, Only the 

firing rate can be used to decode this example. Right, In this case, the ISI distributions can be used 

to decode even when the trial-averaged firing rate cannot. b. Comparison of decoding performance 

for conventional rate-modulated decoder to our ISI-based decoder. Top row, stimulus decoding, 

bottom row, choice decoding. Left, Overall comparison for all cells. Right, Comparison for 

responsive and non-responsive cells (Stimulus Overall: ***pAC=0.0001, ***pFR2=8×10-6, Stimulus 

Repsonsive: *pAC=0.031, ***pFR2=4×10-5, Stimulus Non-responsive:  **pAC=0.0019, n.s. 

pFR2=0.096, Choice Overall: **pAC=0.0057, *pFR2=0.02, Choice Repsonsive: n.s. pAC=0.031, n.s. 

pFR2=0.08, Choice Non-responsive:  *pAC=0.004, n.s. pFR2=0.19, Wilcoxon signed-rank test). Bar 

indicates median and error bars designate bottom and top quartiles. c. Left, Matthews correlation 

coefficient (MCC) between correct predictions of our ISI-based decoder and a conventional rate-

modulated firing rate decoder. A MCC value of 1 indicates each decoder correctly decodes exactly 

the same set of trials whereas -1 indicates each decoder is correct on complementary trials. Values 

close to 0 indicate that that the relationship between the decoders is close to chance. Typically, 

values from -0.5 to 0.5 are considered evidence for weak to no correlation (stimulus median & 

interquartile range: AC=0.10, 0.09, FR2=0.11, 0.12; choice median & interquartile range: 

AC=0.06,  0.15, FR2=0.08, 0.17). Right, Matthews correlation coefficient (MCC) rescaled by the 

maximum possible correlation given the decoding performance of each method remains fixed. 

This control demonstrates that the correlation values are not a result of weak decoding performance 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347617doi: bioRxiv preprint 

https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/


for one of the decoding methods (stimulus median & interquartile range: AC=0.11, 0.11, 

FR2=0.12, 0.15; choice median & interquartile range: AC=0.08,  0.17, FR2=0.11, 0.19). 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347617doi: bioRxiv preprint 

https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

	
 

Supplementary Figure 13. Whole-cell recordings from AC and FR2 neurons showing that 

different cells can have distinct responses to the same input pattern- necessary for ISI-based 

decoding by biological networks. In each case, note the reliability of response across trials but 

differences in response patterns across cells. a. Two of eight in vivo whole-cell recordings from 

anesthetized adult rat primary AC, presenting trains of pure tones at the best frequency for each 

cell (top, ‘Stim’). b. Two of nine whole-cell recordings from adult rat AC in brain slices. 

Extracellular stimulation was used to present input patterns previously recorded from cortex with 

tetrode recordings in behaving rats during the auditory task used here, and responses recorded in 

current-clamp near spike threshold. c. Two of 11 whole-cell recordings from adult rat FR2 in brain 

slices. 
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