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Abstract 

Auditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus 

from the population of evoked neural activity. Reconstructing speech from the human auditory cortex 

creates the possibility of a speech neuroprosthetic to establish a direct communication with the brain and 

has been shown to be possible in both overt and covert conditions. However, the low quality of the 

reconstructed speech has severely limited the utility of this method for brain-computer interface (BCI) 

applications. To advance the state-of-the-art in speech neuroprosthesis, we combined the recent 

advances in deep learning with the latest innovations in speech synthesis technologies to reconstruct 

closed-set intelligible speech from the human auditory cortex. We investigated the dependence of 

reconstruction accuracy on linear and nonlinear regression methods and the acoustic representation that 

is used as the target of reconstruction, including spectrogram and speech synthesis parameters. In 

addition, we compared the reconstruction accuracy from low and high neural frequency ranges. Our 

results show that a deep neural network model that directly estimates the parameters of a speech 

synthesizer from all neural frequencies achieves the highest subjective and objective scores on a digit 

recognition task, improving the intelligibility by 65% over the baseline. These results demonstrate the 

efficacy of deep learning and speech synthesis algorithms for designing the next generation of speech BCI 

systems, which not only can restore communications for paralyzed patients but also have the potential to 

transform human-computer interaction technologies.  

 

Introduction 

Auditory stimulus reconstruction is an inverse mapping technique that finds the best approximation of 

the acoustic stimulus from the population of evoked neural activity. Stimulus reconstruction was originally 

proposed as a method to study the representational properties of the neural population 1–5 because this 

method enables the intuitive interpretation of the neural responses in the stimulus domain. 

Reconstructing speech from the neural responses recorded from the human auditory cortex6, however, 

opens up the possibility of using this technique as a speech brain-computer interface (BCI) to restore 

speech in severely paralyzed patients (for a review, see these references7–9). The ultimate goal of a speech 

neuroprosthesis is to create a direct communication pathway to the brain with the potential to benefit 

patients who have lost their ability to speak, which can result from a variety of clinical disorders leading 

to conditions such as locked-in syndrome10,11. The practicality of a neuroprosthetic device to restore 

speech communication was further supported by studies showing successful decoding of speech during 

both covert and overt conditions 12–16, which is a necessary feature of a speech BCI system. While previous 
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studies have established the feasibility of reconstructing speech from neural data, the quality of the 

reconstructed audio so far has been too low to merit subjective evaluation. For this reason, the 

reconstructed sounds in previous studies have been evaluated only using objective measures such as 

correlation or recognition accuracy. The low quality of the reconstructed sound is currently a major 

limiting factor in actualizing speech BCI systems7.  

The acoustic representation of the stimulus that is used as the decoding target can significantly 

impact the quality and accuracy of reconstructed sounds. Previous studies have used magnitude 

spectrogram (time-frequency representation)3,17, speech envelope18,19, spectrotemporal modulation 

frequencies6,13,20, and discrete units such as phonemes and phonetic categories8,21–23 and words24,25. Using 

discrete units can be advantageous by allowing for discriminative training. However, decoding discrete 

representations of speech such as phonemes eliminates the paralinguistic information such as speaker 

features, emotion, and intonation. In comparison, reconstructing continuous speech provides the 

possibility of real-time, continuous feedback that can be delivered to the user to promote coadaptation 

of the subject and the BCI algorithm26,27 for enhanced accuracy. A natural choice is to directly estimate 

the parameters of a speech synthesizer from neural data, but this has not been attempted previously 

because the process requires a highly accurate estimation of several vocoder parameters, which is hard 

to achieve with traditional machine-learning techniques.  

To advance the state-of-the-art in speech neuroprosthesis, we aimed to increase the intelligibility 

of the reconstructed speech by combining recent advances in deep learning28 with the latest innovations 

in speech synthesis technologies. Deep learning models have recently become the dominant technique 

for acoustic and audio signal processing29–32. These models can improve reconstruction accuracy by 

imposing more complete constraints on the reconstructed audio by better modeling the statistical 

properties of the speech signal3. At the same time, nonlinear regression can invert the nonlinearly 

encoded speech features in neural data33,34 more accurately.  

We examined the effect of three factors on the reconstruction accuracy: 1) the regression 

technique (linear regression versus nonlinear deep neural network), 2) the representation of the speech 

intended for reconstruction (spectrogram versus speech vocoder parameters), and 3) the neural 

frequency range used for regression (low frequency versus high-gamma envelope) (Fig. 1A). Our results 

showed that a deep neural network model that uses all neural frequencies to directly estimate the 

parameters of a speech vocoder achieves the highest subjective and objective scores, both for 

intelligibility and the quality of reconstruction in a digit recognition task. These results represent an 

important step toward successful implementation of the next generation of speech BCI systems.  
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Neural recordings: We used invasive electrocorticography (ECoG) to measure neural activity from five 

neurosurgical patients undergoing treatment for epilepsy as they listened to continuous speech sounds. 

Two of the five subjects had high-density subdural grid electrodes implanted in the left hemisphere with 

coverage primarily over the superior temporal gyrus (STG), and four of the five subjects had depth 

electrodes with coverage of Heschl’s gyrus (HG). All subjects had self-reported normal hearing. Subjects 

were presented with short continuous stories spoken by four speakers (two females, total duration: 30 

minutes). To ensure that the subjects were engaged in the task, the stories were randomly paused, and 

the subjects were asked to repeat the last sentence.  

Eight separate sentences (40 seconds) were each repeated eight times and were used as the test 

set for an objective evaluation of the reconstruction accuracy. In addition, three subjects listened to 

isolated digits from a publicly available corpus, TI-4635. We chose 40 digit sounds (zero to nine), spoken 

by four speakers (two females) that were not included in the training of the models. Reconstructed digits 

were used as the test set to evaluate subjective intelligibility and quality of the models. Two ranges of 

neural frequencies were used in the study. Low-frequency (0–50 Hz) components of the neural data were 

extracted by filtering the neural signals using a bandpass filter. The high-gamma (70–150 Hz) envelope36 

was extracted by filtering the neural signals and calculating the Hilbert envelope37.  
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Figure 1. Schematic of the speech reconstruction method. (A) Subjects listened to natural speech 

sentences. The population of evoked neural activity in the auditory cortex of the listener was then used 

to reconstruct the speech stimulus. The responsive electrodes in an example subject are shown in red. 

High and low neural frequencies were extracted from the neural data. Two types of regression models 

and two types of speech representations were used, resulting in four combinations: linear regression to 

spectrogram (light blue), linear regression to vocoder (dark blue), DNN to spectrogram, and DNN to 

vocoder (dark red). (B) An original spectrogram of a speech sample is shown on top. The reconstructed 

spectrograms of the four models are shown below.  
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Regression models: The input to the regression models was a sliding window over the neural data with a 

duration of 300 ms (Fig. 2A). We compared the performance of linear and nonlinear regression models to 

estimate the acoustic representations from the neural signals. The linear regression found a linear 

mapping between the response of a population of neurons to the stimulus representation3,6. This method 

effectively assigns a spatiotemporal filter to each electrode estimated by minimizing the mean-squared-

error (MSE) between the original and reconstructed stimulus.  

The nonlinear regression model was implemented using a deep neural network (DNN). We 

designed a deep neural network architecture with two stages: 1) feature extraction and 2) feature 

summation networks38–40 (Fig. 2A). In this framework, a high-dimensional representation of the input 

(neural responses) is first calculated, which results in mid-level features (output of the feature extraction 

network). These mid-level features are then input to the feature summation network to regress the 

output of the model (acoustic representation). The feature summation network in all cases was a two-

layer fully connected network (FCN) with regularization, dropout41, batch normalization42, and 

nonlinearity between each layer. For feature extraction, we compared the efficacy of five different 

network architectures for spectrogram and vocoder reconstruction (Methods, Supp. Table 1 for details of 

each network). Specifically, we found that the fully connected network (FCN), in which no constraint was 

imposed on the connectivity of the nodes in each layer of the network to the previous layer, achieved the 

best performance for reconstructing the auditory spectrogram. However, the combination of the FCN and 

a locally connected network (LCN), which constrains the connectivity of each node to only a subset of 

nodes in the previous layer, achieved the highest performance for the vocoder representation (Supp. 

Tables 4, 5). In the combined FCN+LCN, the outputs of the two parallel networks are concatenated and 

used as the mid-level features (Fig. 2A).  

 

Acoustic representations: We used two types of acoustic representation of the audio as the target for 

reconstruction: auditory spectrogram and speech vocoder. The auditory spectrogram was calculated 

using a model of the peripheral auditory system43,44, which estimates a time-frequency representation of 

the acoustic signal on a tonotopic frequency axis. The reconstruction of the waveform from the auditory 

spectrogram is achieved using an iterative convex optimization procedure43 because the phase of the 

signal is lost during this procedure.  

For speech vocoder, we used a vocoder-based, high-quality speech synthesis algorithm 

(WOLRD45), which synthesizes speech from four main parameters: 1) spectral envelope, 2) f0 or 

fundamental frequency, 3) band aperiodicity, and 4) a voiced-unvoiced (VUV) excitation label (Fig. 2B). 
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These parameters are then used to re-synthesize the speech waveform. This model can reconstruct high-

quality speech and has been shown to outperform other methods including STRAIGHT46. The large 

numbers of the parameters in the vocoder (516 total) and the susceptibility of the synthesis quality on 

inaccurate estimation of parameters however pose a challenge. To remedy this, we first projected the 

sparse vocoder parameters onto a dense subspace in which the number of parameters can be reduced, 

which allows better training with a limited amount of data. We used a dimensionality reduction technique 

that relies on an autoencoder (AEC)47(Fig. 2C), which compresses the vocoder parameters into a smaller 

space (encoder, 256 dimensions, Supp. Table 3) and subsequently recovers (decoder) the original vocoder 

parameters from the compressed features (Fig. 2C). The compressed features (also called bottleneck 

features) are used as the target for the reconstruction network. By adding noise to the bottleneck features 

before feeding them to the decoder during training, we can make the decoder more robust to unwanted 

variations in amplitude, which is necessary due to the noise inherently present in the neural signals. The 

autoencoder was trained on 80 hours of speech using a separate speech corpus (Wall Street Journal l48). 

During the test phase, we first reconstructed the bottleneck features from the neural data, and 

subsequently estimated the vocoder parameters using the decoder part of the autoencoder (Fig. 2C).  

Figure 1B shows the example reconstructed spectrograms from each of the four combinations of the 

regression models (linear regression and DNN) and acoustic representation (auditory spectrogram and 

vocoder). As seen in this example, the only model that preserves the harmonic details of the speech 

stimulus is the DNN-vocoder model. 
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Figure 2. Deep neural network architecture (A) The input to all models was a 300 ms sliding window 

containing both low frequency (LF) and the high-gamma envelope (HG). The DNN architecture consists of 

two modules: feature extraction and feature summation networks. Feature extraction for spectrogram 

reconstruction was a fully connected neural network (FCN). For vocoder reconstruction, the feature 

extraction network consisted of an FCN concatenated with a locally connected network (LCN). The feature 

summation network is a two-layer fully connected neural network (FCN). (B) Vocoder parameters consist 

of spectral envelope, fundamental frequency (f0), voicing, and aperiodicity (total of 516 parameters). (C) 

An autoencoder with a bottleneck layer was used to reduce the 516 vocoder parameters to 256. The 

bottleneck features were then used as the target of reconstruction algorithms. The vocoder parameters 

were calculated from the reconstructed bottleneck features using the decoder part of the autoencoder 

network.  
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Subjective evaluation of the reconstruction accuracy: We used the reconstructed digit sounds to assess 

the subjective intelligibility and quality of the reconstructed audio. Forty unique tokens were 

reconstructed from each model, consisting of ten digits (zero to nine) that were spoken by two male and 

two female speakers. The speakers that uttered the digits were different from the speakers that were 

used in the training, and no digit sounds were included in the training of the networks. We asked 11 

subjects with normal hearing to listen to the reconstructed digits from all four models (160 tokens total) 

in a random order. Each digit was heard only once. The subjects then reported the digits (zero to nine, or 

uncertain), rated the reconstruction quality using the mean opinion score (MOS49, on a scale of 1 to 5), 

and reported the gender of the speaker (Fig. 3A).  

Figure 3B shows the average reported intelligibility of the digits from the four reconstruction 

models. The DNN-vocoder combination achieved the best performance (75% accuracy), which is 67% 

higher than the baseline system (Lin-Spectrogram). Fig. 3B also shows that the reconstructions using DNN 

models are significantly better than the linear regression models (68.5% vs. 47.5%, paired t-test, p<0.001). 

Figure 3C shows that the subjects also rated the quality of the reconstruction significantly higher for the 

DNN-vocoder system than for the other three models (3.4 vs. 2.5, 2.3, and 2.1, unpaired t-test, p<0.001), 

meaning that the DNN-vocoder system sounds closest to natural speech. The subjects also accurately 

reported the gender of the speaker significantly higher than chance for the DNN-vocoder system (80%, t-

test, p<0.001) while the performance for all other methods were at chance (Fig. 3D). This result indicates 

the importance of accurate reconstruction of pitch and harmonics frequencies for identifying speaker 

dependent information, which are best captured by the DNN-Voc model.  

Finally, Figure 3E shows the confusion patterns in recognizing the digits for the four models, 

confirming again the advantage of the DNN based models, and the DNN vocoder in particular. As shown 

in Figure 3E, the discriminant acoustic features of the digit sounds are better preserved in the DNN-Voc 

model, enabling the listeners to correctly differentiate them from the other digits. Linear regression 

models, however, failed to preserve these cues, as seen by the high confusion among digit sounds. The 

confusion patterns also show that the errors were associated with the similarity of the digits (e.g., one 

and nine, four and five). This result suggests a possible strategy for enabling accurate discrimination in BCI 

applications by selecting target sounds with a sufficient acoustic distance between them. The audio 

samples from different models can be found online50 and in the supplementary materials.  
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Figure 3. Subjective evaluation of the reconstruction accuracy. (A) The behavioral experiment design 

used to test the intelligibility and the quality of the reconstructed digits. Eleven subjects listened to digit 

sounds (zero to nine) spoken by two male and two female speakers. The subjects were asked to report 

the digit, the quality on the mean-opinion-scale, and the gender of the speaker. (B) The intelligibility score 

for each model defined as the percentage of correct digits reported by the subject. (C) The quality score 

on the MOS scale. (D) The speaker gender identification rate for each model. (E) The digit confusion 

patterns for each of the four models. The DNN vocoder shows the least amount of confusion among the 

digits.  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2018. ; https://doi.org/10.1101/350124doi: bioRxiv preprint 

https://doi.org/10.1101/350124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 11 

Objective evaluation of reconstructed audio. We compared the objective reconstruction accuracy of 

reconstructed audio per subject using the extended short time objective intelligibility (ESTOI)51 measure, 

which is commonly used for the intelligibility assessment of speech synthesis technologies. The ESTOI 

measures were calculated from continuous speech sentences in the test set. The average ESTOI of the 

reconstructed speech for all five subjects (Fig. 4A) confirms the results seen from the subjective tests, 

which confirm the superiority of DNN based models over the linear model, and that of vocoder 

reconstruction over the spectrogram (p<0.001, t-test). This pattern was consistent for each of the five 

subjects in this study, as shown in Fig. 4B alongside the electrode locations for each subject. While the 

overall reconstruction accuracy varies significantly across subjects, which is likely due to the difference in 

the coverage of the auditory cortical areas, the relative performance of the four models was the same in 

all subjects.  
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Figure 4. Objective intelligibly scores for different models. (A) The average ESTOI score based on all 

subjects for the four models. (B) Coverage and the location of the electrodes and ESTOI score for each of 

the five subjects. In all subjects, the ESTOI score of the DNN vocoder was higher than in the other models.  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2018. ; https://doi.org/10.1101/350124doi: bioRxiv preprint 

https://doi.org/10.1101/350124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 13 

Reconstruction accuracy for low and high neural frequencies: There is increasing evidence that the low 

and high-frequency bands encode different and complementary information about the stimulus52. 

Considering that the sampling frequency of the reconstruction target is 100 Hz, we used 0–50 Hz as a low-

frequency signal, and the envelope of high gamma (70–150 Hz) as high-frequency band information. To 

determine what frequency bands are best to include to achieve maximum reconstruction accuracy, we 

tested the reconstruction accuracy in three conditions, when the regression model uses only the high-

gamma envelope, a low-frequency signal, or a combination of the two.  

To simplify the comparison, we used only the DNN-spectrogram reconstruction model, as well as 

the correlation coefficients between reconstructed and original spectrograms for comparison. We found 

that the reconstruction accuracy from the combination of the two frequency bands significantly 

outperforms the reconstruction accuracy when only one of the frequency bands is used (Fig. 5A, p<0.001, 

t-test). This observation is consistent with the complementary encoding of the stimulus features in the 

low and high-frequency bands53, which implicates the advantage of using the entire neural signal to 

achieve the best performance in speech neuroprosthesis applications, when it is practically possible. 

 

Effect of the number of electrodes and duration of training data: The variability of the reconstruction 

accuracy across subjects (Fig. 4B) suggests an important role of neural coverage in improving the 

reconstruction3,6. In addition, because some of the noise signal across different electrodes is independent, 

reconstruction from a combination of electrodes may lead to a higher accuracy by finding a signal 

subspace less affected by the noise in the data54. To examine the effect of the number of electrodes on 

the reconstruction accuracy, we first combined the electrodes of all five subjects and randomly chose N 

electrodes (N = 1, 2, 4, 8, 16, 32, 64, 128), twenty times for training the individual networks. The average 

reconstruction accuracy for each N was then used for comparison. The results shown in Fig. 5B indicate 

that increasing the number of electrodes improves the reconstruction accuracy; however, the rate of 

improvement decreased significantly.  

Finally, because the success of neural network models is largely attributed to training on large 

amounts of data28, we examined the effect of training duration on reconstruction accuracy. We used 128 

randomly chosen electrodes and trained several neural network models each on a segment of the training 

data as the duration of the segments was gradually increased from 10 to 30 minutes. This process was 

performed twenty times for each duration by choosing a random segment of the training data, and the 

reconstruction accuracy was averaged over the segments. As expected, the results show an increased 
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reconstruction accuracy as the duration of the training was increased (Fig. 5C), which indicates the 

importance of collecting a larger duration of training data when it is practically feasible.  

  

 
Figure 5. Effect of neural frequency range, number of electrodes, and stimulus duration on 

reconstruction accuracy. (A) The reconstruction accuracy based on high gamma, low frequency, and high 

gamma and low frequency combined. (B) The accuracy of reconstruction when the number of electrodes 

increases from one to 128. For each condition, 20 random subsets were chosen. (C) The accuracy of 

reconstruction when the duration of the training data increases. Each condition is the average of 20 

random subsets.  
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Discussion:  

We compared the performance of linear and nonlinear (DNN) regression models in reconstructing the 

spectrogram and vocoder representations of speech signals. We found that the combination of deep 

neural network models with vocoder parameters significantly outperformed the linear regression and 

spectrogram representations of speech, and resulted in 75% intelligibility scores on a closed-set, digit 

recognition task.  

Our results are consistent with those of previous reconstruction studies that showed the 

importance of nonlinear techniques in neural decoding55. The previous methods have used support vector 

machines13,56, linear discriminant analysis57,58, linear regression3,14,59, nonlinear embedding6, and Bayes 

classifiers15. In recent years, deep learning60 has shown tremendous success in many brain-computer 

interface technologies61, and our study extended this trend by showing the benefit of deep learning in 

speech neuroprosthesis research55.  

We showed that the reconstruction accuracy depends on both the number of electrodes and the 

duration of the data that is available for training. This is consistent with the findings of studies showing 

the superior advantage of deep learning models over other techniques, particularly when the amount of 

training data is large28. We showed that the rate of improvement slows down as the number of electrodes 

increases. This could indicate the limited diversity of the neural responses in our recording which 

ultimately limits the added information that is gained from additional electrodes. Alternatively, increasing 

the number of electrodes also increases the complexity and the number of free parameters in the neural 

network model. Because the duration of our training data was limited, it is possible that more training 

data would be needed before the benefit of additional features becomes apparent. Because our 

experiments showed that increasing the amount of training data results in better reconstruction accuracy, 

methods that can be used to increase the amount of data that is available for the training of deep models 

are highly desirable, for example, when chronic recordings are possible in long-term implantable devices 

such as RNS 62.  

We showed that the representation of the acoustic signal used as the target of reconstruction has 

an important role in the intelligibility and the quality of the reconstructed audio. We used a vocoder 

representation of speech, which extends the previous studies that used a magnitude spectrogram (time-

frequency representation)3,17, speech envelope18,19, spectrotemporal modulation frequencies6,13,20, and 

discrete units such as phonemes and phonetic categories8,21–23 and words24,25. Reconstruction of the 

spectrogram, which we also used for comparison, inherently results in suboptimal audio quality because 

the phase of the spectrogram must be approximated. The discrete units such as phonemes enable 
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discriminative training by learning a direct map from the neural data to the class labels, which is typically 

more efficient than generative regression models63. The continuous nature of parameters in acoustic 

reconstruction however could prove advantageous for BCI applications because they provide a continuous 

feedback to the user64, which is crucial for the subject and the BCI algorithm to coadapt to increase overall 

effectiveness26,27. Therefore, direct reconstruction of speech synthesis parameters is a natural choice. This 

choice however poses a challenge, since the vocoder quality is very sensitive to the quality of the 

decoding. As we have reported, reconstructing vocoder parameters resulted in both the worst (when used 

with linear regression) and the best (when used with DNN) results. Therefore, powerful modeling 

techniques such as deep learning are crucial as more inclusive representations of the speech signal are 

used for reconstruction and decoding applications. We proposed a solution to this problem by 

compressing the acoustic features into a low-dimensional space and using a decoder that is robust to the 

fluctuations of the input. 

We found that the combination of low frequency and the envelope of high gamma results in 

higher reconstruction accuracy than each frequency band alone. This finding is consistent with those of 

studies that have shown the importance of an oscillatory phase65 in addition to the neural firing rate, 

which is reflected in the high-gamma frequency band66. Combining both high and low frequencies not 

only enables access to the complementary information in each band52,67 but also allows the decoder to 

use the information that is encoded in the interactions between the two bands, such as cross-frequency 

coupling53. Overall, we observed that better brain coverage, more training data, and combined neural 

frequency bands result in the best reconstruction accuracy, which can serve as an upper bound 

performance where practical limitations prevent the use of all possible factors, for example, where the 

brain coverage is small, or high-frequency neural signals are not accessible such as in noninvasive 

neuroimaging methods.  

Finally, while previous studies have already shown the successful generalization of reconstruction 

techniques from overt to covert speech12–16, further research is needed to devise system architectures 

and training procedures that can optimally fine-tune a model to perform and generalize well in both 

conditions. Furthermore, expanding from the closed-set intelligible speech in this work to continuous, 

open-set, natural intelligible speech requires additional research, which will undoubtedly benefit from a 

larger amount of training data, higher-resolution neural recording technologies68, and the adaptation of 

regression models69 and the subject to improve the BCI system26,27.  

In summary, we present a general framework that can be used for speech neuroprothesis 

technologies that can result in accurate and intelligible reconstructed speech from the human auditory 
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cortex. Our approach takes a step toward the next generation of human-computer interaction systems 

and more natural communication channels for patients suffering from paralysis and locked-in syndromes.  
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Materials and methods: 

Participants and neural recording 

Five patients with pharmacoresistent focal epilepsy were included in this study. All subjects underwent 

chronic intracranial encephalography (iEEG) monitoring at Northshore University Hospital to identify 

epileptogenic foci in the brain for later removal. Three subjects were implanted with only stereo-

electroencephalographic (sEEG) depth arrays, one with a high-density grid, and one with both grid and 

depth electrodes (PMT, Chanhassen, MN, USA). The electrodes showing any sign of abnormal epileptiform 

discharges, as identified in the epileptologists’ clinical reports, were excluded from the analysis. All 

included iEEG time series were manually inspected for signal quality and were free from interictal spikes. 

All research protocols were approved and monitored by the institutional review board at the Feinstein 

Institute for Medical Research, and informed written consent to participate in the research studies was 

obtained from each subject before electrode implantation. All research was performed in accordance with 

relevant guidelines and regulations.  

Intracranial EEG (iEEG) signals were acquired continuously at 3 kHz per channel (16-bit precision, 

range ± 8 mV, DC) using a data acquisition module (Tucker-Davis Technologies, Alachua, FL, USA). Either 

subdural or skull electrodes were used as references, as dictated by recording quality at the bedside after 

online visualization of the spectrogram of the signal. Speech signals were recorded simultaneously with 

the iEEG for subsequent offline analysis. The amplitude of the high-gamma response (75–150 Hz) was 

extracted using the Hilbert transform37 and was resampled to 100 Hz. The high-gamma responses were 

normalized based on the responses recorded during a 2-minute silence interval before each recording.  

 

Brain maps 

The electrode positions were mapped to brain anatomy using registration of the post-implant computed 

tomography (CT) to the pre-implant MRI via the post-op MRI70. After coregistration, the electrodes were 

identified on the post-implantation CT scan using BioImage Suite71. Following coregistration, the subdural 

grid and strip electrodes were snapped to the closest point on the reconstructed brain surface of the pre-

implantation MRI. We used the FreeSurfer automated cortical parcellation72 to identify the anatomical 

regions in which each electrode contact was located within approximately 3 mm resolution (the maximum 

parcellation error of a given electrode to a parcellated area was < 5 voxels/mm). We used Destrieux’s 

parcellation because it provides higher specificity in the ventral and lateral aspects of the medial lobe73. 

The automated parcellation results for each electrode were closely inspected by a neurosurgeon using the 

patient’s coregistered post-implant MRI.  
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Stimulus 

The speech materials included continuous speech stories recorded in-house by four voice actors and 

actresses (duration: 30 min, 11,025 Hz sampling rate). Eight of the sentences (40 seconds) were used for 

objective tests and were presented to the patients eight times to improve the signal to noise ratio. The 

digit sounds were taken from the TI-46 corpus35. Two female (f2 and f8) and two male (m2 and m5) 

speakers were chosen from the corpus, and one token per digit and speaker was used (total of 40 unique 

tokens). Each digit was repeated six times to improve the signal to noise ratio of the neural responses. 

The speakers that uttered the digits were different from the speakers that narrated the stories.  

 

Acoustic representation 

The auditory spectrogram representation of speech was calculated from a model of the peripheral 

auditory system34. The model consists of three stages: 1) a cochlear filter bank consisting of 128 constant-

Q filters equally spaced on a logarithmic axis, 2) a hair cell stage consisting of a low-pass filter and a 

nonlinear compression function, and 3) a lateral inhibitory network, consisting of a first-order derivative 

along the spectral axis. Finally, the envelope of each frequency band was calculated to obtain a time-

frequency representation simulating the pattern of activity on the auditory nerve74. The final spectrogram 

has a sampling frequency of 100 Hz. The audio signal was reconstructed from the auditory spectrogram 

using an iterative convex optimization procedure43. For the vocoder-based speech synthesizer, we used 

the WORLD45 (D4C edition) system. In this model, four major speech parameters were estimated, from 

which the speech waveform was synthesized: 1) spectral envelope, 2) f0 or fundamental frequency, 3) 

band aperiodicity, and 4) voiced-unvoiced (VUV) excitation label. The dimension of each parameter was 

automatically calculated by the vocoder method and was based on the window size and the sampling 

frequency of the waveform (16 KHz).  

 

DNN architecture 

We used a common deep neural network architecture that consists of two stages: feature extraction and 

feature summation38–40 (Fig. 2A). In this framework, a high-dimensional representation of the input is first 

calculated (feature extraction), which is then used to regress the output of the model (feature 

summation). In all models examined, the feature summation step consisted of a two-layer fully connected 

network (FCN) with L2 regularization, dropout41, batch normalization42, and nonlinearity in each layer.  
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We study five different architectures for the feature extraction part of the network: the fully 

connected network (FCN, also known as the multilayer perceptron or MLP), the locally connected network 

(LCN) 75, convolutional neural network (CNN) 76, FCN+CNN, and FCN+LCN (for details of each architecture 

see Supp. Table 1). In the combined networks, we concatenated the output of two parallel paths, which 

were fed into the summation network. For FCN, the windowed neural responses were flattened and fed 

to a multilayer FCN. However, in LCN and CNN, all the extracted features were of the same size as the 

input, meaning that we did not use flattening, strided convolution, or downsampling prior to the input 

layer or between the two consecutive layers. Instead, the final output of the multilayer LCN or CNN was 

flattened prior to feeding the output into the feature summation network.  

The optimal network structure was found separately for the spectrogram and vocoder parameters using 

an ablation study. For spectrogram reconstruction, we directly regressed the 128 frequency bands using 

a multilayer FCN model for feature extraction (Supp. Table 5). This architecture, however, was not 

plausible for reconstructing vocoder parameters due to the high-dimensionality and statistical variability 

of the vocoder parameters. To remedy this, we used a deep autoencoder network (AEC) 47 to find a 

compact representation of the 516-dimensional vocoder parameters (512 spectral envelope, pitch, 

voiced-unvoiced, and band periodicity) 45. We confirmed that decoding the AEC features performed 

significantly better than decoding the vocoder parameters directly (Supp. Table 2). The structure for the 

proposed deep AEC is illustrated in Figure 2D. To carry out decoding, we used a multilayer FCN, in which 

the number of the nodes changed in a descending (encoder) and then ascending order (decoder) (Fig. 

2C)(supp. Table 6). The bottleneck layer of such a network (or the output of the encoder part of the pre-

trained AEC) can be used as a low-dimensional reconstruction target by employing the neural network 

model, from which the vocoder parameters can be estimated using the decoder part of the AEC. We chose 

the number of nodes in the bottleneck layer to be 256, because it maximized both the objective 

reconstruction accuracy (Supp. Table 3), and the subjective assessment of the reconstructed sound. To 

increase the robustness to unwanted variations in the encoded features, we used two methods in the 

bottleneck layer: 1) the hyperbolic tangent function (tanh) was used as a nonlinearity to control the range 

of the encoded features, and 2) Gaussian noise was added during training prior to feeding into the first 

layer of the decoder part to make the decoder robust enough to unwanted changes in amplitude resulting 

from noises in neural responses. We confirmed that using additive Gaussian noise in the bottleneck 

instead of dropout performed significantly better (paired t-test, p<0.001). It is important that we use the 

same nonlinearity as the bottleneck (tanh) in the output of the main network, since the estimations should 
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be in the same range and space as those in which they were originally coded. The best network 

architecture for decoding the vocoder parameters was found to be the FCN+LCN network (Supp. Table 4).  

 

DNN training and cross validation 

The networks were implemented in Keras with a Tensorflow backend77. Initialization of the weights was 

performed using a previously proposed method77, which was specifically developed for deep multilayer 

networks with rectified linear units (ReLUs) as their nonlinearities. It has been shown that using this 

method helps such networks converge faster. We used batch normalization 42, nonlinearity, and a dropout 

of p=0.3 41 between each layer. We applied an L2 penalty (with a multiplier weight set to 0.001) on the 

weights of all the layers in all types of networks (including the AEC). However, we found that using additive 

Gaussian noise in the bottleneck of the AEC instead of dropout and regularization performed significantly 

better (paired t-test, p<0.001). We used three types of nonlinearities in the networks: 1) LeakyReLU78 for 

all layers of AEC except the bottleneck and for all layers of the feature extraction part of the main network, 

2) tanh for the output layer of the main network and the bottleneck of the AEC, and 3) the exponential 

linear unit (ELU) 79 for the feature summation network. Each epoch of training had a batch size of 256, and 

optimization was performed using Adam80 with an initial learning rate of 0.0001, which was reduced by a 

factor of two if the validation loss did not improve in four consecutive epochs. Network training was 

achieved in 150 epochs and was performed for each subject separately. The loss function was a 

combination of MSE and Pearson’s correlation coefficient for each sample: 

 

in which 𝑦 is the actual label (spectrogram or vocoder features) for that sample and 𝑦" is the reconstruction 

from the output layer of the network. The maximum time-lag used was 𝜏$%& = 300 ms. Because both 

CNN and LCN use small receptive fields that take local patterns into account, we retained the spatial 

organization of the electrode sites in the input to the network, meaning that the electrodes that were 

close to each other in the brain were arranged to be close together in the input data matrix. 

 

Cross validation 

We trained both the LR model and the DNN models using cross validation. We used the speech stories for 

training all models, and used repeated sentences (separate set from the stories) and digit sounds for 

testing. No digit sound was included in the training, and the speakers that uttered the digits were different 
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from those that read the stories. The autoencoder network (AEC) was trained on a separate speech corpus 

(Wall Street Journal, WSJ, 80 hours of read speech) 48. 

 

Subjective and objective evaluations 

We assessed the intelligibility of the reconstructed speech using both subjective and objective tests. For 

subjective assessment, 11 participants with normal hearing listened to the reconstructed digits using 

headphones in a quiet environment. Each participant listened to 160 tokens including 10 digits, four 

speakers, and four models. The participants were asked to report the digit or to select unsure if the digit 

was not intelligible. In addition, the participants reported the quality of the reconstructed speech using a 

mean opinion score (MOS): 1 (bad), 2 (poor), 3 (fair), 4 (good), and 5 (excellent). The participants also 

reported the gender of the speaker. For objective evaluation, we used the ESTOI measure51 which is a 

monaural intelligibility prediction algorithm commonly used in speech enhancement and synthesis 

research.  
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Data availability 

The data that support the findings of this study are available upon request from the corresponding author 

[NM]. 

 

Code availability 

The codes for performing phoneme analysis, calculating high-gamma envelope, and reconstructing the 

spectrogram are available at http://naplab.ee.columbia.edu/naplib.html 81.  
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