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Abstract 

High-throughput technologies, offering unprecedented wealth of quantitative data 

underlying the makeup of living systems, are changing biology. Notably, the systematic 

mapping of the relationships between biochemical entities has fueled the rapid 

development of network biology, offering a suitable framework to describe disease 

phenotypes and predict potential drug targets. Yet, our ability to develop accurate 

dynamical models remains limited, due in part to the limited knowledge of the kinetic 

parameters underlying these interactions. Here, we explore the degree to which we can 

make reasonably accurate predictions in the absence of the kinetic parameters. We find 

that simple dynamically agnostic models are sufficient to recover the strength and sign of 

the biochemical perturbation patterns observed in 87 biological models for which the 

underlying kinetics is known. Surprisingly, a simple distance-based model achieves 65% 

accuracy. We show that this predictive power is robust to topological and kinetic 

parameters perturbations, and we identify key network properties that can increase up to 

80% the recovery rate of the true perturbation patterns. We validate our approach using 

experimental data on the chemotactic pathway in bacteria, finding that a network model of 

perturbation spreading predicts with ~80% accuracy the directionality of gene expression 

and phenotype changes in knock-out and overproduction experiments. These findings show 

that the steady advances in mapping out the topology of biochemical interaction networks 

opens avenues for accurate perturbation spread modeling, with direct implications for 

medicine and drug development.  
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Significance statement 

The development of high-throughput technologies has allowed to map a significant 

proportion of interactions between biochemical entities in the cell. However, it is unclear 

how much information is lost given the lack of measurements on the kinetic parameters 

governing the dynamics of these interactions. Using biochemical networks with 

experimentally measured kinetic parameters, we show that a knowledge of the network 

topology offers 65% to 80% accuracy in predicting the impact of perturbation patterns. In 

other words, we can use the increasingly accurate topological models to approximate 

perturbation patterns, bypassing expensive kinetic constant measurement. These results 

could open new avenues in modeling drug action, and in identifying drug targets relying on 

the human interactome only. 
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Introduction 

In the past decade, we witnessed great progress towards the systematic and comprehensive 

mapping of the physical interactions between the biochemical entities that make up the cells, that 

together represent the human interactome (1-3). These advances have fueled the rapid 

development of network biology as a suitable framework to describe and understand cellular 

processes and how their collective perturbations affect disease states (1, 4-8). The underlying 

data, fueling these advances, include but are not restricted to protein-protein interactions, gene 

regulation, metabolic reactions or kinase-substrate interactions. Through the aggregation of 

systematic and literature derived interactions from multiple resources, the human interactome 

covers today 170,000+ physical interactions between ~14,000 biochemical entities (7). 

Complementing this wealth of the interaction data, a massive amount of data is routinely 

generated at the microRNA (miRNA), messenger RNA (mRNA) and protein level through large 

scale measurements of their abundance in various cell types, organisms and conditions, 

populating databases such as Gene Expression Omnibus (9).  

 

From the knowledge of the interactome, the goal of network biology is to quantify and predict 

the spread of perturbations across the subcellular network. Such perturbation patterns are of 

crucial importance for network medicine, helping us understand the differential expression 

patterns observed in disease states. Moreover, being able to prioritize the effect of biological 

perturbations in silico is key given the cost, time and difficulty to obtain such data through 

perturbation experiments, especially for human subjects. Yet, while the coverage of the 

interactome is increasing steadily, network biology continues to lack a general quantitative 

dynamical framework for such predictive modeling. This is in part due to the rarity of large scale 
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measurements of the kinetic parameters, necessary to populate the kinetic models of all pathways 

(10, 11). Moreover, the degree of reproducibility of the measured kinetic parameters varies 

wildly between in vitro and in vivo experiments (12). Other approaches pertaining to the global 

fitting of kinetic parameters (13, 14) by optimizing the model agreement to available data often 

yield large parameter uncertainties (15, 16). To bypass the need of a full knowledge of kinetic 

parameters, other studies have investigated the interplay between generic dynamical models and 

topological structure in the context of biological networks (17, 18). These studies have focused 

on retrieving global perturbation statistical properties from microscopic models (17), or 

retrieving the most probable underlying dynamical model from perturbation statistics (18). 

However, such universal insights are of limited predicting power when confronted with small-

size biological models with heterogeneous dynamics. On the other hand, topological models 

have been proposed to study perturbation spread in biological networks, such as Boolean 

networks (19) or Normalized Hill models (20). However, such studies are usually limited to a 

few well described, small-size networks, not offering a comprehensive picture of the accuracy of 

topological models when applied to a large diversity of real-world biological networks.  

 

While we continue to lack large scale measurements of kinetic parameters, the literature has 

flourished with detailed biochemical models of smaller scale. This is indicated by the growing 

body of databases dedicated to the storage of biological models (21). For example, the repository 

of computational models of biological processes BioModels has seen a steady growth of its 

content over the last decade and currently hosts over 1,200 models derived directly from the 

literature (22). These models contain detailed information on the pertinent biological 

components, their interactions and the differential equations describing their dynamics.  
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The fine-grained level of detail these biochemical models offer opens an avenue to explore what 

level of description is necessary (and sufficient) to reproduce the perturbation patterns 

characterizing biological networks. In particular, previous work has shown that some 

perturbation patterns are robust to significant changes in kinetic parameters (23, 24). Indeed, 

only a small subset of these model parameters affect the overall dynamics, a property known as 

“sloppiness” (25). Accordingly, a simplified dynamical model containing only a few parameters 

has been found to accurately predict perturbation patterns obtained with a full biochemical model 

in the case of the beta-adrenergic pathway (20). While these studies focus on perturbations 

around a given steady-state, their results have been extended to the full dynamical landscape of 

biological networks (26). Using random kinetic models, Huang et al. (26) have shown in the 

cases of toggle-switch-like motifs and a 22-node biological network that the stable states 

converge to experimentally observed gene state clusters even when the parameters are strongly 

perturbed, suggesting that the dynamics is determined mainly by the circuit topology, not by 

detailed kinetic parameters.  

 

Here we develop DYNamics-Agnostic Network MOdels (DYNAMO), an ensemble of 

perturbation propagation models that rely on the network topology alone, and investigate the 

extent to which the relative magnitude of biological perturbations can be retrieved when we lack 

knowledge of the kinetic parameters and the details characterizing the dynamics of the 

underlying biochemical process. Using an ‘onion-peeling’ strategy across a variety of detailed 

biochemical models, we systematically quantify the loss of accuracy of the predicted 

perturbation patterns when we successively remove information on the specifics of the dynamics. 
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We show that an accurate knowledge of the network topology captures on average 65% of the 

influence patterns of the full biochemical model. We then identify global network features that 

guarantee higher accuracies, reaching up to 80% predictive power. The underlying modeling 

framework, and its level of accuracy are finally validated using perturbation experiments in the 

chemotaxis network in bacteria. 

 

Results 

1. Modeling influence patterns in biological networks 

When the concentration of a biological species is perturbed, the perturbation can spread 

along physical interactions and reactions, reaching other parts of the interactome (Figure 1a). A 

purely topological approach predicts a uniform spread across the network: first neighbors are 

affected the most, followed by second neighbors etc. In reality, each interaction is governed by a 

specific dynamical equation with an associated set of parameters, allowing for a precise 

computation of influence propagation. We must consider the full dynamics to determine the 

precise direction and the rate at which a perturbation spreads within the network.  

Here we investigate the degree to which these dynamical patterns can be retrieved from simple 

topological models. To that aim, we explore several models of influence propagation with 

increasing complexity, both in terms of accuracy of representation of the underlying network 

topology and in terms of dynamical model used (see Figure 1b-e and Methods). We describe 

network topology in terms of four layers of increasing complexity: (1) undirected network, (2) 

directed network, (3) directed and signed (activating/inhibiting) network, and (4) directed, signed 

and weighted network. To illustrate these layers, consider two interacting species A and B, 

where an increase in A causes B to increase while a change in B does not affect A. The four 
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layers of complexity successively describe the knowledge that (1) A and B interact (the existence 

of a link), (2) A causes a change in B’s concentration (direction of influence), (3) A causes a 

positive change in B’s concentration (sign) and (4) A causes a positive change in B’s 

concentration of a certain strength (magnitude determined by the link weight parameters, like 

kinetic constant). All this information can be extracted from the Jacobian matrix of the system 

(see Methods), which quantifies the degree to which a change in A’s concentration causes a 

change in B’s concentration, and the direction of the change (positive for an increase or negative 

for a decrease). In this work, the Jacobian matrix is constructed from the underlying systems of 

dynamical equations characterizing a biological model. The signed Jacobian matrix is then used 

to reconstruct the underlying weighted topology of the biological models, allowing us to capture 

topologies of type (1) to (3). The topology of type (4), built from the full Jacobian matrix, 

contains the kinetic parameters information and hence corresponds to the full biochemical 

model. Therefore, from the Jacobian matrix, we extract both the topology and perturbation 

dynamics of the studied models. 

 

Given a network topology (wiring diagram), we wish to predict how the perturbation of a 

given species propagates over the network and the degree to which it affects all other species. 

Such perturbation patterns – that we call influence patterns – are usually represented by a 

sensitivity matrix – also called the linear response matrix or correlation matrix in the literature 

(27) –, describing the change in the steady state value 𝑥" of a node 𝑖 when the steady-state value 

𝑥$ of another node 𝑗 is varied (27, 28):  

𝑆"$ =
()*
()+
	 (1)  
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If the dynamical equations are known, the sensitivity matrix can be analytically derived using a 

perturbative framework (17, 27) (see Methods). In the following we refer to this exact sensitivity 

matrix as the “(full) biochemical model”, which is the underlying model from which it is 

computed (Figure 1b).  

We explore three models of decreasing complexity to compute the sensitivity matrix using 

topological information only (Figure 1c-e). We refer to them as Dynamics-Agnostic Models or 

DYNAMO: 

(i) We start with a “propagation model” (Figure 1c) proposed in the context of disease 

gene prioritization, where “influence” spreads from a set of known seed genes to 

highlight putative disease genes (29). In our case, perturbed species are seed genes 

and we want to prioritize the perturbation level of the other species. In this model, the 

predicted perturbation of a node is proportional to the degree-weighted sum of the 

perturbations of its neighbors, with a constant input term added for the “source” node 

being perturbed. This propagation model has been shown to outperform a Random 

Walk algorithm in prioritizing disease genes across 1,369 diseases (29).  

(ii) The “distance model” (Figure 1d) assumes that the strength of a perturbation is 

inversely proportional to the network distance between a species and the source of 

perturbation, that is to the number of interactors it takes for one species to affect the 

expression of another. Such a model is of great interest since network distance in the 

interactome is a remarkable predictor of similarity between diseases (7) and drug-

disease association (30).  

(iii) The minimal “first neighbor” model (Figure 1e) assumes that the perturbation reaches 

only the direct neighbors of a perturbed node. Such direct neighbor influence, also 
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called the “local impact hypothesis” (31), has proven fruitful for disease gene 

prediction (32), and is at the core of the Minimum Dominating Set (MDS) 

controllability approach, where a minimal group of nodes is identified such that all 

other nodes in the network have a direct interaction with an MDS node and can 

therefore be suitably “controlled” or influenced. Applied to the protein-protein 

interactome, the resulting MDS proteins were shown to be more essential and 

disease-related that non-MDS proteins (33). As perturbations first impact the first 

neighbors of the perturbed nodes, the first neighbor model is the most minimal 

approximation we explore. 

In the following we apply these models to a diverse set of well-characterized biochemical 

models.  

 

2. Topological models accurately predict influence patterns in biological models 

To test the validity of our findings on a large and diverse set of biological networks, we start 

from the BioModels database, a repository of curated biological, dynamical models (see 

Methods). Biological models from this database are deposited in a standard format allowing us to 

extract the underlying set of differential equations describing their dynamics using libSBML (34) 

(Figure 2a). From the dynamical equations, we derive the influence networks by linking a 

species 𝑖 to a species 𝑗 if a permanent change in the concentration of 𝑖 directly affects the steady 

state concentration of species 𝑗. To do so, we first compute the Jacobian matrix of the system. 

Writing the dynamical equations as 𝑥̇$ = 𝑓$(𝑥2,… , 𝑥5), where 𝑁 describes the number of species 

in the model and 𝑥𝑖 is the concentration of species 𝑖, the Jacobian is 𝐽",$ =
8𝑓𝑗
8)*
(𝒙∗), where 𝒙∗ is 
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the steady-state of the system (Figure 2b). The adjacency matrix 𝐴 of the network is computed as 

𝐴 = 𝑠𝑖𝑔𝑛(𝐽?(𝒙∗)), where 𝐽?denotes the transpose of the Jacobian of the system and the sign 

function applies element-wise (see Methods and Figure 2c). In this framework, links with 

negative weights correspond to inhibitory interactions while positive weights denote activating 

interactions. This approach is reminiscent of inference networks (35), with link directions 

systematically reversed.  

We implemented 87 models from BioModels (Table S1), selected with the criterion that the 

largest connected component contains at least 10 species. For each model, biochemical and 

DYNAMO sensitivities are computed as follows (see Methods for additional details). For 

biochemical models, the sensitivity matrix is obtained via (17, 27): 

𝑆 = (𝐼 − 𝐽)B2𝐷( 2
(DBE)FG

) (2)  

where 𝐼 is the identity matrix and 𝐽 denotes the Jacobian matrix of the system around steady-state 

(see Methods). For network models, we start from spreading models (i)-(iii) from the DYNAMO 

model family (Figure 1c-e). To compute the influence of a node on the other nodes in the 

network, we start by assigning all nodes a weight zero. Given a perturbation in node 𝑖 (weight 1), 

the influence propagates to other nodes 𝑗 in the network, changing their weights according to 

various proposed models. The matrix of influence for any pair (𝑖, 𝑗) constitutes the sensitivity 

matrix. The models are as following:  

(i) Propagation: We extend the PRINCE methodology to the case of directed and signed 

networks (29) (see Methods). Noting with 𝑊 the adjacency matrix, we define the 

diagonal matrix 𝐷2 such that 𝐷2(𝑖, 𝑖) is the sum of the absolute values of row 𝑖 of 𝑊 

and the matrix 𝐷J such that 𝐷J(𝑖, 𝑖) is the sum of the absolute values of column 𝑖 of 
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𝑊. We then compute the normalized propagation weights 𝑊K = 𝐷2B2/J𝑊𝐷JB2/J and 

the sensitivity matrix as   

𝑆 = (1 − 𝛼)(𝐼 − 𝛼𝑊K)B2	 (3) 

where 𝛼 = 0.9 is a parameter characterizing the propagation strength. This sensitivity 

matrix corresponds to the spread of a perturbation of weight 1 to the rest of the 

network.  

(ii) Distance: We assume that influence propagates to all nodes in the same connected 

component as node 𝑖. In the directed case, propagation is limited to outgoing links.  

Weights decrease with distance 𝑑 as 1/(1+ 𝑑). We note that there is no “signed” 

case for the distance model. Indeed, there are in theory several shortest paths of the 

same length joining any two nodes, and it is unclear which one to choose and how to 

carry the edge signs from the source to the target. 

(iii) First neighbors: We assume that influence propagates only to the direct neighbors of 

𝑖, setting their weights to 1 (or -1 for a negative interaction). For directed networks, 

only outgoing links are considered. 

The sensitivity matrices are compared to the one predicted from the full biochemical model 

using Spearman correlation (Figure 2d and Methods). This non-parametric measure compares the 

rank of the sensitivities, not their raw values, thus assessing if the relative strength of 

perturbations is conserved across models. We use the absolute value of the sensitivities as we 

focus on recovering the strength of perturbations, not their sign. Figure 2e summarizes the 

obtained correlations averaged over all 87 biochemical models (see Figure S1 for full 

distributions), documenting a gradual decrease of the accuracy with the decreasing complexity of 

the network models. We find that the propagation model, which relies on topological information 
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only, achieves 66% of accuracy (i.e a Spearman correlation of 𝜌 = 0.66) in predicting the 

influence patterns when the network includes direction and sign of the links. This is only slightly 

better than in the unsigned case, though not significantly (65%, p=0.4 under Student t-test), but a 

dramatic improvement over the undirected case (40%, p=5.1e-13), indicating that capturing the 

direction of flow is essential for predictive accuracy. Interestingly, the simpler distance model on 

a directed network shows comparable accuracy to the best propagation model on a directed 

signed network (63%). Again, the accuracy greatly decreases in the undirected case to a level 

similar to the undirected propagation model (36%). Finally, simple first-neighbors models 

achieve up to ~27% accuracy, a value close to but higher than the random expectation (Figure 

2e, dashed red line). 

Next we explore whether the signed DYNAMO models can correctly predict the signs of the 

perturbations. Such signs indicate whether the increase in a species concentration causes another 

species to be up- or down-regulated. This is important as many measurements report sets of 

down- or up-regulated genes. We therefore compute the proportion of accurate sign predictions 

using the signed propagation and first neighbor models (Figure 2f). The results show a similar 

trend with improvement over the influence strength case, with 78% accuracy (p<1e-16) for the 

propagation model and 33% (p=1.7e-5) for the first neighbors model. 

Overall, we show that topology accounts for 2/3 of the accuracy budget of dynamical models 

when predicting perturbation patterns. In particular, we find that the simple distance-based model 

has similar performance as the top performing propagation model. 

 

3. Robustness to network incompleteness 
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While Figure 2f confirms the importance of topology in retrieving biochemical influence 

patterns, it is unclear to what extent the results hold if the underlying interactome is incomplete. 

Indeed, high-throughput methods cover less than 20% of all potential pairwise protein 

interactions in the human cell (7). Despite the gradually increasing coverage (1, 36), we can 

expect to deal with incomplete models for many years to come. This prompts us to address the 

robustness of our approach to link removal. Since all approaches inherently rely on the Jacobian 

matrix of the system, removing a non-zero entry is equivalent to removing a link. We show in 

Figure 2g the average accuracy of the DYNAMO models in retrieving the original biochemical 

model sensitivities when removing an increasing proportion of links (i.e an increasing proportion 

of entries from the original Jacobian matrix). We observe two different behaviors. For directed 

models the accuracy decreases linearly, while for undirected models it has a concave shape, 

decreasing slowly initially then more rapidly with additional link removal. This can be 

understood by realizing that many models have a substantial fraction of reversible equations, 

modeled as two links of opposite direction between two nodes. In the undirected case, removing 

one of those two links does not change the network, making these models therefore more robust 

to link removal. Moreover, we find that at 50% incompleteness, the propagation and biochemical 

models have similar accuracies, with the biochemical model still slightly better than the 

propagation one (45% vs 39%). This demonstrates that with the current level of incompleteness 

of biochemical networks topological models are competitive with more complex “kinetics-

aware” models. 

 

4. Network features underlying accurate influence prediction 
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Given the differences in size and scope across the 87 biological models (Table S1), next we 

investigate what network characteristics contribute to higher prediction accuracy. For this we 

measured the correlation between various quantities and the directed signed propagation model 

accuracy across 87 biological models (Figure 2h). The gray area specifies the 95% Confidence 

Interval. We find that the model size has no effect on accuracy, while the dynamics does: the 

presence of very high Jacobian values, corresponding to fast reactions, lead to smaller 

accuracies. This stems from the fact that such outliers in the Jacobian matrix can outweigh the 

other links and lead to faster propagation across selected links in the biochemical model, a 

feature that cannot be captured by the network topology alone. We also find that the proportion 

of reversible equations negatively impacts the accuracy.  Indeed, directedness does not offer an 

advantage for network models for BioModels dominated by reversible equations, and the 

directed propagation model closes the gap with the less accurate undirected model. This result is 

supported by the finding that higher accuracies can be reached for networks that can be 

decomposed into a large number of strongly connected components (SCCs), that is subgraphs for 

which every node is reachable from every other node. When filtering out BioModels with only 

one SCC, we observe significant improvement of the DYNAMO accuracies, reaching to ~80% 

accuracy (Figure S3). We show in Figure S4 two example BioModels with respectively N=1 and 

N=5 SCCs. The network with 1 SCC is dense and poorly modular, while the one with 5 SCCs is 

sparser and displays chain-like structures. Supporting such structures, we find higher accuracies 

for networks that do not display clear hubs (low average degree, eigenvector centrality, and 

proportion of structural holes), and are sparse (low link density). Finally, since the link weight 

plays a role through the Jacobian, we would expect that link betweenness centrality should 

similarly matter, but we find no significant correlation. Overall, we find that topological models 
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reach up to 80% accuracy for biological models with certain network characteristics pertaining to 

sparsity and modularity. 

 

5. Comparison with a Normalized-Hill model 

While our DYNAMO framework encompasses a broad range of topological models, it does 

not include any combinatorial information and we do not model how entities combine when 

influencing a node – we consider these combinations to be “OR gates”, i.e. additive functions.  

Here we compare our simplified DYNAMO models to the kinetic-agnostic Boolean-like 

Normalized Hill Model (NHM, see methods) proposed by (20), that encapsulates such 

combinatorial features from the original biochemical model (Figure 3a). The NHM represents 

the dynamics by sigmoidal activation or inhibition functions parametrized through 3 shape 

parameters, and allows for multiplicative inputs (“AND gates”). Such features, absent from our 

DYNAMO framework,  are designed to offer more realistic insights into the full biochemical 

model. Our goal is to quantify the residual accuracy in the DYNAMO framework resulting from 

ignoring combinatorial inputs. The NHM has previously been applied to the beta-adrenergic 

signaling pathway, a well-studied signaling network regulating cardiac myocyte contractility and 

involved in cardiac hypertrophy and heart failure (Figure 3b). The full biochemical model (37) 

contains 87 model parameters, characterizing the interactions between 25 species via 33 links 

(37). The biochemical model was approximated by the NHM, finding that the resulting 

sensitivity matrix shows a good correspondence to the full biochemical model (20). Moreover, 

the NHM was refined to reproduce accurate temporal dynamics of several key proteins by fitting 

11 parameters to full time-course data obtained with the full biochemical model (referred 

hereafter as the “NHM fit” model).  
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Here we apply our DYNAMO framework to the beta-adrenergic network and compare the 

resulting sensitivity matrices to the original biochemical one (Figure 3c and sensitivity matrices 

shown in Figure S5). As previously, we observe a gradual decrease of the accuracy of influence 

patterns with the decreasing complexity of the network models. Interestingly, the directed 

propagation and distance models show accuracies of ~80%, similar to the accuracies for both the 

NHM and NHM fit models.  

We then explore the robustness of these results to random variations in the biochemical 

parameters (see Methods and Figure 3d). For this we generate perturbed biochemical models by 

multiplying all parameters by a factor randomly chosen between ½ and 2. The resulting 

sensitivity matrices are then used as ground truth biochemical model to compare with the 

DYNAMO models. We observe that the accuracy of the network models is mostly unchanged 

when comparing to the perturbed biochemical models (Figure 3d). However, when comparing 

the perturbed biochemical model sensitivities with one another, we observe an average accuracy 

of ~80%, similar to that of the best network models (NHM, propagation and distance models). 

This indicates that biochemical models with poorly measured kinetic parameters (up to 2-fold 

variation) are as accurate as topological models. This exhibits the utility of such simple 

topological models in the context where obtaining precise kinetic information would require 

important experimental investment. 

 

6. Topology predicts physiological and phenotypic perturbations 

While perturbation patterns are of general interest for assessing the quality of our models, 

testing the true value of the network topology-based modeling framework needs experimental 

validation. To test the accuracy of the DYNAMO models against experimental observations, we 
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focused on the chemotaxis network in bacteria (Figure 4a) for which experimental data is 

available (38) (see Methods). This model is part of BioModels, and the DYNAMO models 

capture its dynamics with a 90% accuracy (Figure 4b). The experimental dataset consists of 

knockouts and overexpression assays of 6 genes of the chemotaxis network and their 

combinations, followed by observation of the change in expression of other genes from the 

network. In addition, the experiments also report changes in bias, a phenotypic quantity 

determined by the ratio of multiple biochemical species concentrations and capturing the 

exploratory behavior during chemotaxis (see Methods and Figure 4c). In Figure 4d,e we compare 

the experimental observations (left columns) to the predictions from the propagation model on 

the signed directed network (right columns) under several assays. We focus on the accuracy in 

retrieving the correct sign of the observed perturbations. We observe that the network model 

predicts the observed sign of the perturbations in 86% of the cases for gene expression changes 

(13 out of 15 cases, p=4.9e-4 under binomial test, Figure 4d). Moreover, it predicts phenotypic 

changes with 75% accuracy (9 out of 12 cases, p=0.019, Figure 4e), demonstrating the value of 

topological models in predicting physiologically relevant biological outcomes. Taken together, 

these results demonstrate that the precision holds when using data from experimental 

perturbations.  

 

Discussion 

While the coverage of the physical interactions underlying biological networks has increased 

considerably in the past decade, we continue to lack accurate and comprehensive data on the 

kinetic parameters determining the dynamics of each individual process. We must therefore 

evaluate the predictive potential of purely topological models, quantifying their ability to unlock 
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quantitative insights on physiologically relevant processes. In this work, we proposed a 

systematic DYNAMO framework to measure the loss in predictive power when we lack the 

kinetic parameters in a biological network. We concentrated on the patterns characterizing the 

spread of perturbations of selected biochemical species, and its impact on all other species in the 

network. Such patterns are of direct interest as we seek to understand changes in gene expression 

patterns induced by disease-causing mutations.  We used detailed dynamical biochemical models 

derived from the literature to estimate the accuracy of the topological models in retrieving the 

perturbation patterns characterizing the full dynamics. Interestingly, we find that a propagation 

model on a topology that captures the direction and sign of the interactions can account for ~65% 

of the full perturbation patterns across all models, an accuracy that can reach 80% for models 

with certain network characteristics. Furthermore, this model shows only mild improvement over 

a simpler distance-based model on a directed network. This is important since network distance 

in the interactome has been used extensively to predict disease similarity between disease genes 

(7) and drug-disease association between a set of drug targets and disease genes (30). We also 

find that a simpler first neighbor model or complex models that lack directionality, though 

offering smaller accuracy, still carry predictive potential compared to a random reference frame. 

Moreover, the beta-adrenergic example demonstrated that the best DYNAMO topological 

models can be as informative as slightly perturbed biochemical models where kinetic parameters 

would carry measurement noise. They also offer an accuracy comparable to models with more 

complex non-linear dynamics, key parameters fit and multiplicative input functions.  

A usual concern raised about the predictive power of biochemical networks is that the 

interactome is far from complete. We therefore addressed the robustness of our approach to link 

removal, finding that the DYNAMO models are in general more robust than the biochemical 
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model to link removal, and that the propagation model has comparable accuracy to the 

biochemical model at 50% incompleteness. Therefore, we find that the kinetic-agnostic 

DYNAMO models are as predictive as the full biochemical models in the context of incomplete 

interactome. 

We also explored which network characteristics offer greater accuracy for the DYNAMO 

framework. This is important as it allows to know before any kinetic parameters have been 

measured whether that information would lead to a drastic improvement over a topological 

model. The analysis indicates that networks that can be decoupled into many strong connected 

components (i.e many chain-like structures) and are in general sparse (low degree nodes and link 

density)  lead to higher DYNAMO accuracies. 

Finally, exploring the topological models’ ability to predict observed outcomes from 

experimental perturbations in the chemotaxis pathway, we find a 75% to 86% accuracy, a result 

in agreement with the previous accuracies computed for the full perturbation patterns. 

This work has important implications for our understanding of the role of the different 

modeling frameworks currently in use in network biology and medicine. The ability to extract 

information on the spread of perturbations from an accurate knowledge of the topology of 

biological networks will be of great value for drug development. In particular, the linearity of the 

equation used to predict perturbation patterns in the propagation model makes it straightforward 

to explore any combination of perturbations, therefore paving the way for a better understanding 

of drug combinations and improved therapies. Overall, our findings indicate that the lack of large 

scale measurements of the kinetic parameters may not prevent network biology to offer 

quantitative and accurate predictions on perturbation processes. On the contrary, focusing on 
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topology appears well justified as it holds the largest share of the descriptive power in this 

endeavor. 

 

Methods 

BioModels database 

Models from the BioModels database were downloaded in bulk from the BioModels ftp website 

(ftp://ftp.ebi.ac.uk/pub/databases/biomodels/). We used the BioModels_Database-r30_pub-

sbml_files dataset (ftp://ftp.ebi.ac.uk/pub/databases/biomodels/releases/2016-05-10/). SBML 

files were processed using libsbml matlab library to extract the dynamical equations (34).  

 

Derivation of the influence network 

We converted the reactions from BioModels SBML files to reaction networks using libSBML 

(34). We first extracted the differential equations describing the dynamical models in the form 

𝑥̇$ = 𝑓$(𝑥2,… , 𝑥5), where 𝑁 describes the number of species in the model and 𝑥𝑖 is the 

concentration of species 𝑖. These equations are in turn converted to an “influence network” 

where a link from species 𝑖 to j is created if 𝑖 is in the differential equation describing the 

evolution of 𝑗, i.e if 
8𝑓𝑗
8)*

 is not identically zero. The sign of the link is the sign of ()V̇
()*

(𝒙∗), where 

𝒙∗ is the steady state vector of species concentration. In other words, the influence network is 

𝑠𝑖𝑔𝑛(𝐽?(𝒙∗)) where 𝐽? is the transpose of the Jacobian describing the system. Models were 

integrated using the ode23tb function from Matlab R2016a and the Jacobian was computed using 

finite difference method with step size 1e-3. 
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Computation of biochemical sensitivities 

The biochemical sensitivities are computed following (17, 27). Writing the dynamical equations 

as 𝑥̇$ = 𝑓$(𝑥2, … , 𝑥5), where 𝑁 is the number of species in the model and 𝑥" is the concentration 

of species 𝑖, we define the Jacobian by 𝐽",$ =
8W+
8)*
(𝒙∗), where 𝒙∗ is the steady-state of the system 

(Figure 2b). The Jacobian captures the impact that a small perturbation in 𝑥" has on the value of 

𝑥$, providing a quantitative measure for the influence of 𝑖 on the activity of 𝑗. The partial 

derivative implies that no other node activity has changed, so that the Jacobian only captures 

direct interactions. To account for indirect interactions we further define the sensitivity matrix 

by 𝑆"$ =
()*
()+

. Here, the full derivative implies that all nodes are allowed to change in response to 

j’s perturbation, hence indirect effects are also accounted for. The two matrices are linked by the 

following equations (17, 27): 

X
𝑆"" = 1	

			𝑆"$ = ∑ 𝐽"Z𝑆Z$5
Z[2 	(𝑖 ≠ 𝑗) (3)  

These equations can be simplified by noting that 𝑆 = 𝐽𝑆 off the diagonal, so that we can find a 

diagonal matrix ∆  such that 𝑆 = 𝐽𝑆 + 	Δ. This leads to 𝑆 = (𝐼 − 𝐽)B2Δ where 𝐼 is the identity 

matrix. Finally, using 𝑆"" = 1, we find that  Δ = D` 2
(2Ba)FG

b, where 𝐷(. ) is the diagonal operator 

and the operator / denotes element-wise division. Taken together, this leads to the equation (2) 

in the main text. 

 

Network models of influence propagation 

We use models (i)-(iii) described in the text to predict influence propagation in a network (see 

Figure 1c-e). For the propagation model, we extended the PRINCE methodology to the case of a 
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directed network by using in- and out-degree in the normalization process (see main text). For 

the signed network, we used the same normalization as for the signed directed adjacency matrix, 

ensuring the convergence of the unsigned random walk. To better understand the extension to the 

signed case, we return to the equation of the underlying perturbation (29): 

𝐹de2 = 𝛼𝑊′𝐹d + (1 − 𝛼)𝐹g 

where 𝐹d represents the vector of perturbation at time t, (1 − 𝛼) is the return probability, 𝑊′ is 

the normalized signed directed adjacency matrix, and 𝐹g is the initial perturbation. A 

perturbation spreads to neighboring nodes with a probability given by the absolute value of the 

corresponding element in 𝑊′ and is multiplied by the sign of this element. Accordingly, 

sensitivities can be thought of as a weighted sum over all network paths between a perturbed 

node and an impacted node, with each path carrying a positive (negative) weight if the path 

contains an even (odd) number of negative signs. As such, the absolute values of the sensitivities 

of the directed signed diffusion model are smaller or equal to the sensitivities of the directed 

diffusion model, ensuring convergence. 

Note that in the propagation mode, the variation of 𝛼 changes the diffusion capability. However, 

we observed no significant change in the influence strength recovery across 87 BioModels when 

varying 𝛼 (Figure S2, panel A). Indeed, we are interested in the ranks of the observed 

sensitivities (the most vs the least perturbed species), which is why we use the non-parametric 

Spearman rank correlation. We show in the case of the chemotaxis pathway that while the 

change of 𝛼 alters the values predicted by the propagation model (panels B, C), it has no effect 

on the rank of the model sensitivities (panel D, E), leaving the Spearman correlation almost 

unchanged (panel A). 
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In the case of the beta-adrenergic pathway, we use the Normalized Hill Function system 

developed in (20). This model includes a simple non-linear dynamics and multiplicative inputs 

on select cases as informed from the literature. Species interactions were defined with 

normalized activating or inhibiting Hill functions (𝑓hid or 𝑓"jk"l ) and pathway crosstalk was 

implemented using logical AND and OR operations: “𝑓(𝑥)𝑓(𝑦)” and “𝑓(𝑥) + 𝑓(𝑦) −

𝑓(𝑥)𝑓(𝑦)”, respectively. The normalized activating or inhibiting Hill functions have the form:  

𝑓hid(𝑋) =
𝐵𝑋j

𝐾j + 𝑋j ; 	𝑓"jk"l
(𝑋) = 1 − 𝑓hid(𝑋), 

where 𝐵 and	𝐾 are constrained such that 𝑓hid(0) = 0, 𝑓hid(𝐸𝐶50) = 0.5, and 𝑓hid(1) = 1. From 

these constraints, we derive: 

𝐵 =
𝐸𝐶ugj − 1
2𝐸𝐶ugj − 1

; 𝐾 = (𝐵 − 1)2/j. 

As default parameters we used 𝐸𝐶ug = 0.5, 𝑛 = 1.4, and 𝜏 = 1.  

For the NHM fit model, we used the refined NHM model from (20) where several parameters in 

the normalized-Hill model are fitted to time-course data from the biochemical model using a 

nonlinear least squares optimization algorithm. Eleven parameters were adjusted to fit model 

predictions, allowing for more similar signaling dynamics and comparable peak fractional 

activities of species 𝐺𝑆y and PLB compared with the biochemical model (20). 

 

Comparison of sensitivity matrices 

To evaluate the accuracy of each model, we computed the Spearman correlation between their 

sensitivity matrix and the one obtained with the full biochemical model. For unsigned networks, 

we use the absolute value of the sensitivity matrix. 
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Robustness to network incompleteness 

To model network incompleteness, for each model we successively removed entries of the 

Jacobian (the links of the influence network). A proportion of links removed was computed as 

the number of entries removed divided by the total number of non-zero initial entries. The links 

were chosen at random and the resulting incomplete Jacobian was finally used to compute the 

new sensitivity matrix as well as the topological models for DYNAMO. The random process was 

iterated 20 times. 

 

Comparison with experimental data 

For the chemotaxis model, experimental data was obtained from (38). We built the influence 

network from the corresponding BioModel BIOMD0000000404. The propagation model was 

used on the directed, signed network. We first explored whether the propagation model retrieved 

the direction of change of the expression of gene 𝑖 caused by a mutation or overexpression of 

gene 𝑗 for the experimentally investigated cases. To do so, we retrieved the signs of elements 

(𝑖, 𝑗) from the predicted sensitivity matrix and compared them to the experimental ones. In the 

case of mutations, the negative of the sensitivity matrix was used.  In the case of multiple 

mutations 𝑗2 … 𝑗5, the corresponding columns of the sensitivity matrix were summed and the 

resulting vector was used to retrieve the sign of the perturbation of interest. We then tested 

whether our model could retrieve the change of a more complex phenotypic quantity, namely the 

bias, determined by the ratio of the following biochemical species concentrations: 

𝑏𝑖𝑎𝑠 =
𝑀 +𝑀𝑌𝑝

𝑀 +𝑀𝑌𝑝 + 𝑀𝑌𝑝𝑌𝑝 +𝑀𝑌𝑝𝑌𝑝𝑌𝑝 +𝑀𝑌𝑝𝑌𝑝𝑌𝑝𝑌𝑝 
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Following the experiments of Ref. (38), we explored the impact of perturbations on the bias by 

computing the sign of its change after perturbation. Noting  

𝑏𝑖𝑎𝑠 =
𝑢
𝑣, 

we derived that for a perturbation 𝑑𝑥$ 

𝑑𝑏𝑖𝑎𝑠
𝑑𝑥$

=

𝑑𝑢
𝑑𝑥$

− 𝑏𝑖𝑎𝑠 ∗ 𝑑𝑣𝑑𝑥$
𝑣 . 

Therefore the sign of the change of bias is given by 𝑠𝑖𝑔𝑛( (�
()+

− 𝑏𝑖𝑎𝑠 ∗ (�
()+
), where 𝑏𝑖𝑎𝑠 = 0.7 is 

given by the full biochemical model (38), and (�
()+

 and (�
()+

 are obtained from sensitivity matrix of 

the propagation model. 

 

Robustness of Sensitivity matrices 

We computed the robustness of the Spearman correlation measure under parameter variation 

(initial conditions and kinetic parameters). Parameters from the biochemical model were 

multiplied by a factor randomly chosen between ½ and 2, and the corresponding sensitivity 

matrix was computed. We repeated the process to obtain 100 sensitivity matrices, discarding 

cases where the dynamical models diverged, representing 35% of the trials. 

  

Code availability 

The algorithms used in that work are made available on https://github.com/msantolini/dynamo. 

 

Acknowledgements 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2018. ; https://doi.org/10.1101/349324doi: bioRxiv preprint 

https://doi.org/10.1101/349324
http://creativecommons.org/licenses/by-nc-nd/4.0/


We thank B. Barzel, L. Blondel, I. Kovacs and A. Krishna for careful reading and helpful 

comments about the manuscript. This work was supported by the National Institutes of Health 

through National Heart, Lung, and Blood Institute Grant 1P01HL132825-01 and Centers of 

Excellence in Genomic Science Grant P50HG004233. 

 

References 

1. Rolland T, et al. (2014) A proteome-scale map of the human interactome network. Cell 
159(5):1212-1226. 

2. Venkatesan K, et al. (2009) An empirical framework for binary interactome mapping. Nat 
Methods 6(1):83-90. 

3. Buchanan M, Caldarelli G, De Los Rios P, Rao F, & Vendruscolo M (2010) Networks in cell biology 
(Cambridge University Press, Cambridge ; New York) pp x, 271 p. 

4. Barabasi AL & Oltvai ZN (2004) Network biology: understanding the cell's functional 
organization. Nat Rev Genet 5(2):101-113. 

5. Barabasi AL, Gulbahce N, & Loscalzo J (2011) Network medicine: a network-based approach to 
human disease. Nat Rev Genet 12(1):56-68. 

6. Vidal M, Cusick ME, & Barabasi AL (2011) Interactome networks and human disease. Cell 
144(6):986-998. 

7. Menche J, et al. (2015) Disease networks. Uncovering disease-disease relationships through the 
incomplete interactome. Science 347(6224):1257601. 

8. Ideker T & Sharan R (2008) Protein networks in disease. Genome Res 18(4):644-652. 
9. Clough E & Barrett T (2016) The Gene Expression Omnibus Database. Methods Mol Biol 1418:93-

110. 
10. Dubitzky W, Southgate J, & Fuss H (2011) Understanding the dynamics of biological systems 

lessons learned from integrative systems biology.  (Springer, New York). 
11. Maerkl SJ & Quake SR (2007) A systems approach to measuring the binding energy landscapes of 

transcription factors. Science 315(5809):233-237. 
12. Teusink B, et al. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the 

constituent enzymes? Testing biochemistry. Eur J Biochem 267(17):5313-5329. 
13. Mendes P & Kell D (1998) Non-linear optimization of biochemical pathways: applications to 

metabolic engineering and parameter estimation. Bioinformatics 14(10):869-883. 
14. Jaqaman K & Danuser G (2006) Linking data to models: data regression. Nat Rev Mol Cell Biol 

7(11):813-819. 
15. Rodriguez-Fernandez M, Mendes P, & Banga JR (2006) A hybrid approach for efficient and 

robust parameter estimation in biochemical pathways. Biosystems 83(2-3):248-265. 
16. Brodersen R, Nielsen F, Christiansen JC, & Andersen K (1987) Characterization of binding 

equilibrium data by a variety of fitted isotherms. Eur J Biochem 169(3):487-495. 
17. Barzel B & Barabasi A-L (2013) Universality in network dynamics. in Nature Physics, pp 673-681. 
18. Barzel B, Liu YY, & Barabasi AL (2015) Constructing minimal models for complex system 

dynamics. Nat Commun 6:7186. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2018. ; https://doi.org/10.1101/349324doi: bioRxiv preprint 

https://doi.org/10.1101/349324
http://creativecommons.org/licenses/by-nc-nd/4.0/


19. Davidich MI & Bornholdt S (2013) Boolean network model predicts knockout mutant 
phenotypes of fission yeast. PLoS One 8(9):e71786. 

20. Kraeutler MJ, Soltis AR, & Saucerman JJ (2010) Modeling cardiac beta-adrenergic signaling with 
normalized-Hill differential equations: comparison with a biochemical model. BMC Syst Biol 
4:157. 

21. van Gend C & Snoep JL (2008) Systems biology model databases and resources. Essays Biochem 
45:223-236. 

22. Chelliah V, et al. (2015) BioModels: ten-year anniversary. in Nucleic Acids Res, pp D542-D548. 
23. Soltis AR & Saucerman JJ (2011) Robustness portraits of diverse biological networks conserved 

despite order-of-magnitude parameter uncertainty. in Bioinformatics, pp 2888-2894. 
24. Alon U, Surette MG, Barkai N, & Leibler S (1999) Robustness in bacterial chemotaxis. Nature 

397(6715):168-171. 
25. Gutenkunst RN, et al. (2007) Universally Sloppy Parameter Sensitivities in Systems Biology 

Models. in PLoS Comput Biol, p e189. 
26. Huang B, et al. (2017) Interrogating the topological robustness of gene regulatory circuits by 

randomization. PLoS Comput Biol 13(3):e1005456. 
27. Barzel B & Biham O (2009) Quantifying the connectivity of a network: the network correlation 

function method. Phys Rev E Stat Nonlin Soft Matter Phys 80(4 Pt 2):046104. 
28. Ryall KA, et al. (2012) Network Reconstruction and Systems Analysis of Cardiac Myocyte 

Hypertrophy Signaling. in Journal of Biological Chemistry, pp 42259-42268. 
29. Vanunu O, Magger O, Ruppin E, Shlomi T, & Sharan R (2010) Associating genes and protein 

complexes with disease via network propagation. PLoS Comput Biol 6(1):e1000641. 
30. Guney E, Menche J, Vidal M, & Barabasi AL (2016) Network-based in silico drug efficacy 

screening. Nat Commun 7:10331. 
31. Gulbahce N, et al. (2012) Viral perturbations of host networks reflect disease etiology. PLoS 

Comput Biol 8(6):e1002531. 
32. Oti M, Snel B, Huynen MA, & Brunner HG (2006) Predicting disease genes using protein-protein 

interactions. J Med Genet 43(8):691-698. 
33. Wuchty S (2014) Controllability in protein interaction networks. Proc Natl Acad Sci U S A 

111(19):7156-7160. 
34. Bornstein BJ, Keating SM, Jouraku A, & Hucka M (2008) LibSBML: an API library for SBML. 

Bioinformatics 24(6):880-881. 
35. Liu Y-Y, Slotine J-J, & Barabasi A-L (2013) Observability of complex systems. in Proc Natl Acad Sci 

USA, pp 2460-2465. 
36. Mosca R, Pons T, Ceol A, Valencia A, & Aloy P (2013) Towards a detailed atlas of protein-protein 

interactions. Curr Opin Struct Biol 23(6):929-940. 
37. Saucerman JJ, Brunton LL, Michailova AP, & McCulloch AD (2003) Modeling beta-adrenergic 

control of cardiac myocyte contractility in silico. J Biol Chem 278(48):47997-48003. 
38. Bray D, Bourret RB, & Simon MI (1993) Computer simulation of the phosphorylation cascade 

controlling bacterial chemotaxis. Mol Biol Cell 4(5):469-482. 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2018. ; https://doi.org/10.1101/349324doi: bioRxiv preprint 

https://doi.org/10.1101/349324
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Legends 

Figure 1. Influence patterns in biological networks. a. The multiple interactions between 

cellular components form the subcellular network or interactome. Mapping out the connections 

between these entities is the necessary first step to understanding how perturbations propagate in 

the network. On top of the network structure, the dynamics is obtained when adding the 

knowledge of link direction, sign, and kinetic parameters. The resulting complete biochemical 

model offers the best predictive model of influence propagation. b-e Schematic representations 

depicting the propagation of a perturbation in a biological network according to different 

DYNAMO models of decreasing complexity. Detailed description of the models can be found in 

the Methods section. 

 

Figure 2. Topology predicts influence patterns in various biological networks. a. We show a 

set of example differential equations describing biochemical dynamics. These equations involve 

the different variables from the model capturing the underlying biology of the problem. b. We 

derive a Jacobian matrix 𝐽 by perturbing the differential equations around their steady-state 𝒙∗. c. 

We convert the equations into an “influence network” where a link from species 𝑖 to 𝑗 is created 

if 𝑖 changes 𝑗 concentration. This corresponds to the sign of the Jacobian matrix (see Methods). 

d. Schematic representation of the workflow we used to assess the ability of different models to 

predict the influence patterns. The calculation of the sensitivity matrices is explained in Methods. 

We use the Spearman correlation coefficient  to compare them with the biochemical, “ground 

truth” sensitivity matrix. e. Bar plot showing the accuracy of different network models in 

predicting the influence patterns across 87 models from BioModels.  We compare sensitivity 

matrices of different models to the biochemical sensitivity matrix using Spearman correlation, 
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and we average the resulting correlations over all models. Errors bars correspond to standard 

error. Red dashed line shows two standard deviation of the random expectation averaged over all 

models. f. Bar plot showing the accuracy of the signed network models in predicting the 

influence sign across 87 models from BioModels. Errors bars correspond to standard error. Gray 

bars show random expectation. g. Accuracy of the network models as a function of the 

proportion of links removed, averaged over the 87 models. Model names are abbreviated as 

follows: “prop.” for propagation, “dist.” for distance and “F.N.” for First Neighbors.  Errors bars 

show standard error. h. Correlation between properties (names on the left) and the propagation 

(d+s) model accuracy across 87 BioModels. Gray area shows the random expectation. 

 

Figure 3. Topology predicts influence in a signaling network. a. Schematic representations 

depicting the propagation of a perturbation in a biological network according to the biochemical 

and the Normalized Hill Model. “Signed-fit” correspond to the fitting of 11 parameters from this 

model to reproduce key quantitative time-course behaviors, as described in (20). b. Beta-

adrenergic signaling network (37). The full biochemical model contains 87 parameters. c. Same 

as Figure 2e. d. Robustness of the Spearman correlation measure for the beta adrenergic pathway 

under parameter perturbation (see Methods). We show the average correlation between any two 

perturbed biochemical sensitivity matrices generated (black bars), or the average correlation 

between each network model and the perturbed biochemical sensitivity matrices (other bars). 

Error bars show standard error. Interestingly, we see no difference between a typical perturbed 

biochemical model and a network model. 
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Figure 4. Experimental validation. We compare the results of our influence predictions to 

experimentally validated perturbations in the chemotactic pathway in bacteria (38). a. 

Chemotaxis network obtained from BioModels. Arrows indicate a positive link weight, and 

circles a negative one. For each node we indicate the corresponding biochemical species. A 

detailed description of the model can be found in (38). b. Same as Figure 2e for the chemotaxis 

model. c. Schematic representation of the experiments, comparing wild-type bacteria (left, black) 

with bacteria perturbed with a gene X knock-out or overrepresentation (right, red). The variables 

of interest consist of gene Y expression change (increased expression corresponding to more 

mRNA produced, in red), and change in walk bias compare to random walk, in this case an 

increase (red), corresponding to a more directed exploration behavior. d. We compare 

differential expression from perturbations experiments to predictions from the propagation model 

(see Methods). The color code indicates the sign of the observed expression change: green, 

negative, black, no change, red, positive. The names of the rows show the perturbed species (left) 

and the measured species (right) separated by a comma. Perturbed species consist of single null 

mutants (𝐴B, 𝑌B, 𝑍B), multiple null mutants (𝐴B𝑍B, 𝑌B𝑍B), and overproduction mutants 

(𝐴Je,	𝑇Je,	𝐵Je,	𝑊Je, 𝑌Je,	𝑍Je). Measured species consist of 𝑌𝑝, 𝐴, 𝑇𝐴,	𝐴𝑝, and 𝑊𝐴. Results 

agree in 86% of the cases. e. We assess phenotypic effect by looking at the sign of the change in 

bias (see Methods). Row names show perturbed species. Results agree 75% of the cases. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2018. ; https://doi.org/10.1101/349324doi: bioRxiv preprint 

https://doi.org/10.1101/349324
http://creativecommons.org/licenses/by-nc-nd/4.0/


a Topology Dynamics

Model complexity

DYNAMICS-AGNOSTIC MODELS (DYNAMO)  

Topological information

First neighbors

Directed UndirectedSigned

Distance

Directed Undirected

In a purely topological view, 
influence from a central node 
propagates along the links

b Biochemical

Full model

AND

Kinetic parameters and 
compartmentalization 
can  create more 
complex propagation 
patterns, chanelling the 
spread of perturbations 
in selected directions

Propagation

DirectedSigned Undirected

c d e

Figure 1
.CC-BY-NC-ND 4.0 International licensea

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 
The copyright holder for this preprint (which was notthis version posted June 17, 2018. ; https://doi.org/10.1101/349324doi: bioRxiv preprint 

https://doi.org/10.1101/349324
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bi
oc

he
m

ica
l

Pr
op

ag
at

io
n 

(d
+s

)

Pr
op

ag
at

io
n 

(d
)

Pr
op

ag
at

io
n 

(u
)

Di
st

an
ce

 (d
)

Di
st

an
ce

 (u
)

Fi
rs

t n
ei

gh
bo

rs
 (d

+s
)

Fi
rs

t n
ei

gh
bo

rs
 (d

)

Fi
rs

t n
ei

gh
bo

rs
 (u

)

In
flu

en
ce

 s
tre

ng
th

 re
co

ve
ry

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

Number of structural holes

Edge density

Mean Jacobian value

Mean degree

Mean eigenvector centrality

Number of reversible equations

Model size

Mean betweenness centrality

Number of strong connected components

Correlation with network model accuracy

−1.0 −0.5 0.0 0.5 1.0

●

●

●

●

●

●

●

●

●

Comparison of 
sensitivities

Biochemical

Perturbation

O
ut
pu
t

Network

Perturbation

O
ut
pu
t

Biochemical

To
po
lo
gi
ca
l

Predicting influence across 87 biological models

g

c

e f

hRobustness to network 
incompleteness Predictive network features

System of differential 
equations

b c

a

... ...

...

...
...

8
>><

>>:
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including cyclic AMP, phosphorylation, and calcium and elec-
trophysiological assays demonstrate excellent consistency on a
number of functional levels. The kinetic model was used to
perform systematic in silico perturbations to the !-adrenergic
network, whose interpretations show potential in molecular
therapeutic analysis, experimental design, and the identifica-
tion of signaling control mechanisms. These systems analyses
provide a framework for a more integrated understanding of
the !-adrenergic signaling mechanisms that control cardiac
myocyte contractility.

EXPERIMENTAL PROCEDURES

A differential algebraic model of !1-adrenergic signaling in the car-
diac myocyte was formulated using the singular perturbation method
(18), which decomposed the network into characteristic time scales.
Sub-networks with dynamics on very fast time scales (!0.1 s) were
assumed to be at quasi-equilibrium (e.g. binding reactions) and repre-
sented by algebraic equations, whereas sub-networks with very slow
dynamics ("10 min) were assumed to be time-invariant (e.g. receptor
internalization and gene expression). Remaining differential equations
utilized standard rate laws such as mass action and Michaelis-Menten
kinetics. Examples of differential and algebraic equations from the
model are shown below, describing the rate of change of total GTP-
bound Gs" (Eq. 1) and the amount of GTP-bound Gs" that is bound
transiently to adenylyl cyclase (Eq. 2),

d#$Gs"GTPtot%&

dt # kgact#$RG% $ $LRG%& % khyd$Gs"GTPtot% (Eq. 1)

$Gs"GTPtot% % $Gs"GTP% % $Gs"GTP:AC% # 0 (Eq. 2)

Parameters were obtained from the literature whenever possible and
generally measured in vitro with purified components or measured in
rat ventricular myocytes (56 parameters). The remaining parameters
were constrained using independent experimental data from the liter-
ature (11 parameters). The signaling network consisted of 37 differen-
tial and 12 algebraic equations. All equations and parameters from the
signaling network model are provided in the Supplemental Material.

Recent experimental techniques have enabled quantification of sig-
naling specificity and speed afforded by protein complexation and scaf-
folding (10, 19). To capture the essence of these results within a tradi-
tional framework, we have introduced a coefficient &, which modifies the
effective concentration of proteins for reactions between members of a
protein complex or microdomain, where [X]effective ' & [X]. This coeffi-

cient can be measured experimentally as the ratio of time constants
without and with complexation, or & ' 'free/'cmplx. For the current
model, a constant value of & ' 10 was used, based on fluorescence
resonance energy transfer experiments used in conjunction with flash
photolysis of caged cyclic AMP (10). This approach was used to model
localization of type II PKA, protein phosphatase-1, and protein phos-
phatase-2A to the LCC and protein phosphatase-1 to PLB.

The calcium handling and electrophysiology portion of the model was
based on an extension of the Luo-Rudy model (20), modified for the
rabbit ventricular myocyte (LabHEART) (21). Here this model was
adapted to simulate the rat ventricular myocyte using experimental
calcium handling data (3) and previously described formulations for the
L-type calcium channel (22), transient outward, and steady-state po-
tassium currents (23). The resulting model was stable and exhibited
positive excitation-contraction coupling gain and a negative force-fre-
quency relationship (not shown), as seen experimentally in rat ventric-
ular myocytes (3). The complete signaling, calcium handling, and elec-
trophysiology model was implemented with the Rosenbrock stiff solver
in Berkeley Madonna (www.berkeleymadonna.com).

RESULTS

Formulation and Validation of Functionally Integrated Mod-
els—We developed a kinetic model of !-adrenergic signaling,
calcium handling, and electrophysiology in the cardiac myocyte
(Fig. 1). Briefly, the model describes agonist stimulation of
!1-adrenergic receptor, activation of Gs protein, cyclic AMP syn-
thesis by AC, cyclic AMP degradation by phosphodiesterase, PKA
subunit activation and dissociation, phosphorylation of impor-
tant target proteins phospholamban (PLB) and the L-type cal-
cium channel (LCC), and !-adrenergic receptor kinase and
PKA-mediated !1-adrenergic receptor desensitization.

Type I PKA, the dominant PKA in the rat ventricular myo-
cyte, diffuses throughout the cytosol. A population of A kinase
anchoring protein-bound type II PKA is localized near the
L-type calcium channel, along with a fraction of protein phos-
phatase-1 and protein phosphatase-2A (3). Control of the SR
Ca2( -ATPase by PLB is achieved by regulating the Ca2( affin-
ity of the pump, whereas control of the LCC is achieved by
regulating channel availability and a state transition that af-
fects channel open probability. As shown in Fig. 1a, PLB and
LCC act as key connections between !-adrenergic signaling
and excitation-contraction coupling in the model. The specific

FIG. 1. Schematics of the !-adrenergic network and signaling mechanisms in the model. a, schematic of integrated model components,
including the !1-adrenergic network, calcium handling, and electrophysiology of the rat ventricular myocyte. b, network topology and reaction
mechanisms in the !-adrenergic signaling model. Single-headed filled arrows denote kinetics; single-headed empty arrows denote enzyme catalysis,
and double-headed arrows denote quasi-equilibrium reactions. NE, norepinephrine; Iso, isoproterenol; !1-AR, !1-adrenergic receptor; !ARK,
!-adrenergic receptor kinase; AC, adenylyl cyclase; Fsk, forskolin; PDE, phosphodiesterase; PKA, protein kinase A; RIC/RIIC, type I/II PKA
holoenzyme (b only); PKI, heat-stable protein kinase inhibitor; PP1, protein phosphatase-1; PP2A, protein phosphatase-2A; I1, inhibitor-1; PLB,
phospholamban; LCC, L-type calcium channel; SERCA, sarcoplasmic reticulum Ca2( -ATPase; RyR, ryanodine receptor.
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