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ABSTRACT 
The collection of eye movement information during functional magnetic resonance imaging 
(fMRI) is a valuable, though commonly overlooked component of monitoring variations in 
attention and task compliance, particularly for naturalistic viewing paradigms (e.g., movies). 
Predictive eye estimation regression (PEER) is a previously developed support vector 
regression-based method for retrospectively estimating eye gaze from fMRI data that simply 
adds a 1.5-minute calibration scan to any protocol. Here, we provide a large-scale assessment 
of PEER for inferring eye fixations on a TR-by-TR basis during movie viewing using a subset of 
data (n=448) from the Child Mind Institute Healthy Brain Network Biobank. Consistent with prior 
work, we demonstrate the ability of PEER to provide accurate estimates of fixation location 
throughout the course of fMRI scans and we establish head motion as the primary determinant 
of model accuracy. Minimum data requirement analyses suggest model estimation can be 
carried out with less than half the data obtained in the 1.5-minute calibration scan. We 
demonstrate the ability to predict the movie an individual is watching (i.e., Despicable Me, The 
Present) based on the PEER time series. Out-of-scanner eye tracker-based measurements 
obtained during a repeat viewing of the movie The Present was used to further validate the time 
series obtained using PEER. Consistent with prior findings in the eye tracking literature, the 
fixation sequences showed a high consistency across participants, reducing the ability to 
identify an individual based on their fixation sequence. Finally, examination of neural activations 
associated with the PEER time series replicated prior findings regarding the neural correlates of 
eye movements. In summary, we demonstrate that PEER is an inexpensive, easy-to-use tool for 
researchers to determine eye fixations from naturalistic viewing data that overcomes the cost 
and burdens of in-scanner eye tracking. 
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INTRODUCTION 
A classic challenge for functional magnetic resonance imaging (fMRI) is the identification of 
variations in attention and compliance with task demands during a given scan 1–4. This is 
particularly true when participants are required to perform tasks that are tedious or tiresome 
(e.g., rest). In studies requiring active task performance during fMRI scans, these concerns can 
be addressed in part by analyzing performance measures (e.g., accuracy, reaction time)5. 
However, such solutions do not work for studies of passive states (e.g., resting state fMRI, 
naturalistic viewing fMRI), as there are no such responses to monitor. The resting state fMRI 
literature has struggled with this issue due to the increased likelihood of individuals falling 
asleep 6,7, driving most to require participants to remain with their eyes open during scans - a 
requirement that can be tracked through direct observation by a technician or via video 
recording. The requirements of conducting fMRI movie viewing experiments are greater, as one 
needs to know that an individual is actually paying attention to specific information on the 
screen.  
 
Eye tracking devices provide an obvious solution to the additional challenges inherent to 
naturalistic viewing fMRI, as they can provide high fidelity fixation information from which the 
level of participant engagement and preferential viewing patterns can be readily inferred 4,8. A 
growing number of systems are available for use in the MRI environment, meeting 
ferromagnetic requirements and overcoming logistical requirements regarding their positioning 
(e.g., long-range mounts)9–11. However, these devices remain outside the range of access for 
many due to either their costs or the added layers of complexity (e.g. operator training, 
synchronization and analysis of an additional data type) that can be dissuasive. 
 
An alternative solution is predictive eye estimation regression (PEER)12–15, an imaging-based 
method that uses machine learning algorithms (i.e., support vector regression [SVR]16) to 
estimate the direction of gaze during each repetition (TR) in the fMRI time series based on 
voxel-wise data from the eyes. The feasibility of this approach is demonstrated in previous 
studies that used support vector regression to successfully predict fixation locations on a 
TR-by-TR basis. Prior works have validated this approach by comparing PEER-derived fixations 
with simultaneously acquired eye tracking 13, as well as with perimetry15.  However, PEER has 
only been used in a few studies to date, which were small in size and tended to focus on 
neurologically normal adults12–15. 
 
Here, we provide a large-scale assessment of PEER for inferring eye fixations on a TR-by-TR 
basis during movie viewing using a subset of data (n=448) from the Child Mind Institute (CMI) 
Healthy Brain Network Biobank17. For each participant, 2-3 PEER scans were available, 
allowing us to address questions regarding the reproducibility of model accuracy, as well as to 
assess minimum data requirements. The inclusion of children of varying ages (5-21 years old) 
and ability to remain still during scan sessions allowed us to assess potential sources of artifact 
related to compliance 17–22. In addition to PEER scans, two movie fMRI scans were available for 
most participants (Despicable Me, The Present), allowing us to look at both the consistency of 
findings across participants and the specificity of eye tracking patterns obtained for differing 
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movie stimuli. For one of the two movies, out-of-scanner eye-tracking device data were 
available for a subset of individuals, allowing us to assess comparability to gold standard 
results. This demonstration is a step toward deploying new methods of monitoring variations in 
task compliance that overcome the burdens of MRI compatible eye-tracking devices.  
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RESULTS 
Model accuracy and data requirements. Consistent with prior implementations of the PEER 
method, support vector regression (C = 100; epsilon = 0.01) was used to generate a predictive 
model for eye fixation location based on the EPI signal measured in the eye orbit at each time 
point. Our primary assessment of the PEER method’s predictive accuracy used the data from 
the first PEER scan (Scan1) in each participant’s imaging session to train their SVR model 
(PEER1) and the second PEER scan to test model accuracy. We assessed the fit of the 
predicted fixation time series with the stimulus location time series using Pearson’s correlation 
coefficient, which we found to be more robust to individual outlier predictions in the 
model-generated fixation time series than alternative measures (e.g., Euclidean distance - see 
supplementary figure 1). Accuracy scores ranged from .35 – .97 (.66 ± .31) and .26 – .90 (.58 ± 
.32) in the x- and y- directions (see Figure 1a). For our sample of 448 participants, a Pearson’s r 
value of 0.3 or greater achieved statistical significance in a one-directional test (alpha = .05) 
after taking into account the number of simultaneous comparisons (i.e., the # of participants). 
Overall, this analysis confirmed that the EPI signal from the orbit contains enough information to 
reliably predict fixations from a calibration sequence. As a point of comparison with the literature 
focused on adults only, accuracy scores from prior works were .65 – .85 and .78 – .92 in the x- 
and y- directions12,13. 
 
Given the potential impact of changes in head position over the course of an imaging session, 
we tested for differences in prediction accuracy if the third scan were used for training rather 
than the first scan, as well as if the third scan were combined with the first scan for training. We 
compared the predictive accuracies of the PEER1, PEER3, and PEER1&3 models when 
estimating eye fixations from the second PEER scan. Paired t-tests found significantly high 
accuracy for PEER1 relative to the other models (p < 0.01 in all tests), except in the y-direction 
when compared against PEER1&3. These differences were not dramatic (see Figure 1b) but 
may be explained by increased head motion, since paired t-tests showed that mean framewise 
displacement (FD) was significantly greater for the third PEER scan than the first (p < 0.01). We 
used the PEER1 model to estimate eye fixations for the remainder of the work. 
 
Impact of Head Motion and Age on Model Accuracy. We next considered the impact of factors 
that we thought may compromise model accuracy. First, we considered head motion, a common 
source of artifact in image-based analyses18,23,24. Then, we looked at age and IQ, two factors 
that may affect an individual’s ability to comply with task instructions. The impact of head motion 
on model accuracy was readily discernible by visual inspection of a heatmap of the data for all 
participants when sorted by motion. Specifically, in Figure 2a, we plotted each participant’s 
predicted fixation sequence (for the second calibration scan) in rows, with the participants being 
sorted from top to bottom in ascending order based on their mean FD in the training scan (i.e, 
Scan1); color is used to represent the predicted fixation location relative to the center of the 
screen and the calibration stimulus locations are depicted on top and bottom. 
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The consistency of fixation sequences is made obvious by distinct vertical bands observed at 
different time points, which indicate that an identical fixation location is being predicted for most 
of the individuals; these bands decrease among those participants in the lower portion of the 
map, where mean FD is greatest. Findings by visual inspection were similar when sorting 
participants based on age, but were notably less apparent when sorting participants based on 
mean DVARS (D referring to the temporal derivative of timecourses, VARS meaning root mean 
square variance over voxels), an indirect measure of head motion, as well as other potential 
factors that may impact compliance (i.e., full scale IQ [FSIQ])25. We used multiple regression to 
statistically test for associations between model accuracy and variables of interest, finding that 
mean FD and age are statistically significant predictors of model accuracy (p < .01), but not IQ 
or DVARS (see Figure 2b). As expected, predictive accuracy is negatively correlated with head 
motion and positively correlated with age among those in our sample (i.e., 5.0-21.0 years old). 
 
Impact of Global Signal Regression and Volume Censoring on Model Accuracy. Given the 
deleterious effects of head motion on model accuracy, we explored the ability of two methods 
that are commonly used to ameliorate its impact on fMRI analyses — global signal regression 
(GSR) and volume censoring (framewise displacement > 0.2)23,25,26. Both of these methods 
appeared to significantly decrease model accuracy when applied to the training scan according 
to paired t-tests (p < .01), though the differences were relatively minimal in size (see Figure 2c). 
Limiting the GSR analysis to only those participants with high motion (i.e., mean FD > 0.2) did 
not increase its utility; instead, no difference in model accuracy was found with respect to 
whether or not GSR was employed with these datasets. 
 
Minimum Data Requirements. Although limited in number, past implementations of PEER have 
differed with respect to the number of target locations for training (i.e., 9 vs. 25)13,14. As such, we 
examined the impact of the number of locations included in training on PEER model accuracy 
by creating random subsets of our data that systematically varied the number of training points 
included (i.e., from 1 to 25; 50 random subsets per number of locations). We found that PEER 
model accuracy appeared to asymptote with as few as 8 calibration targets; minor increases in 
accuracy were noted with additional training points. This is consistent with our finding that 
addition of a second PEER scan during training did not result in substantial increases in model 
performance. 
 
Eye movement patterns during movie viewing. We next applied PEER to the movie fMRI scans. 
Specifically, the PEER1 model was used to predict fixation sequences for two scans during 
which video clips were viewed — Despicable Me and The Present. Figures 3a and 3b depict the 
heatmap of predicted time series for the two movie scans. In each of the heatmaps, distinct 
vertical bands were noted, indicating consistency in fixation location across participants at many 
of the time points, similar to what was observed for the calibration sequences. This is 
unsurprising since visually and emotionally salient scenes throughout the movie are expected to 
automatically capture a person’s attention (e.g. a human face in the center of the screen), while 
those that are less important to the narrative will be less consistent in viewing patterns across 
participants27–29. 
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As would be expected, the fixation pattern observed for each of the two movies was unique. To 
demonstrate this point, we first calculated pairwise correlations between the fixation time series 
generated for each of the participants for the two movies, allowing us to compare within vs. 
between movie relationships. As depicted in Figure 3c, correlations were significantly higher 
between two time series from different participants watching the same movie than correlations 
between different participants watching different movies. To quantify the level of discriminability 
between movies based on the predicted series, we trained a linear SVM using data from half of 
the available participants and tested on the remaining half. The model performed well in 
distinguishing which of the two movies were being watched based on the PEER-derived 
fixations, with AUROC curve values of .902 and .935 in the x- and y- directions respectively. 
Assessment of the confusion matrices indicated that there was no class imbalance for samples 
that were incorrectly classified. We looked for phenotypic variables that may distinguish the 
participants whose fixation sequences were classified accurately from those that were 
misclassified — however, no such features were identified. Thus, we establish that eye fixation 
information from movie viewing is reliably encoded in the fixation time series from PEER, 
allowing us to predict which movie is viewed with a high degree of accuracy. 
 
Eye Tracker Validation. We next worked to validate the fixation sequences obtained for The 
Present by comparing them with those obtained using an eye tracker in the same participants 
on a repeat viewing of The Present (outside of the scanner on a different date). First, we visually 
inspected the consistency in the predicted fixation sequences from PEER with those from eye 
tracking by overlaying the sequences from both modalities as a heatmap. In Figure 4, we see 
that there is a moderate level of consistency in viewing patterns across modalities, indicated by 
consistency along columns (i.e. eye gaze for each time point), which hints at the congruence 
between fixation information from PEER and eye-tracking devices. To quantify this relationship, 
we compared the median fixation series (calculated across participants) for each modality with 
correlation values of .85 and .81 in the x- and y- directions. Overall, we conclude that PEER 
captures relevant information about the gaze location on a TR-by-TR basis. 
 
Reliability of individual-specific eye movement patterns. We first tested whether the correlation 
between the PEER and eye-tracker based fixation sequences were greater when collected from 
the same individual than different - no difference was detected. Next, we more directly 
quantified the reliability of fixation locations at each point in the sequence using intraclass 
correlation coefficient (ICC) as well as that of the entire fixation sequence using I2C2 30 (a 
multivariate extension of ICC). Both approaches yielded poor reliability (i.e., < 0.3). The Present 
was specifically selected by the Healthy Brain Network for its simple and clear scenes of high 
emotional valence 17, which are of interest for imaging and voice sample analyses (recordings of 
participants retelling the story are obtained outside the scanner). However, there may be limited 
differences in between-participant fixation sequences since viewing is driven by salient stimuli 
that draw attention 29. It is also possible that more precise measures derived from an eye tracker 
may carry meaningful individual-specific variation, though this is beyond the scope of the 
present work.  
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Neural Correlates of Eye Movement. Finally, we took the opportunity to examine the neural 
correlates of eye movements, as indexed by changes in fixation location during each of the 
scans (i.e., calibration, Despicable Me, The Present). While the low temporal resolution of PEER 
clearly limits the ability to identify individual saccades from one another, or from sustained 
smooth pursuits, we expected that it should afford a gross perspective of neural activity 
associated with eye movements. Each participant’s fixation sequence was first converted into a 
change time series by calculating the euclidean distance from one time point to the next. 
Convolution with the hemodynamic response was then used to identify the neural bases of eye 
movements; to minimize potential head motion-related saccades, we modeled 24 motion-related 
parameters31 and the PEER time series itself. We observed a similar pattern of activations 
across the three scan types, with activations being most robust for the Despicable Me scans, 
likely reflecting the longer scan duration (see Figure 5). We replicated patterns of activation in 
regions within distributed brain networks known to be associated with eye movement32,33. 
Specifically, there was activation in Brodmann Areas 6, 8, and 17, which contain the premotor 
cortex, frontal eye fields, and primary visual cortex. 
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DISCUSSION 
This present work demonstrates the ability of the EPI-based PEER technique to accurately 
capture eye gaze patterns in movie viewing using a simple 1.5-minute calibration scan. Such 
information is a prerequisite for identifying variations in compliance with task demands during 
functional MRI scans, particularly in naturalistic viewing paradigms where there are no 
observable behaviors. We found that the eye orbit contains enough signal without the brain to 
reliably predict fixation sequences from both calibration scans and video clips. In addition, the 
PEER method’s predictive accuracy increased with the number of calibration targets, but 
stabilized after 8 targets. Not surprisingly, head motion appeared to be the primary determinant 
of prediction accuracy, whether during the training scan or the scan to be predicted. Eye-fixation 
patterns were found to be highly distinct for each movie and consistent across participants, 
allowing for relatively easy identification of the movie being viewed based on PEER alone. Eye 
tracking data obtained from a repeat viewing of the clip The Present outside the scanner was 
used to validate the results from PEER. Consistent with prior eye tracking studies, we found that 
consistency of the eye tracking patterns in movie viewing 28 observed across individuals limited 
the ability to reliably detect individual-specific variations in eye-fixation patterns. Finally, we 
found that the neural correlates of eye movement identified through PEER mirror those found in 
literature. Thus, PEER is a cost-efficient, easy to set up method of retrospectively determining 
eye-gaze patterns from fMRI scans. 
 
PEER is not intended to compete with the capabilities of modern eye trackers, most of which 
sample at a minimum of 60 Hz and contain additional information beyond eye fixations (e.g., 
pupillometry)34. PEER is a lightweight solution to one of the most basic confounds present in 
fMRI studies. As naturalistic viewing paradigms gain popularity and find more broad usage, 
there will be greater demand for methods that establish the validity of findings obtained in the 
absence of eye fixation data. The ease with which PEER can be added to any scan protocol, 
requiring only 1.5 minutes of data and no additional equipment or expertise, will make it 
appealing for many — particularly those pursuing large-scale studies. One area where PEER 
may have potential advantages over eye tracking is natural sleep imaging (e.g., infants, 
toddlers), as detection of eye movements is not dependent on the eyelid being open and the 
sampling frequency should be sufficient (there are typically 15.9 eye movements per minute)35. 
 
There were two key limitations in data quality for our PEER results. First and foremost is the 
deleterious impact of head motion. Consistent with observations from the resting state fMRI 
literature, we found some higher variability in the accuracy for model estimates from data with 
mean framewise displacement exceeding 0.2mm. Real-time motion detection systems in fMRI 
could be used to help establish data quality36. Second is compliance with the calibration scan. 
Similar to any eye tracking paradigm, failure to comply with the calibration will compromise 
detection accuracy. Not surprisingly, we found that model accuracy was predicted by age (after 
controlling for head motion) — a finding that likely reflects lower compliance with instructions in 
young children. One could potentially address the detection of such issues by adding a simple 
task into the calibration scan that requires a response (e.g., having a letter appear at each 
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calibration location and requiring the participant to identify it). Alternatively, integration of the 
calibration scan into a real-time fMRI could readily resolve the concern. 
 
We found that despite consistency across participants, the eye movement patterns did not 
exhibit test-retest reliability, whether using a multivariate or univariate ICC framework. This may 
in part reflect the nature of the comparison afforded by the present work, which required the 
test-retest comparison to be between a PEER-based measurement of eye fixations and an 
eye-tracking-based measurement. We consider one of the primary challenges to be 
between-participant variation, as relatively consistent eye fixation patterns were detected across 
individuals, especially in dynamic scene viewing 28. While studies that use summary statistics of 
viewing patterns (e.g. proportion of time fixating in a given region of interest) demonstrate higher 
intra-participant correlations, correlations are lower between the full fixation series for a given 
participant28,37. This suggests that the eye fixations detected with PEER are primarily driven by 
salient visual stimuli. The relatively high level of engagement that tends to be associated with 
the selected video clips may also be a factor. Our findings should not be taken to infer that 
individual variation is beyond the window of examination afforded by the more sophisticated 
measures obtainable from current eye tracking devices. 
 
The exact reasons why PEER works remain unclear, although it likely involves the detection of 
variations in the MRI contrast between the vitreous and aqueous humors38. Looking forward, 
there is potential to create a generalizable model for PEER that will enable researchers to 
retrospectively determine fixations from fMRI data, even when calibration data are not available. 
In addition, there are potential optimizations, such as multiband imaging, which can increase 
sampling rates. We demonstrate that PEER is an inexpensive, easy-to-use method to 
retrospectively determine eye fixations from fMRI data, a step toward toward deploying new 
methods of monitoring variations in task compliance that overcome the burdens of MRI 
compatible eye-tracking devices. 
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METHODS 
Participants. The Healthy Brain Network is a large-scale data collection effort focused on the 
generation of an open resource for studying pediatric mental health and learning disorders17. 
The ongoing data collection contains a range of phenotypes, spanning typical and atypical brain 
development. We included data from 480 participants (ages: 5.0-21.0; 10.3 ± 3.5) collected at 
the Rutgers University site, which had the largest number of complete imaging datasets 
available at the time of our analyses. As outlined in greater detail in the data descriptor 
publication for the Healthy Brain Network17, approximately 80 percent of the participants in the 
sample have one or more diagnosable disorders according to the DSM-5. This dataset includes 
a high proportion of participants with Attention Deficit Hyperactivity Disorder (ADHD; ~50%) and 
children as young as age 5.0. Both of these participant types have a higher likelihood of head 
motion, allowing us to study its impact on PEER analyses17–20. 
 
Imaging Data. Data were collected using the Siemens 3T Tim Trio MRI scanner located at the 
Rutgers University Brain Imaging Center (RUBIC). For functional MRI scans, a multiband factor 
of 6 was employed to achieve a 2.4mm isotropic voxel size and TR = 800ms (TE = 30ms). 
During the imaging session, each participant completed a minimum of two PEER calibration 
scans (3 scans for n = 430, 2 scans for n = 50). Two movie viewing scans were included as well: 
Despicable Me [10 min clip, DVD version exact times 1:02:09 – 1:12:09] and The Present 
[~3.47 min; added November 23, 2016]. 
 
Predictive Eye Estimation Regression 
PEER Scan Instructions. The participant is asked to fixate on a white dot that iterates through 
25 different positions for 4 seconds each; the positions were selected to ensure coverage of all 
corners of the screen as well as the center (see supplementary figure 2). The PEER calibration 
scans were distributed throughout the imaging session such that they flank the other scan types 
(e.g. rest, movie viewing) and allow for a sampling of possible changes in image properties over 
time. 
 
Image Processing. Consistent with prior work12,13, a minimal image processing strategy was 
employed for the PEER scans. Using the Configurable Pipeline for the Analysis of 
Connectomes (C-PAC)39, we performed the following steps: motion correction, image intensity 
normalization, temporal high-pass filtering (cutoff = 100s), and spatial filtering (FWHM at 6mm). 
The preprocessed functional data for each participant was then registered to the corresponding 
high-resolution anatomical T1 image using boundary-based registration via FLIRT40,41. The final 
fMRI data were registered to the MNI152 42 template space using ANTs43. 
 
Quality Assurance. Two researchers visually inspected the middle volume of each participant’s 
PEER calibration scans for incomplete coverage of the orbit (i.e. missing eye signal), leading to 
the exclusion of 32 participants from analysis. At least two PEER scans were available for each 
participant (3 scans for n = 409, 2 scans for n = 39). Given that The Present was added to the 
imaging protocol later than Despicable Me, fewer participants had both scans. We inspected the 
movie scans and identified 427 Despicable Me scans and 360 scans of The Present with 
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complete coverage of eye signal. In the following experiments, we removed participants with low 
quality scans relevant to a given analysis. 
 
Model Generation. We limited each fMRI scan to the region corresponding to the MNI152 
eye-mask template 42. Isolation of signal to the orbit was done for two reasons. First, prior 
works12,13 suggest that signal from the eyes provides adequate information to predict eye 
fixations. Second, this would reduce the dimensionality of the dataset to accelerate model 
generation and fixation estimation using PEER. 
 
At each voxel we: 1) mean centered and variance normalized (i.e., z-scored) the time series, 
and 2) averaged the consecutive time points associated with each stimulus presentation, 
reducing the time series to 25 points. The latter step can mitigate random noise, as well as the 
effects of subtle eye movements during fixation, given that fixation stability and saccadic eye 
movements vary across individuals44–46. For each participant, two separate support vector 
regression models were trained - one for x-direction fixation locations and one for y-direction 
fixation locations. In accord with prior works12,13, PEER was used to predict the 25 positions 
using the voxel-wise time series data (i.e., a unique predictor was included for each voxel, with 
the following parameters: C=100, epsilon=0.01). 
 
Estimating Model Accuracy. For each participant, the PEER-generated SVR model trained 
using Scan1 (PEER1) was used to predict eye fixations from their second calibration scan 
(Scan2). PEER1 model accuracy was assessed using Pearson’s correlation coefficient between 
the model-generated fixation time series and the stimulus locations from the calibration 
sequence. Pediatric neuroimaging studies demonstrate a decline in scan quality over the course 
of an imaging session, which implies that the PEER scans (and the resulting SVR models) may 
differ in overall quality based on its timing in the imaging session 18–20,47–49. We compared the 
models trained using Scan1, Scan3, or both scans in their ability to predict eye fixations from 
Scan2. To quantify differences in PEER scan quality, we conducted a paired t-test to compare 
Scan1 and Scan3 with respect to head motion (i.e. framewise displacement, DVARS)23,25.  
 
Factors Associated with PEER Prediction Quality. 
Head Motion and Compliance. Head motion is one of the most consistent sources of artifacts in 
fMRI analyses22,23,25. We examined the impact of head motion on PEER accuracy using mean 
framewise displacement (a direct measure of head motion) and standardized DVARS (an 
indirect measure)25. To do so, we assessed the relationship between measures of motion and 
the predictive accuracy of PEER1 (ability to predict fixations from Scan2) via linear regression. 
Beyond head motion, compliance with PEER scan instructions (to fixate on the stimuli) can 
impact model accuracy. While we have no direct measure of this compliance, we did test for 
relationships between model accuracy and participant variables that varied considerably across 
participants and we hypothesized may impact compliance; in particular, age and full-scale IQ 
(FSIQ).  
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PEER Scan Image Preprocessing.  We assessed model accuracy of PEER after implementing 
global signal regression (GSR), a method to remove non-neuronal contributions to fMRI data 
(e.g. head motion). Though the neuroimaging community has not reached a consensus on the 
use and interpretation of GSR, it has been shown to remove global changes to BOLD signal, 
caused for instance by respiration or head motion 23,26,50–53. Given the increased likelihood of 
motion artifacts in the HBN dataset17, which includes participants at various points of maturation 
(ages 5-21) with typical and atypical brain development (e.g. ADHD), we implemented GSR on 
Scan1 data prior to model training. The preprocessed data was used to train the PEER model, 
which was applied to Scan2 to measure fit of the predicted time series with known calibration 
targets. We repeated this analysis with volume censoring, using a framewise displacement 
threshold of 0.2mm on data from Scan1 prior to model training and estimation. Paired t-tests 
were used to compare the predictive accuracy between the original and preprocessed models.  
 
Minimum Data Requirements. To establish minimum data requirements for accurate PEER 
model estimation, we systematically varied the number of calibration points used in model 
generation. Specifically, we randomly sampled N training points (N: 2-25) from the calibration 
scan and used the corresponding brain images to train PEER (50 random samples were 
generated per N to estimate confidence intervals). Consistent with our prior analyses, predictive 
accuracy for each PEER model was determined by comparing the predicted fixation time series 
with the known calibration locations. The composition of each random sample varied with 
respect to the combination of training points. Thus, this analysis specifically examines the 
number of training points required on average to adequately train the PEER model and not the 
spatial arrangement of the points that optimizes model performance. 
 
Validation 
Identifying a Movie Based on Eye Movements. We evaluated the ability of the PEER method to 
capture fixation sequence uniquely associated with a given movie stimulus. In order to 
accomplish this, we first applied each participant’s PEER1 model to their corresponding movie 
scans (The Present, Despicable Me), thereby producing a participant-specific fixation sequence 
for each movie. We then used an unpaired t-test to compare the level of correlation observed 
between differing participants’ time series when watching the same movie versus a different 
movie (given that fMRI scans of DM contained 750 volumes while scans for TP contained 250, 
only the first 250 volumes from DM were used in this analysis). To further quantify the level of 
discriminability between the fixation time series of the two movies, we trained a binary SVM 
classifier to predict which movie the individual was seeing based on a given fixation time series. 
The linear SVM classifier (C=100) was trained using half of the available participant datasets 
and tested on the remaining half of the participants. The results were assessed using a 
confusion matrix and ROC curves.  
 
Out-of-Scanner Eye Tracker Measurement. For 248 participants included in this work, a second 
viewing of The Present was added outside the scanner at a later session in the study. Eye 
tracking data were obtained during this viewing using an infrared video-based eye tracker 
(iView-X Red-m, SensoMotoric Instruments [SMI] GmbH)17, allowing us to compare 
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PEER-derived eye fixations and those from the current gold standard. Eye tracking data were 
collected at the Staten Island or Manhattan site (sampling rate: 60 and 120 Hz, respectively). 
Similar to the design of the MRI data collection protocol, clips of The Present were shown at the 
end of the EEG and eye tracking collection protocol; thus, participants with poor eye tracker 
calibration or participants who were unable to complete the protocol were missing data for The 
Present. Of the remaining participants, those missing more than 10% of raw samples from 
eye-tracking or with moderate to high levels of head motion in MRI data for The Present 
(defined by mean FD > 0.2mm) were removed from analysis; this left 116 participants in the 
dataset. To match the sampling rate (TR) of the MRI scanner, the raw data from eye-tracking 
was segmented into 800 ms windows. In each window, we calculated the median of the raw 
samples as an estimate of multiple eye movements that were detected by the eye tracker. The 
median fixation time series from PEER was compared to that of eye tracking, using Pearson’s r 
to assess the similarity between the fixation sequences detected by each method.  
 
Identifying a Participant Based on Eye Movements. We examined the similarity of the fixation 
time series from eye tracking and PEER predictions for The Present to assess the 
reproducibility of participant fixation patterns. The Present was selected specifically for its 
emotional content and easy-to-understand narrative; as such, we would expect viewing patterns 
to be congruent across scenes of high valence. However, these patterns may be identifiable 
based on subtle viewing pattern differences. Prior works have demonstrated reproducibility 
using summary statistics of eye movement (e.g. proportion of time fixating on mouth vs. eyes); 
however, we examined the whole time series, which has been shown to vary in viewing 
consistency by stimulus and age 28,37,54. We examined the intra- and inter-individual variability in 
viewing patterns by calculating Pearson’s r between all pairs of PEER and eye tracking fixation 
time series to assess the feasibility of identification. Then, we computed the correlation for each 
participant’s PEER-estimated and eye tracking fixation time series when compared to the 
median fixation time series. Using these measures, we ran a univariate ICC analysis for the 
whole scan and for individual time points. We also completed a multivariate extension of ICC 
named the Image Intra-Class Correlation Coefficient (I2C2 30) with 500 permutations to estimate 
the null distribution.  
 
Neural Correlates of Eye Fixation Sequences. We took the opportunity to test the feasibility of 
using the PEER-derived fixations from movie viewing fMRI data to characterize the neural 
correlates associated with eye fixations. Based on prior work, we expected to observe 
activations in the frontal eye fields, ventral intraparietal sulcus and early visual processing 
areas32,33,55,56; deactivations were expected in the default mode network during movie viewing 57. 
To model neural activity associated with fixations identified by PEER, we first computed the 
magnitude of change in fixation location from one time point to the next in each predicted PEER 
time series using Euclidean distance. The resulting stimulus function was convolved with the 
double-gamma hemodynamic response function with added temporal derivatives, which was 
then used to model voxel-wise activity in response to movie viewing. To minimize the impact of 
prediction errors, a hyperbolic tangent squashing function was used to identify and reduce 
spikes in the eye movement vector prior to the convolution. Twenty-four motion parameters 
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were regressed out from the model and FSL FEAT was used for all individual-level analyses. To 
assess group activation, we used the FSL FLAME mixed effect model with the following 
variables as nuisance covariates: sex,  mean framewise displacement, age, model accuracy in 
the x- and y- directions and full scale IQ. Multiple comparison correction was carried out using 
Gaussian Random Field theory, as implemented in FSL (Z > 3.1, p < 0.05, corrected). 
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FIGURE LEGENDS 
 
Figure 1 | PEER accuracy when estimating fixations from calibration scan 2. (a) Predictive 
accuracy for PEER when trained on calibration scan 1 (PEER1) in the x- and y- directions. (b) 
Differences in predictive accuracy based on the calibration scans used for SVR model training.  

 
 
 
 
 
 
 
 
 
 
 
  

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/347765doi: bioRxiv preprint 

https://doi.org/10.1101/347765
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 2 | Impact of phenotype and preprocessing on PEER accuracy. (a) Heatmap of 
predicted fixation time series from calibration scan 2, sorted by increasing motion (left) or 
decreasing age (right). Colorbar represents distance (pixels) of prediction from the center of the 
screen. Stimulus locations from the calibration scan are placed above and below participant 
predictions for reference. (b) Locally weighted scatterplot smoothing (Lowess) regression 
between PEER accuracy and mean framewise displacement or age. (c) Impact of global signal 
regression and volume censoring on PEER accuracy. 
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Figure 3 | PEER applied to movie viewing fMRI. (a) Heatmap of predicted fixations for The 
Present. The median fixation time series is placed above and below participant predictions. (b) 
Heatmap of predicted fixations for Despicable Me. (c) Pairwise correlations for all predicted 
fixation time series from both movies. 
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Figure 4 | Heatmap of PEER-derived fixation time series overlaid above eye-tracker 
measurements for The Present. 
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Figure 5 | Group activation maps generated using PEER-derived eye movements from the 
calibration scan, The Present, and Despicable Me (Z > 3.1, p < 0.05, corrected). 
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SUPPLEMENTARY FIGURES 
 
Supplementary Figure 1 | Assessment of PEER1 accuracy when estimating fixations from 
calibration scan 2 using root mean square error (RMSE). 
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Supplementary Figure 2 | Stimulus location grid employed during the PEER calibration scans 
(one dot is displayed at a time; 4 seconds per dot). 
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