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Abstract
Use of the Genome Analysis Toolkit (GATK) continues to be the standard practice in genomic variant calling
in both research and the clinic. Recently the toolkit has been rapidly evolving. Significant computational
performance improvements have been introduced in GATK3.8 through collaboration with Intel in 2017. The first
release of GATK4 in early 2018 revealed significant rewrites in the code base, as the stepping stone toward
a Spark implementation. As the software continues to be a moving target for optimal deployment in highly
productive environments, we present a detailed analysis of these improvements, to help the community stay
abreast with changes in performance. We re-evaluated the options previously identified as advantageous, such
as threading, parallel garbage collection, I/O options and data-level parallelization. Based on our results, we
consider the performance and cost trade-offs of using GATK3.8 and GATK4 for different types of analyses.
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1. Introduction
GATK3.8 is the latest release of the "traditional" Java-based
GATK designed to work on regular servers or compute clus-
ters. GATK4, first officially released in January of 2018, is
meant to be eventually deployed on data analytics platforms.
At present it contains both Spark and non-Spark implementa-
tions of many of the tools. Because most of the Spark tools
were still in beta at the time of the initial release, we focused
our testing on the non-Spark implementations. The two ver-
sions of GATK have some initial differences; for instance, the
PrintReads tool from GATK3.8 has become ApplyBQSR in
GATK4. When optimizing a workflow, one can perform two
distinct optimizations, and we explore them both:

maximizing speed: minimize the time to process a single
sample; useful in time-critical situations, i.e. when a
patient has a critical or rapidly developing condition;
see sections 2.2 through 2.6.

maximizing throughput: maximize the number of samples
processed per unit time; cost-effective for routine anal-
yses or large population studies; see section 2.7.

2. Methods and Results
2.1 Experimental setup
Software versions GATK3.8 was downloaded from the
Broad Institute’s software download page, build GATK-3.8-
0-ge9d806836. Picard version 2.17.4 and GATK4.0.1.2 were
downloaded from GitHub as pre-compiled jar files.

Tools Our benchmarking focused on the GATK Best Prac-
tices [1, 2] starting from the duplicate marking stage through
variant calling. The MarkDuplicates tool is not part of GATK3
and was called from a separate toolkit, Picard. MarkDupli-
cates is included directly into GATK4. Realignment is no
longer recommended, and was not tested. The base recali-
bration process consists of two tools, BaseRecalibrator and
PrintReads/ApplyBQSR. The final tool we benchmarked was
HaplotypeCaller, which is common to both versions of GATK.

Data A dataset corresponding to whole genome sequencing
(WGS) performed on NA12878 to ~20X depth was down-
loaded from Illumina BaseSpace on Dec 16, 2016. The paired-
ended, 126 nt reads were aligned with BWA MEM [3] against
the hg38 human reference (from the Oct 2017 GATK Bundle)
and sorted with Novosort [4] prior to benchmarking. Some
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(a) all tools (b) PrintReads, in more detail
Figure 1. GATK3.8 Thread Scalability. (a) Sample: NA12878 WGS. Fold change refers to the fold difference in walltime
between the new measurement when compared to the performance with a single thread
((newtime−baselinetime)/baselinetime). (b) Sample: NA12878 chr 21. Error bars denote 1 SD around the mean of three
replicates.

settings required multiple tests and measurements; in those
cases we only used the reads that mapped to chromosome 21.
For known sites, dbSNP build 146 was used.

Hardware All tests were conducted on Skylake Xeon Gold
6148 processors with 40 cores, 2.40 GHz. Each node had 192
GB, 2666 MHz RAM. The nodes were stateless, connected
to a network-attached IBM GPFS ver. 4.2.1 with custom
metadata acceleration. The cluster used EDR InfiniBand with
100 Gb/sec bandwidth, 100 ns latency. Nodes ran Red Hat
Enterprise Linux 6.9.

2.2 GATK3.8 Tool-level thread scalability
The non-Spark GATK4 version is entirely single-threaded,
except for the PairHMM portion of HaplotypeCaller (section
2.5 below). Picard’s MarkDuplicates is also single-threaded.
Thus, our thread scalability testing focused on the GATK3.8
tools. We measured the walltime for each tool when invoked
with a certain thread count, in the range from 1 to 40. Hap-
lotypeCaller has two types of threads: nt and nct. We kept
nt at 1 and modified nct. When one thread is reported for
HaplotypeCaller, one thread of each type was used.

The tools respond differently to multithreading. Both
BaseRecalibrator and HaplotypeCaller experience a 5-fold
speedup compared to a single-threaded run when using 16
threads, but do not scale beyond that (Figure 1a). PrintReads
gains an initial improvement with 3 threads (the apparent opti-
mum for our dataset), and experiences degraded performance
at higher thread counts (Figure 1b).

2.3 GATK4 Parallel garbage collection
A previous study [5] found that enabling Java parallel garbage
collector (PGC) with up to 32 threads improved the walltime

of GATK3.7. We explored this effect in the GATK4 tools.
The flags enabling PGC are passed to the GATK4 launch

script via the "–java-options" flag:

/path/to/gatk --java-options \
"-XX:+UseParallelGC -XX:ParallelGCThreads=<value>"

We found that enabling PGC for either ApplyBQSR or
HaplotypeCaller had no impact or even degraded performance,
depending on the number of threads used (data not shown).
However, in MarkDuplicates using 2-4 PGC threads provided
optimal performance (Figure 2a). For BaseRecalibrator, there
is much more variability that we could not link to the state of
the cluster (Figure 2b). The optimal thread choice appears to
be around 24 threads, but the high walltimes at thread counts
close to 24 suggest that it may be more reliable to 1) perform
a similar thread count sweep on one’s own system to find the
optimum, or 2) leave parallel garbage collection off to avoid
one of the sub-optimal thread counts.

We took a cursory look at PGC scalability in GATK3.8 and
did not find significant improvements. In Picard’s MarkDupli-
cates, the optimum lies at approximately 2 PGC threads.

2.4 Asynchronous I/O in GATK 4
GATK4 has two types of asynchronous read/write options:
Samtools I/O and Tribble I/O. “Tribble” is a specialized
data format, mainly used for index files. To enable async
I/O, one must edit the following variables in a gatk-
properties file, located at src/main/resources/org/
broadinstitute/hellbender/utils/config/
GATKConfig.properties in the GATK GitHub
repository:
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(a) MarkDuplicates (b) BaseRecalibrator

Figure 2. GATK4 thread scalability for Java parallel garbage collection. Sample: NA12878 WGS. The measurements at 1 PGC
thread represent the default, meaning that PGC is not enabled. Error bars denote SD around the mean of three replicates.

samjdk.use_async_io_read_samtools = true | false
samjdk.use_async_io_write_samtools = true | false
samjdk.use_async_io_write_tribble = true | false

The properties file is passed to GATK with the ’–gatk-
config-file’ flag. Because GATK4 MarkDuplicates is just a
port of Picard’s tool of the same name, it does not accept
a configuration file. We ran HaplotypeCaller with a single
thread for this series of tests.

We found it best to enable asynchronous I/O for Samtools
reading and writing and disable it for Tribble I/O (Table 1).

2.5 PairHMM Scalability in GATK4 HaplotypeCaller
Intel partnered up with the Broad Institute to create the Ge-
nomics Kernel Library (GKL), which includes key optimiza-
tions to the HaplotypeCaller algorithm. The library intro-
duces AVX optimized versions of the PairHMM and Smith-
Waterman algorithms. Additionally, OpenMP support was
added to the PairHMM algorithm to enable multithreading.
While the library was developed to be used in GATK4, the
AVX capabilities were back propagated to GATK3.8 as well.

The pre-built GATK4 that we downloaded from the repos-
itory was already configured to automatically detect hardware
support for AVX. On our Skylake architecture, AVX-512 was
utilized automatically.

Table 1. Effects of asynchronous I/O settings on walltime
(hours) in GATK4. Sample: NA12878 WGS

Async I/O activated?

Tool Name no all only for samtools I/O

BaseRecalibrator 4.07 2.95 2.88
ApplyBQSR 2.38 2.07 2.08
HaplotypeCaller 17.25 17.31 17.08

The multi-threaded implementation of the PairHMM al-
gorithm can be enabled with the following flags:

--pairHMM AVX_LOGLESS_CACHING_OMP

and
--native-pair-hmm-threads <Thread number>.

The optimum for GATK4 HaplotypeCaller seems to be
around 10 threads (Figure 3).

Figure 3. GATK4 thread scalability in HaplotypeCaller.
Sample: NA12878 chr21. Error bars denote 1 SD around the
mean of three replicates.

2.6 Splitting by chromosome
To achieve the greatest speedup, it is often efficient to split data
by chromosome and process each interval in parallel. Here, we
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split the aligned sorted BAM into varying numbers of roughly
equal-size chunks (Table 2) by using the GATK interval flag
(-L) to observe how splitting affected walltime. The chunks
were either kept on the same node for maximal utilization of
cores (“within-node” parallelization) or spilled to more nodes
for even shorter walltime (“across-node” parallelization).

The previously discussed optimizations were applied in
these experiments for both GATK3.8 and GATK4. For “within-
node splitting,” we strove to optimally fill up our 40-core Sky-
lake nodes by adjusting optimization parameters based on the
number of chunks being processed in parallel within the node.
For example, in GATK3.8 the optimal thread count for a tool
may be around 10 threads, but we set the thread count for
each chunk to 3 when the input is split into 12 chunks, while
keeping all computations on the same node. Parallel garbage
collection degrades the performance of BaseRecalibrator at
lower thread counts and was therefore not used in the splitting
experiments. Parallel GC was used with MarkDuplicates, but
with only 2 threads, as that was optimal.

Table 2. Chunking of the genome by chromosomes.

GATK3.8 results For within-node parallelization beyond
three chunks, the benefit of splitting the data begins to be
counteracted by the degradation in performance caused by
decreasing the thread count of each tool (Figure 4a). Thus
it makes sense to spread execution over multiple nodes. We
tested processing 6 chunks on 2 nodes, and 12 chunks on
4 nodes - thus keeping to 3 chunks per node (Figure 4b).
This further reduced the total walltime, although perhaps at a
higher compute cost.

GATK4 results Splitting the aligned sorted BAM into chunks
is simple in GATK4, as the only multithreaded tool is Haplo-
typeCaller. We again split into 2, 3, 6, and 16 chunks, which
were kept on the same node, and the PairHMM thread count

(a) within-node parallelization

(b) across-node parallelization

Figure 4. Effects of data-level parallelization in GATK3.8.
Sample: NA12878 WGS. The “Baseline” was a naive
approach where we gave each tool 40 threads (1 thread per
core). The “Baseline Optimized” gave each tool 40 threads,
except for PrintReads, which utilized 3. MarkDuplicates and
BaseRecalibrator were given 2 and 20 parallel garbage
collection threads, respectively. “Split 2,” “Split 3,” etc.
means that the aligned sorted BAM was split into 2, 3, etc.
chunks, as shown in Table 2. Panel (a) shows experiments
with chunks computing on the same node. In panel (b)
computation was spread across nodes in groups of 3 chunks
per node.

for HaplotypeCaller was adjusted accordingly (Figure 5). In
contrast to the results we observed for GATK3.8, the wall-
time keeps improving when splitting all the way down to 16
chunks.

2.7 Throughput
When optimizing throughput, one is maximizing the number
of samples processed per unit time, albeit at the cost of higher
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Figure 5. Effects of data-level parallelization in GATK 4. All
compute was kept within the same node. Sample: NA12878
WGS. “Split 2,” “Split 3,” etc. means that the aligned sorted
BAM was split into 2, 3, etc. chunks, as shown in Table 2.

walltime per sample. Because GATK4 is at present single-
threaded by design, it lends itself extremely well to this kind
of optimization. We created 40 copies of the NA12878 aligned
sorted BAM file and processed them in parallel on a single
40-core node (Figure 6). The overall walltime does increase as
one adds more samples to a node, probably due to contention
for memory access and possibly disk I/O. However, the overall
throughput increases substantially up until around 20 samples
per node. Placing more than 20 samples on a 40-core Skylake
node is probably not cost-effective.

3. Summary and Discussion
The tested optimizations intended to speed up computation
in individual GATK tools are summarized in Table 3. When
applied together, these optimizations significantly reduce the
walltime on NA12878 WGS 20X (no splitting by chromo-
some). In GATK3.8 the MarkDuplicates→ BaseRecalibra-
tor → PrintReads → HaplotypeCaller walltime went from
21.7 hours down to 15.3 hours (29.3% improvement). In
GATK4 the MarkDuplicates→ BaseRecalibrator→ Apply-
BQSR→ HaplotypeCaller walltime went from 24.9 hours to
20.7 hours (16.9% improvement). Note that the walltime is
fairly comparable between the two GATK versions despite
the single-threaded nature of GATK4, highlighting the perfor-
mance optimizations introduced into that new release due to
complete rewrite of many portions of the code.

Further walltime improvement can be achieved via split-
ting the aligned sorted BAM by chromosome. In GATK3.8 the
walltime is reduced down to 5 hours when BAM is split into
16 chunks running on the same node – a 76.9% improvement
relative to the unoptimized, unsplit configuration. Further ben-
efit can be achieved by splitting into 12 chunks across 4 nodes:
down to 3.4 hours (84.3% total improvement). A similar

Figure 6. GATK4 throughput testing, measuring total
walltime when running multiple samples simultaneously on
the same node. Sample: NA12878 WGS.

walltime of 3.6 hours is accomplished in GATK4 by splitting
into 16 chunks running on the same node – potentially a very
cost-effective solution.

To assess the financial costs and benefits resulting from the
various configurations of the pipeline, we calculated the dollar
amount for our runs based on AWS pricing. All our nodes are
built with 40-core Skylake CPUs and 192 GB of RAM. This
does not exactly match any of the AWS Skylake instances:
c5.9xlarge gives 36 cores and 72 GB of RAM, and c5.18xlarge
gives 72 cores and 144 GB of RAM. Our optimizations do
aim to maximally pack our nodes with processes, but 72
GB of RAM would probably be insufficient for some high-
throughput configurations. Thus Table 4 gives cost estimates
for both types of instances, with the understanding that true
values are somewhere in between.

The data emphasize the trade-off between speed and per-
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Table 3. Summary of optimized parameter values.

Tool name GATK3.8 GATK4

PGC Tool threads PGC Async AVX threads

MarkDuplicates 2 threads 1 2 threads N/A N/A
BaseRecalibrator 20 threads -nct 40 20 threads Yes for Samtools,

No for Tribble

N/A
ApplyBQSR off -nct 3 off N/A

HaplotypeCaller off -nt 1 -nct 39 off 8

Table 4. Financial costs per sample when running an optimized pipeline, based on AWS on-demand pricing as of June 2018:
c5.9xlarge at $1.53 per hour and c5.18xlarge at $3.06 per hour. Configurations are sorted by cost.

GATK version Splitting Samples Nodes Walltime, hrs c5.9xlarge c5.18xlarge

GATK 4.0.1.2 no splitting 1 1 20.7 $31.7 $63.3
GATK 3.8 no splitting 1 1 15.3 $23.4 $46.8
GATK 3.8 12 chunks 1 4 3.4 $20.8 $41.6
GATK 3.8 6 chunks 1 2 4.7 $14.4 $28.8
GATK 3.8 16 chunks 1 1 5.0 $7.7 $15.3

GATK 4.0.1.2 16 chunks 1 1 3.6 $5.5 $11.0
GATK 4.0.1.2 no splitting 40 1 34.1 $1.3 $2.6

sample cost of the analysis. To achieve the two types of
optimizations outlined in the Introduction:

maximizing speed: to minimize the time to process a single
sample, useful in time-critical situations, i.e. when a
patient has a critical or rapidly developing condition,
use GATK3.8 by splitting the sample into 12 chunks
and computing across 4 nodes; resultant walltime is 3.4
hours at the cost of $41.60 on c5.18xlarge.

maximizing throughput: to maximize the number of sam-
ples processed per unit time, cost-effective for routine
analyses or large population studies, use GATK4.0.1.2
by running 40 samples on one node; total walltime is
34.1 hours with 1.18 samples processed per hour at the
cost of $2.60 per sample.
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