Genetic architecture of collective behaviors in zebrafish

Wenlong Tang ${ }^{a^{*}}$, Guoqiang Zhang ${ }^{\text {a* }}$, Fabrizio Serluca ${ }^{\text {a }}$, Jingyao Li $^{\text {a }}$, Xiaorui Xiong ${ }^{\text {a }}$, Matthew Coble ${ }^{\text {a }}$, Tingwei Tsai ${ }^{\text {a }}$, Zhuyun Li ${ }^{\text {a }}$, Gregory Molind ${ }^{\text {a }}$, Peixin Zhu ${ }^{\text {a }}$ \& Mark C. Fishman ${ }^{\text {b }}{ }^{\text { }}$
${ }^{a}$ Novartis Institutes for Biomedical Research, Chemical Biology \& Therapeutics, 181 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
${ }^{\mathrm{b}}$ Harvard University, Dept. of Stem Cell and Regenerative Biology, 7 Divinity Avenue, Cambridge, MA 02138, U.S.A.
*These authors contributed equally to this work.
\ddagger Corresponding author: M.C.F.: Mark fishman@harvard.edu

Abstract Collective behaviors of groups of animals, such as schooling and shoaling of fish, are central to species survival, but genes that regulate these activities are not known. Here we parsed collective behavior of groups of adult zebrafish using computer vision and unsupervised machine learning into a set of highly reproducible, unitary, several hundred millisecond states and transitions, which together can account for the entirety of relative positions and postures of groups of fish. Using CRISPR-Cas9 we then targeted for knockout 35 genes associated with autism and schizophrenia. We found mutations in three genes had distinctive effects on the amount of time spent in the specific states or transitions between states. Mutation in immp2l (inner mitochondrial membrane peptidase 2like gene) enhances states of cohesion, so increases shoaling; mutation in in the Nav1.1 sodium channel, scn1lab+/- causes the fish to remain scattered without evident social interaction; and mutation in the adrenergic receptor, adra1aa-/-, keeps fish close together and retards transitions between states, leaving fish motionless for long periods. Motor and visual functions seemed relatively wellpreserved. This work shows that the behaviors of fish engaged in collective activities are built from a set of stereotypical states. Single gene mutations can alter propensities to collective actions by changing the proportion of time spent in these states or the tendency to transition between states. This provides an approach to begin dissection of the molecular pathways used to generate and guide collective actions of groups of animals.

Introduction

Darwin recognized that survival depends not only upon the attributes of individuals but also upon coordination of larger groups, such as schools of fish, flocks of birds, and armies of ants (Darwin, 1871). The benefits of collective movement include improved predator avoidance (Ioannou, Guttal, \& Couzin, 2012; Ioannou, Morrell, Ruxton, \& Krause, 2009), foraging success (Krause, Hartmann, \& Pritchard, 1999; Torney, Berdahl, \& Couzin, 2011), and reduction in energy consumption due to favorable local currents for fish and birds (Krause,

1994; Spedding, 2011). It is not known whether and how genetic changes in individuals affect group dynamics.

The schooling, shoaling, and other collective dynamics of fish have been beautifully described (Jolles, Boogert, Sridhar, Couzin, \& Manica; Katz, Tunstrom, Ioannou, Huepe, \& Couzin, 2011; Tunstrom et al., 2013). It appears that the sometimes rapid changes in direction and mode result from propagation of local interactions (Katz et al., 2011). The dynamics can be mathematically modelled as self-propelled particles subjected to forces such as attraction, repulsion, and alignment (Katz et al., 2011; Lukeman, Li, \& Edelstein-Keshet, 2010; Sumpter, 2010). No genes regulating such forces have been identified, although QTL linkage analysis suggests that schooling at least is under genetic control (Greenwood, Wark, Yoshida, \& Peichel, 2013).

Machine learning has begun to make more tractable the studies of complex behaviors (Anderson \& Perona, 2014), such as C. elegans foraging (Greene, Brown, et al., 2016), hydra basal behaviors (Han, Taralova, Dupre, \& Yuste, 2018), Drosophila mating and aggression (Dankert, Wang, Hoopfer, Anderson, \& Perona, 2009; Kabra, Robie, Rivera-Alba, Branson, \& Branson, 2013; Kravitz \& Huber, 2003), and mouse social behaviors (Hong et al., 2015; Kabra et al., 2013; Wiltschko et al., 2015). Unsupervised machine learning approaches, in particular, have the power to capture unknown patterns with as few a priori assumptions as possible (Todd, Kain, \& de Bivort, 2017), and are widely used in pattern learning, (Feng et al., 2017; Todd et al., 2017) even in cases where data is dense and not readily separable (Chuang, Tzeng, Chen, Wu, \& Chen, 2006; Siew, 2013).

Here we have found that unsupervised machine learning can describe fairly completely the collective motion of groups of adult zebrafish as a set of 17 stereotypical states and transitions between states. (Although most studies of zebrafish behavior use larvae (Baier, 2000; Brockerhoff et al., 1995; Friedrich, Jacobson, \& Zhu, 2010; Granato et al., 1996; Muto et al., 2005; Portugues \& Engert, 2009; Rihel et al., 2010; Zhu et al., 2009), we had to use adult fish because we found robust social behaviors developed late.) We mutated by CRISPR-Cas9 35 genes linked to human disorders of social behavior, such as autism and schizophrenia, with the hope that these genes might play a conserved social behavioral role through evolution. Overall these mutations did not completely add or delete states. Three mutations in particular, however, changed overall usage of states or transitions, with dramatic and consistent effects upon the collective group dynamics.

Results

We first defined patterns of wild-type behavior. We find that the collective activity became more robust and the behavioral repertoire expanded as the animals grew (Supplemental Figure 1), so it was essential for our studies to use adult fish, at least 3 months of age. We tracked groups of adult fish by continuous video monitoring over half hour assays in an environmentally sheltered tank. As shown in the video attached to Figure 1 (Supplemental Video 1), wild-type fish tend to swim continuously and dynamically in relatively tight groups.

Figure 1. Ethogram of collective behavior in wild-type fish. Circle sizes correspond to state usage ratios, and density of arrows to transition probabilities, with polarized states in blue and unpolarized states in red ($\mathrm{n}=33$ groups). Dendrogram of state usage is shown in Supplemental Figure 2. Schematic representations (not to scale) of selected states from both categories are shown as blow-ups.

Description of collective activity
Ethograms are convenient ways to display the amount of time spent in each state as
well as the probability of transition between states (Anderson \& Perona, 2014; Dankert et al., 2009). The ethogram of group behavior of wild-type fish is shown in Figure 1. Each circle represents a different state (with selected examples shown in blow-ups). For clarity, we have subdivided polarized (school) states (blue) from unpolarized (shoal) (red). The thickness of arrows shows transition probabilities between states. Certain states and transitions are used far more frequently than others (Supplemental Figures 2 and 3). The mean time spent in each state as a block is 0.78 seconds (Supplemental Figure 4). In this assay, fish spend far more time shoaling than schooling, and generally in more cohesive shoals, as shown by the prominence of states in the lower portion of the ethogram.

Mutations

For mutational analysis, we elected to mutate genes putatively related to autism or schizophrenia (Supplemental Table 1 and 2) because of the profound defects in social behavior that characterize these disorders, with the hope that their roles in social behaviors might be evolutionarily conserved, even if the behaviors themselves are species-specific. In order to provide sufficiently accurate information for design of effective CRISPR-Cas9 guide RNAs, we found it necessary to sequence and reassemble the complete genome of the AB strain (data available upon request).

We generated mutations in 35 genes (Supplemental file 1) and screened for changes to collective behavior in adult fish homozygous for the mutation (with the exception of scn1lab and slc18a2 which were not viable as homozygous animals so were evaluated as heterozygous animals). Behavior for each mutation was quantified on ethograms generated as above, and then all 35 compared to wild type AB. Using the Kullback-Leibler divergence approach (Kullback \& Leibler, 1951) we identified three mutations with particularly distinctive behavioral changes. Differences from wild-type were cross-validated by multi-class Support Vector Machines (SVM) (Supplemental Figure 5), and finally assessed by human expert validation using double blinded datasets. The ethograms for these three mutant fish are shown in Figure 2 and 3, along with exemplary videos. Some other mutations changed state usage in manner similar to the three described, but to a lesser degree (Supplemental Figure 6).

Enhanced cohesion Fish mutant in the inner mitochondrial membrane peptidase 2like gene, immp2l/-, tend to aggregate tightly in small shoals, as shown in the video attached to Figure 2b (Supplemental Video 2). The increased shoaling is reflected in enhancement of two tight cohesion states in the lower part of the

Figure 2. Ethograms of (a) wild-type fish; (b) immp2/-/- mutant fish, showing enhanced cohesion (note that dispersed polarized state 8 and unpolarized state10 are missing); (c) scn1lab+/- mutant fish, showing enhanced dispersion. Videos can be accessed by clicking where shown, or via Supplemental Video 1 (wild-type), Supplemental Video 2 (immp2l-/-), and Supplemental Video 3 (scn1lab +/-). Usage ratios are quantified in Supplemental Figure 3 and 4. (wild-type, n=33 groups; immp2l/-, n=9 groups; scn1/ab+/-, $\mathrm{n}=22$ groups). Color bar indicates transition probability: [0 0.85].

$$
\mathrm{n}=8 \text { groups }
$$

b
wild-type

0

$$
\text { n= } 33 \text { groups }
$$

adra1aa-/-

$n=8$ groups

Figure 3. (a) Ethogram of adra1aa-/- mutant fish ($\mathrm{n}=8$ groups) showing reduced transitions. Video (Supplemental Video 4) is clickable, and shows bouts of "freezing". (b) blow-ups of the lower part of the ethograms, comparing wild-type to adra1aa-/- fish, to illustrate the relative paucity of transitions between states of adra1aa-/- fish. Color bar indicates transition probability: [0 0.85].
ethogram of Figure 2b ($\mathrm{n}=9$ groups, $\mathrm{p}<0.001$; Mann-Whitney U-test; Supplemental Figure 6a). This is the only mutation to completely abolish individual states (states 8 and 10 are missing). In the contrast with scn1lab+/-the two missing states are the most dispersed polarized and unpolarized states._The fish can move dynamically between the limited states, and rarely polarize (usage ratios shown in Supplemental Figure 3). Cross validation of this robust phenotype was performed by multi-class SVM (Prediction Accuracy (PA) =0.95; Leave-OneOut; Supplemental Figure 5). These fish feed well and spawn (Figure 4), and in the home tank movements are indistinguishable from normal.

Enhanced dispersion Fish mutant in the Nav1.1 sodium channel, scn1lab+/-, remain dispersed throughout the chamber, rarely aggregating, as shown in Figure 2c and its attached video (Supplemental Video 3). This is represented by the shift in predominant states of the ethogram to states to the upper right compared to wildtype (n=22 groups; $\mathrm{p}<0.001$; Mann-Whitney U-test; Supplemental Figure 6b). In fact, the states lost in immp2l-/- (states 8 and 10) are enhanced in scn1lab+/-. Cross validation of this robust phenotype was performed by multi-class SVM (PA=0.88; Leave-One-Out; Supplemental Figure 5). The group centroid speed, pairwise distance, and polarization have little correlation with each other (Supplemental Figure 7). The fish feed, spawn and grow normally.

Enhanced freezing Fish mutant in the adrenergic receptor, adra1aa-/-, have many more periods of inactivity than do wild-type, especially towards the end of the half hour test. The state usage of the selected top two states for each comparison is not very distinct from wild type ($\mathrm{n}=8$ groups; Tight shoaling: $\mathrm{p}=0.59$; Medium schooling: $p=0.86$ and Dispersion: $p=0.07$; Supplemental Figure 6a-b) as shown in Figure 3a. Compared to wild-type, adra1aa-/- mutant fish tend to have significantly more "freeze" motifs in the last third of the recording time ($\mathrm{p}<0.001$), as shown in Supplemental Figure 6c. . This difference in dynamics is shown by the relative paucity of arrows in the ethogram blow up of Figure $3 b$ and the attached video (Supplemental video 4). Cross validation of this robust phenotype was performed by multi-class SVM (PA=0.92; Leave-One-Out; Supplemental Figure 5). The fish feed and spawn normally, and their behavior in the home tank is indistinguishable from wild-type.

Effects on other behaviors

We were curious as to whether the mutations that perturb collective activity also markedly affect motor control or vision. In terms of motor function, we measured speed, the frequency of acceleration, and turns of individual fish in mating
behavior. The three mutations with collective behavioral phenotypes noted above can reach the same level or even higher in all three motion measurements compared to wild type fish. We explored mating, another social behavior, a dance with strong and close proximate interactions, on the assumption that subtle visual or motor defects would perturb the effectiveness of this rapid and highly stereotyped interaction (Nasiadka \& Clark, 2012; Spence, Gerlach, Lawrence, \& Smith, 2008). It also has a quantitative output, i.e., number of fertilized eggs. The spawning consequences of the mutations were modest, immp2l-/- and adra1aa-/- slightly increasing and scn1lab+/- slightly reducing spawning (Figure 4). Hence the genes that dictate collective behavior have only modest effects on the individual behaviors or mating capabilities that we measured.
a

Figure 4. Courtship and spawning is relatively preserved in mutant fish. (a) Positional maps of chasing behavior, with female fish centered facing right and male fish chasing position frequency plotted as a heat map, shows chasing behavior is relatively retained in the mutations of interest. (b) Success of courtship behaviors from mutants and wild-type ranked by the ratio of pairs yielding fertilized embryos, showing modest effects on spawning of the mutations of interest.

Discussion

Darwin (Darwin, 1871) and Tinbergen (Tinbergen, 1952) speculated as to why
some species live in groups and others as solitary animals. Presumably, the benefits of living and moving in a collective provide some advantages (Couzin, 2009; Sumpter, 2010). It is believed that fish school and birds flock in part to help avoid or confuse predators, to improve foraging, and to reduce energy expenditure, especially during long haul migration. But such activities come at a cost to individuals, for example, the need to share food and the exposure of those positioned on the edge of the school to attack (Krause, 1994). Hence, how group activity has arisen though evolution, where selection acts on the genome of the individual, has been a source of intense debate.

Here we show that collective behavior is stereotypical and can be described as the consequence of time spent in, and transitions between, 17 different states, each lasting around. By clustering cost curve (Supplemental Figure 8b), we found these were the fewest number of states needed to define the full repertoire of collective actions for wildtype and mutant fish.

We found that single gene changes can modify collective activity in interpretable manner, using the same states. In other words, mutations did not add states. Mutation in the mitochondrial membrane peptidase 2-like gene immp2l increases the tendency to aggregate in tight cohesion, and caused the loss of two highly dispersed states. Mutation in the sodium channel Nav1.1 gene scn1lab appears to prevent any group interaction, abolishing cohesion and polarization. Mutation in the adrenergic receptor gene adralaa reduces the transitions between states, and causes the animals often to freeze. Freezing and tight cohesion both are seen as responses to threat and conspecific injury (Chicoli \& Paley, 2016; Faustino, Tacao-Monteiro, \& Oliveira, 2017; Rennekamp et al., 2016).

It is noticeable that these effects correspond to some of the forces (repulsion, attraction, and spontaneity) applied to individual particles in mathematical models to generate coordinated movements of groups (Katz et al., 2011; Krause et al., 1999; Li \& Xiao, 2010; Sumpter, 2010). (We have not seen, so far, mutations with selective effects on polarization, a fourth such force). In these models, individual fish need only to manifest these forces between immediate neighbors for the larger scale behavior to emerge as a consequence.

One might argue that widespread changes in neural function could affect a range of behaviors. Although we cannot rule out subtle changes in these parameters, these mutations did not dramatically affect vision or motor function. Of course,
other sensory cues might be changed, such as pheromones, so critical to mating (Spence et al., 2008; Yabuki et al., 2016) and to aggregation and dispersion of C. elegans (Greene, Dobosiewicz, Butcher, McGrath, \& Bargmann, 2016). However, mating remains intact, in terms both of the ornate dance and number of fertilized eggs produced, and we noted no deficiencies in feeding. We also recognize that different environments will elicit distinct behaviors, as will other variables, such as numbers of fish participating (Tunstrom et al., 2013; Yates et al., 2009) and familiarity of the fish with the test chamber. In our studies, the assay was done on fish which had never experienced the test chamber before.

To our knowledge these are the first genes shown to regulate group collective behavior in vertebrates. Some of these have been analyzed for effects in mice, but for other attributes. A mutation in the Inner Mitochondrial Membrane Peptidase 2-Like Gene (immp2l) reduces fertility (Lu et al., 2008). One where there is some similarity is haploinsufficiency of the voltage-gated sodium channel, Nav1.1 (Han et al., 2012), which causes hyperactivity and loss of preference for another mouse over empty chambers and curiosity about a novel mouse.

We selected these genes for mutation because they have been reported, with differing degrees of certainty, to have genetic association with autism and schizophrenia, disorders marked by impairments in social interaction. Rare genetic mutations of the IMMP2L gene have been identified in Tourette syndrome and autism spectrum disorders (ASD), and this gene is in the 7q31 translocation region of a Tourette syndrome cohort (Bartnik et al., 2012; Petek et al., 2001). Haploinsufficiency of Nav1.1 in human causes Dravet syndrome, with autism proceeded in infancy by seizures. The gene for the adrenergic receptor ADRA1A is in a large genomic region associated with autism, but no behavioral role has previously been speculated.

Of course, whether these mutations are good models for behavioral deficits in humans remains to be seen. Heterozygous mutation of Nav1.1 in humans, fish, and mice all reduce social interactions. But with the exception of Nav1.1, we have evaluated homozygous effects of mutations, while in humans the mutations are studied in patients with heterozygous deficiencies. To the extent there is duplication of function that accompanies the duplication of many genes in teleost compared to humans or mice (Meyer \& Schartl, 1999; Sztal, McKaige, Williams, Ruparelia, \& Bryson-Richardson, 2018) certain effects may be compensated. In fact, adra1a is split into adra1aa and adra1ab, knockout of each which causes enhanced freezing, suggesting that there may be duplication of function and
compensation. This may also explain why certain candidate autism genes with striking behavioral disturbances when knocked out in mice, such as dlg4a and shank3b (Feyder et al., 2010; Peca et al., 2011), have less striking phenotypes in the fish. Additionally, our assays observe only a small biopsy of potential collective activities under specific controlled circumstances. Nonetheless, zebrafish are amenable to chemical screens for restoration of mutant to normal phenotype (Peterson et al., 2004),

It seems remarkable that some of the genes we discovered here to regulate collective behavior of fish also have been proposed to affect social behavior of humans. This suggests that, perhaps, the role of genes for social behavior, writ large, is conserved through evolution, of course playing out distinctively in different species. The relative convenience of the fish for therapeutic compound screening (Peterson et al., 2004), may be used to advantage in phenotypic screens for reparative agents for disorders such as autism and schizophrenia.

Materials and methods:

Abstract

Animals Zebrafish (Danio rerio; AB strain) were housed with mixed gender in 3L tanks on a recirculating Aquatic Habitats facility (Custom design, Pentair, USA). The fish were kept at a density of 12 fish per 3L tank. Facility water temperature was kept at $28 \pm 0.5^{\circ} \mathrm{C}$, and water sourced from deionized water conditioned with sodium bicarbonate (Catalog \#SC12-Pentair, USA) and Instant Ocean sea salt (Catalog \#IS160-Pentair, USA) to a pH of 7.2 ± 0.5 and conductivity of $420 \pm 50 \mu$ S. Fish were maintained on a 14 -hour light/10-hour dark cycle with light turning on at 07:00 AM. Fish were fed a diet of brine shrimp (Catalog \#BSEPCA-Brine Shrimp Direct, USA) twice daily and supplemented with flake fish food (Tetramin Catalog\# 98525-Pentair, USA) every other day. All animals were maintained and procedures were performed in accordance with the Institutional Animal Care and Use Committees (IACUC) of NIBR.

Genome-wide CRISPR-Cas9 sgRNA design

Because the current work was carried out in the AB strain and the public genome assembly (GRCz11) is based on TU strain, we established a new genome assembly for the AB strain (unpublished, sequences available upon request). For designing CRISPR/Cas9 sgRNAs, we re-trained sgRNA-efficiency models using Random Forest and Naïve Bayes methods based on previously published sgRNAs. 1280 sgRNAs sequences and their editing efficiencies were obtained
from previous study in TU-strain by Moreno-Mateos, M. A. et al., (MorenoMateos et al., 2015), and mapped to the AB genomic sequence. About 150 features were used to train the two Machine Learning models, Random Forest and Naïve Bayes, in classification mode, including genomic strand of sgRNA, GC\%, identity of $\pm 4 \mathrm{bp}$ of sgRNA targeting sequence, thermodynamics parameter, $\Delta \mathrm{G}$ of sgRNA-genomic DNA heteroduplex for sliding windows of different sizes (Sugimoto, 1995), the free-energy of stem-loops 1, 2, and 3, tetraloop, repeat-anti repeat and linker structures of the full-length sgRNA predicted by UNA-fold (Hiroshi Nishimasu, 2014; Markham \& Zuker, 2008) and etc. A training accuracy of >0.7 was achieved by both models, and the efficacies of all sgRNAs in the AB genomic sequence was predicted. Guide RNAs with high predicted efficacy were selected to target the 5' end of the coding exons or Pfam domains of the genes in current study (for the full gene list, citations for disease indications, please see Supplemental. Table 1 and for the guide RNA sequences used for CRISPR-cas9, please see Supplemental. Table 2).

Micro-injections, CRISPR/Cas9 mutant founder identification

sgRNAs were synthesized using T7 in vitro transcription using the MEGAshortscript ${ }^{\mathrm{TM}}$ T7 Transcription Kit (ThermoFisher, AM1354). Cas9/sgRNAs were co-injected into 1-cell stage fertilized zebrafish embryos. Conditions were optimized to maximize the CRISPR efficiency in our settings. High indel rates (>90\%) were usually observed in fully developed embryos injected with $500 \mathrm{ng} / \mu \mathrm{L}$ Cas9 protein (PNABio, CP01) and $125 \mathrm{ng} / \mu \mathrm{L}$ sgRNA purified with MEGAclear ${ }^{\text {TM }}-96$ Transcription Clean-Up Kit (ThermoFisher, AM1909).

Indel rate in the injected zebrafish were measured using NGS at 2 days post fertilization (dpf). PCR were performed on the genomic DNA extracted from zebrafish larvae using the HotSHOT method(Meeker, Hutchinson, Ho, \& Trede, 2007), and NGS libraries for PCR products were generated using Nextera DNA Library Preparation Kit (Illumina, FC-121-1031). Subsequently, Nextera libraries were sequenced on Illumina MiSeq, and > avg. 2000 reads for each amplicon were obtained. Sequencing reads were mapped to the reference sequence using BLAT (Kent, 2002), and indels were extracted from the .psl file using a bioinformatic pipeline developed in-house (available upon request). The gene editing efficiency in the injected embryos were calculated as the maximum indel rate within the ± 30 bp regions of PAM sites.

We usually sequence five larvae per CRISPR injected clutch to confirm the gene
editing efficiency. The rest fish of the confirmed clutch were raised to adulthood and crossed with wild-type AB fish, and founder fish carrying the desired frameshift mutation were screened from the F1 generation. F1 heterozygotes were inter-crossed, and homozygotes, if viable, were identified and inter-crossed again to obtain sufficient gene knockout fish for behavioral assays. Each CRISPR line was at least an F2 stable line before being run in any assay. All founders and homozygote identification were carried out using fin-clipping PCR, and sequencing the PCR product using NGS as described above. The indel sequence of homozygous mutations and heterozygous mutations that could not be bred to homozygous (scn1lab and slc18a2) are illustrated in Supplementary File 1, and also the predicted protein sequence aligned with that of the wild-type fish.

Experiment setup for behavioral assays

Attention was paid to ensure fish gender balance and matching of size and age, and to conduct experiments at similar times of days and feeding cycle, and to monitor by video without human presence. All behavioral rooms were fed with water directly from the main fish facility and room temperature and light cycle was consistent with the main facility. The behavioral setups consisted of 20 " diameter acrylic circular arena (Custom Design: Acrylic Tank - Clear - 20" OD x 19.25 " ID x 8 " height - Open Top, Plastic Supply, Inc., USA) filled to a depth of 1 3/4" ($\sim 9 \mathrm{~L}$ total volume) with system water fed directly from the main housing unit to ensure all water parameters were identical to the housing conditions. The circular arenas were coated on the outside (I00810, Frosted Glass Finish, Krylon, USA) to prevent the fish from being able to see outside of the arenas but to allow IR light transfer. Underneath the tanks were 24 inch adjustable IR panels (with 940 nm IR LEDs made by Shenzhen VICO). Basler Ace 2040-90um Near Infrared (NIR) cameras (Order\#-106541, Graftek Imaging, USA) were mounted 23 inches above the arena to collect a dorsal view of the fish. Infrared long pass filters (Midopt LP780-62, Graftek Imaging, USA) were attached to the lens (Scheider Cinegon 1.9, Graftek Imaging, USA) and were set to an aperture of 6 (Supplemental Figure 9a). All trials were recorded after 10 minutes habituation to allow recovery from any stress due to netting. Briefly, shoaling assays were run with six fish (3 males and 3 females), which were randomly combined from multiple tanks of siblings (with the exception of chd8-/- which had only male homozygous animals so were paired with 3 AB females) (Supplemental Figure 9c). Each trial was a recording of 30 min at 60 fps . Arenas were rinsed clean with system water at the end of the day and put through a cabinet washer (Type: 9LAV65, IWT Tecniplast Inc., Italy) once a week on a hot water only cycle.

Courtship assays (1 male and 1 female) were all conducted in Aquatic Habitat 2L group mating tanks (Catalog\# Breeder2-Pentair, USA) positioned carefully within arenas used for the above shoaling assays (Supplemental Figure 9b). The main arena was still filled with water to ensure all fish's safety as they infrequently escape the mating tanks, which remain lidless due the need to eliminate optical obstructions. Image size was fitted to exactly cover the two tanks in the overnight assays (Supplemental Figure 9d). Three 30 -min videos were recorded for each pair of animals: the first recording was initiated at 16:00 PM while fish were separated by a clear divider; the second recording at 22:00 PM while the lights were off and divider still in place; the third recording was done at 08:00 AM (the following day) with the divider removed. After each recording, spawning records were documented and confirmed only if more than 10 embryos survive till 1 dpf with normal course. All mating tanks used in assays were washed daily in under counter washers (Type: GG05/Model PG 8583; Miele AG, Germany).

Automated data collection

We used a virtual instrument console designed within LabVIEW (National Instruments, USA) to control all cameras. The acquisition software was designed with four prioritized functions: 1) Saving the recorded video; 2) Logging all relevant metadata accurately and automatically; 3) Enabling real time user visualization, verification and modification; 4) Generating associated files to streamline downstream analysis.

Non-default parameters were set within the NI-MAX (Measurement and Automation Explorer) including dimensions and offsets for centering (1880x1880 pixels (offset 84/84) for Shoaling assays, 1000x1000 pixels (offset 420/600) for Courtship assays) and frame rate (60 fps). One workstation (X2D65UT\#ABA, Z440, Hewlett Packard Inc., USA) was dedicated for simultaneous recordings of two USB3.0 Basler ACE cameras. The resulting videos which are approximately 360 GB each for Shoaling assays, and 108 GB each for Courtship assays are saved on a local 4x2 TB SSD RAID0 (Samsung EVO 850, B\&H Photos Inc., USA). All cameras were named uniquely to allow us to trace back which videos are generated by corresponding setups.

Relevant metadata includes time of trial, user, and fish information (genetic background, age, genetic knockouts, genotype, compound treatment (concentration/duration) and other manipulations), and assay information (duration, fps, number of male and female fish). All software developed in house is available upon request, excluding licenses.

Data preprocessing

The processing involved building of fingerprint libraries to distinguish fish accurately even after repeated crossings, using locomotion quantifications such as trajectory, angles, speeds, pairwise distances, and convex hull area. (software based on MATLAB 2013a; MathWorks, U.S.A.) inspired by Perez-Escudero et al. (Perez-Escudero, Vicente-Page, Hinz, Arganda, \& de Polavieja, 2014). In addition, we used supervised behavioral annotation of simple motifs, such as nonsocial turn, dive, rest, and cruise, or social chase, cross, and parallel rotation, with previously trained classifiers as described by Kabra et al (Kabra et al., 2013). These processing procedures are integrated into an overarching program that manages data dependencies to automatically start the next stages when ready without needing additional user inputs (scripts available upon request).

Unsupervised collective behavior state hierarchical structure clustering

For this analysis we used 5 frame epochs. Polarization was determined by the swimming direction angle. For the $i^{\text {th }}$ fish in epoch n, this was represented by the tangent angle of the $i^{\text {th }}$ fish's trajectory from the $1^{\text {st }}$ frame of the $n^{\text {th }}$ epoch to the $1^{\text {st }}$ frame of the $n+1{ }^{\text {th }}$ epoch in the Cartesian coordinates where the trajectory was represented. If the standard deviation of the angles of the six fish in an epoch was lower than the threshold 0.6 radians and the minimum swimming speed of the 6 fish in the epoch faster than 1 inch per second, the epoch was classified as "polarized swimming"; otherwise the epoch will be classified as "unpolarized swimming".

The pairwise distances among the six fish's centroids was calculated from the $1^{\text {st }}$ frame to represent the pairwise distances in each epoch. The pairwise distances within each epoch was ranked in a descend order. A principle component analysis (PCA) dimension reduction was applied to the ranked pairwise distance matrices (with a dimension of C_{6}^{2} by number of epochs) in polarized swimming and unpolarized swimming epochs, respectively. The top 2 components that capture more than 95% of variance were kept and fuzzy C-means clustering was implemented on the top 2 PCA components with $k=9$ states, for polarized swimming and $k=8$ for unpolarized swimming components, respectively. The flow chart of the unsupervised learning approach we performed is shown in Supplemental Figure 9a. A majority filter is applied to the clustered labels to eliminate cases that only a single epoch has a different label from previous epoch labels and post epoch labels, since there is less interest in super short states with
duration less than $1 / 6$ seconds. Change points identified state block duration distribution is shown in Supplemental Figure 9. The mean of block duration is 0.78 seconds with a standard deviation of 0.96 seconds.

A t-distributed stochastic neighbor embedding (t-SNE) (Laurens van der Maaten, 2008) plot was used to visualize the high dimensional data in a two dimensional space for the wild-type fish collective behavior (Supplemental Figure 10a-b). The collective behavior pattern is shown by clickable videos for the selected states.

The k values were determined by optimizing the clustering cost (D T Pham, 2005) (Supplemental Figure 9b). Moreover, to increase the resolution of the state quantification, the state number was pushed to $k=50$ for both polarized and unpolarized swimming. The overall results remain consistent.

Self-Organizing map (SOM) clustering and k means were applied as orthogonal approaches to fuzzy C-means. The performance of SOM and k means is equivalent to fuzzy C-means (data not shown). All the quantifications are implemented in Matlab R2014a (Mathworks. Inc, U.S.A.). Figure 1 to 3 and supplementary figure $1,2,3,5$, and 10 were plotted in $R 3.4 .1$, the rest figures were plotted in Matlab. Silhouette analysis was performed for both polarized and un-polarized swimming to ensure no significant over classification (data not shown). The Matlab and R codes to replot all the figures in this manuscript are available upon request.

Ethogram visualizations

Ethograms are used to represent the different states that occur during collective behaviors. The ethogram indicates the frequency and transition probability with which one state is followed by another state (Anderson \& Perona, 2014; Dankert et al., 2009). To represent the relationship among behavioral states and probability distribution of states using the ethogram, two type of analysis were performed. First, we computed the one-step transition probability which is the conditional distribution of the current state given by the previous state (Bishop, 2006). Second, we computed the probability distribution of states which is the frequency of the occurrence. In practice, The ethogram is generated by igraph R package (Csardi, 2006). In the ethogram, the edge and vertex are corresponding to the onestep transition probability and probability distribution of states, respectively. The thicker and darker the edge is, the higher transition probability is; and the bigger the vertex is, the higher the state appearance probability is. All attributes (e.g., vertex color, vertex size, arrow size, edge size, and edge curvature, provided in
the scripts) were adjusted by parameters of the package to generate current figures.

Kullback-Leibler divergence

Kullback-Leibler divergence (relative entropy) (Kullback \& Leibler, 1951) is a mathematical method to measure the differences of two probability distributions. The difference D is a function of the two discrete probability distributions P and Q as shown in the following equation (1):

$$
\begin{equation*}
D(P \| Q)=\sum_{i} P(i) \log \frac{P(i)}{Q(i)} \tag{1}
\end{equation*}
$$

Kullback-Leibler divergence was applied to the polarized and unpolarized state usages, respectively. The differences between each mutation and wild type were ranked in descending order (Supplementary File 2) and the top ranked mutations were selected.

Supervised behavioral phenotype category classification

Feature extraction

State usage, transition matrix and swimming speed in each trial are employed as features (also called measurements or attributes), including the averaged aggregation (unpolarized) state usages, dispersion (unpolarized) state usages, schooling (polarized) state usages, overall state usages, and transition matrix. Speed features include mean speed of all the 6 fish each trial in the last 10 minutes of the recording, number of stop epochs from all 6 fish in each trial. PCA then is implemented to reduce the dimensionality of the feature space. Top 12 PCs are kept capturing above 95% of the variance. In addition, an alternative feature pool is tested, including only swimming speed distribution in each unpolarized state from all the trials. PCA dimensional reduction is followed and 3 top PCs are selected to capture 95% variance of the data.

Support vector machine

The classifier we implement is the support vector machine (SVM) (Vapnick, 1995), which is widely used for pattern classification (Ma, Randolph, \& Drish, 2001). For the classical binary formulation of SVM classification, the output of an SVM classifier yields:

$$
\begin{align*}
& y=\operatorname{sign}(f(x)) \tag{2}\\
& f(x)=\sum_{i=1}^{N_{S V}} \alpha_{i} y_{i} k\left(x, x_{i}\right)+b \tag{3}
\end{align*}
$$

where α_{i} are the Lagrange multipliers from solving the quadratic optimization
problem, y_{i} are the class targets, x_{i} are the input data points, $k\left(x, x_{i}\right)$ is a kernel function (Chang, 2011), b is the bias, and $N_{S V}$ is the number of support vectors. Linear kernel is used here since it is more capable of avoiding possible overfitting in the classification than other kernels (Keerthi \& Lin, 2003).

To extend a binary classification to a multi-class classification problem such as the problem at hand, several binary SVM classifiers need to be utilized. One-againstone classification method trains $k(k-1) / 2$ binary classifiers (where k is the number of classes) to solve k class classification problem. During prediction the class with the most votes becomes the winner. One-against-one outperforms other multi-class SVM classification methods (Hsu \& Lin, 2002) and is the default choice in the libSVM package (Chang, 2011) that has been utilized in this study.

Leave-one-out

The Leave-One-Out (LOO) (Efron, 1993) validation method is used to evaluate the performance of the classifiers described in this study. Random one trial from each category is taken as the testing data and the remaining as the training data to train SVM multi-class classifiers. This procedure was applied for 100 times (most trial numbers are less than 10) by randomly choosing training and testing trials. All the test results are then combined into a cumulative confusion matrix.

Acknowledgements

We thank Ricardo Dolmetsch, Rainer Friedrich, Joseph Loureiro, Mark Borowsky, Brant Peterson, Gerald Sun, Lingling Shen, Ajeet Singh, Vibhas Aravamuthan, Stephen Litster, Guangliang Wang, and Jian Fang for discussion. We also want to thank Gerlinde Wussler, Kara Moloney, Meghan Aguirre, Franki Vetrano-Olsen, KarenJ Lee, Haley Clark, Johnathan Tobin, and Joseph Beaton for their support in the fish facility, also Stacey Gearin, Stephanie Wiessner, and Jessica Garver for CRISPR injection work, Caroline Fawcett for fish database management; thank Michael Steeves and Michael Derby for their help in computation resource; thank Michael Paolucci and Aaron Bickel for their help in hardware customizing; thank Andrea Schwarz and Lauren Goldfinger for project coordination. X.X. is supported by NIBR postdoctoral scholar program. Funding is provided by the Novartis Institutes for Biomedical Research (NIBR).

Competing interests

MCF: Consultant to NIBR; Boards of Directors of Semma Therapeutics and Beam Therapeutics; SAB of Tenaya Therapeutics.

Reference

Anderson, D. J., \& Perona, P. (2014). Toward a science of computational ethology. Neuron, 84(1), 18-31. doi:10.1016/j.neuron.2014.09.005
Baier, H. (2000). Zebrafish on the move: towards a behavior-genetic analysis of vertebrate vision. Curr Opin Neurobiol, 10(4), 451-455.
Bartnik, M., Szczepanik, E., Derwinska, K., Wisniowiecka-Kowalnik, B., Gambin, T., Sykulski, M., . . . Stankiewicz, P. (2012). Application of array comparative genomic hybridization in 102 patients with epilepsy and additional neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet, 159b(7), 760-771. doi:10.1002/ajmg.b. 32081
Bishop, Christopher (2006). Pattern Recognition and Machine Learning: Springer.
Brockerhoff, S. E., Hurley, J. B., Janssen-Bienhold, U., Neuhauss, S. C., Driever, W., \& Dowling, J. E. (1995). A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U S A, 92(23), 10545-10549.
Chang, Chih-Chung, Lin, Chih-Jen. (2011). LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol, 2(3), 1-27.
Chicoli, Amanda, \& Paley, Derek A. (2016). Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats. Chaos, 26(11), 116311. doi:10.1063/1.4966682

Chuang, K. S., Tzeng, H. L., Chen, S., Wu, J., \& Chen, T. J. (2006). Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph, 30(1), 9-15. doi:10.1016/j.compmedimag.2005.10.001
Couzin, I. D. (2009). Collective cognition in animal groups. Trends Cogn Sci, 13(1), 36-43. doi:10.1016/j.tics.2008.10.002
Csardi, Gabor, \& Nepusz, Tamas. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1-9.
D T Pham, S S Dimov, C D Nguyen. (2005). Selection of K in K-means clustering Journal of Mechanical Engineering Science, 219(1), 103-119.
Dankert, H., Wang, L., Hoopfer, E. D., Anderson, D. J., \& Perona, P. (2009). Automated monitoring and analysis of social behavior in Drosophila. Nat Methods, 6(4), 297-303. doi:10.1038/nmeth. 1310
Darwin, Charles. (1871). The Descent of Man, and Selection in Relation to Sex United Kingdom: John Murray.
Efron, B., Tibshirani, R.J. . (1993). An introduction to the bootstrap: Chapman\&Hall.
Faustino, A. I., Tacao-Monteiro, A., \& Oliveira, R. F. (2017). Mechanisms of social buffering of fear in zebrafish. Sci Rep, 7, 44329. doi:10.1038/srep44329
Feng, Y., Dong, F., Xia, X., Hu, C. H., Fan, Q., Hu, Y., . . . Mutic, S. (2017). An adaptive Fuzzy C-means method utilizing neighboring information for breast tumor segmentation in ultrasound images. Med Phys, 44(7), 3752-3760. doi:10.1002/mp. 12350
Feyder, M., Karlsson, R. M., Mathur, P., Lyman, M., Bock, R., Momenan, R., .. . Holmes, A. (2010). Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams' syndrome. Am J Psychiatry, 167(12), 1508-1517. doi:10.1176/appi.ajp.2010.10040484
Friedrich, R. W., Jacobson, G. A., \& Zhu, P. (2010). Circuit neuroscience in zebrafish. Curr Biol, 20(8), R371-381. doi:10.1016/j.cub.2010.02.039

Granato, M., van Eeden, F. J., Schach, U., Trowe, T., Brand, M., Furutani-Seiki, M., . . . Nusslein-Volhard, C. (1996). Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development, 123, 399-413.
Greene, J. S., Brown, M., Dobosiewicz, M., Ishida, I. G., Macosko, E. Z., Zhang, X., . . . Bargmann, C. I. (2016). Balancing selection shapes density-dependent foraging behaviour. Nature, 539(7628), 254-258. doi:10.1038/nature19848
Greene, J. S., Dobosiewicz, M., Butcher, R. A., McGrath, P. T., \& Bargmann, C. I. (2016). Regulatory changes in two chemoreceptor genes contribute to a Caenorhabditis elegans QTL for foraging behavior. Elife, 5. doi:10.7554/eLife. 21454
Greenwood, A. K., Wark, A. R., Yoshida, K., \& Peichel, C. L. (2013). Genetic and neural modularity underlie the evolution of schooling behavior in threespine sticklebacks. Curr Biol, 23(19), 18841888. doi:10.1016/j.cub.2013.07.058

Han, S., Tai, C., Westenbroek, R. E., Yu, F. H., Cheah, C. S., Potter, G. B., . . . Catterall, W. A. (2012). Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission. Nature, 489(7416), 385-390. doi:10.1038/nature11356
Han, S., Taralova, E., Dupre, C., \& Yuste, R. (2018). Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire. Elife, 7. doi:10.7554/eLife. 32605
Hiroshi Nishimasu, F. Ann Ran, Patrick D. Hsu, Silvana Konermann, Soraya Shehata, Naoshi Dohmae, Ryuichiro Ishitani, Feng Zhang, and Osamu Nureki. (2014). Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell, 156(5), 935-949.
Hong, W., Kennedy, A., Burgos-Artizzu, X. P., Zelikowsky, M., Navonne, S. G., Perona, P., \& Anderson, D. J. (2015). Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc Natl Acad Sci U S A, 112(38), E5351-5360. doi:10.1073/pnas. 1515982112
Hsu, C. W., \& Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw, 13(2), 415-425. doi:10.1109/72.991427
Ioannou, C. C., Guttal, V., \& Couzin, I. D. (2012). Predatory fish select for coordinated collective motion in virtual prey. Science, 337(6099), 1212-1215. doi:10.1126/science. 1218919
Ioannou, C. C., Morrell, L. J., Ruxton, G. D., \& Krause, J. (2009). The effect of prey density on predators: conspicuousness and attack success are sensitive to spatial scale. Am Nat, 173(4), 499-506. doi:10.1086/597219
Jolles, Jolle W., Boogert, Neeltje J., Sridhar, Vivek H., Couzin, lain D., \& Manica, Andrea. (2017). Consistent Individual Differences Drive Collective Behavior and Group Functioning of Schooling Fish. Current Biology, 27(18), 2862-2868.e2867. doi:10.1016/j.cub.2017.08.004
Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S., \& Branson, K. (2013). JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods, 10(1), 64-67. doi:10.1038/nmeth. 2281
Katz, Y., Tunstrom, K., Ioannou, C. C., Huepe, C., \& Couzin, I. D. (2011). Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci U S A, 108(46), 18720-18725. doi:10.1073/pnas. 1107583108
Keerthi, S. S., \& Lin, C. J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput, 15(7), 1667-1689. doi:10.1162/089976603321891855
Kent, W. J. (2002). BLAT--the BLAST-like alignment tool. Genome Res, 12(4), 656-664. doi:10.1101/gr. 229202
Krause, J. (1994). Differential fitness returns in relation to spatial position in groups. Biol Rev Camb Philos Soc, 69(2), 187-206.
Krause, J., Hartmann, N., \& Pritchard, V. L. (1999). The influence of nutritional state on shoal choice in zebrafish, Danio rerio. Anim Behav, 57(4), 771-775. doi:10.1006/anbe.1998.1010

Kravitz, E. A., \& Huber, R. (2003). Aggression in invertebrates. Curr Opin Neurobiol, 13(6), 736-743. Kullback, S., \& Leibler, R. A. (1951). On Information and Sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86.
Laurens van der Maaten, Geoffrey Hinton. (2008). Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research, 9, 2579-2605.
Li, X., \& Xiao, J. (2010). Swarming in homogeneous environments: a social interaction based framework. J Theor Biol, 264(3), 747-759. doi:10.1016/j.jtbi.2010.02.016
Lu, B., Poirier, C., Gaspar, T., Gratzke, C., Harrison, W., Busija, D., . . . Bishop, C. E. (2008). A mutation in the inner mitochondrial membrane peptidase 2 -like gene (Immp2I) affects mitochondrial function and impairs fertility in mice. Biol Reprod, 78(4), 601-610. doi:10.1095/biolreprod.107.065987
Lukeman, R., Li, Y. X., \& Edelstein-Keshet, L. (2010). Inferring individual rules from collective behavior. Proc Natl Acad Sci U S A, 107(28), 12576-12580. doi:10.1073/pnas. 1001763107
Ma, Changxue, Randolph, M. A., \& Drish, J. (2001). A support vector machines-based rejection technique for speech recognition. Paper presented at the Acoustics, Speech, and Signal Processing, Proceedings. (ICASSP '01). 2001 IEEE International Conference on.
Markham, N. R., \& Zuker, M. (2008). UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol, 453, 3-31. doi:10.1007/978-1-60327-429-6_1
Meeker, N. D., Hutchinson, S. A., Ho, L., \& Trede, N. S. (2007). Method for isolation of PCR-ready genomic DNA from zebrafish tissues. Biotechniques, 43(5), 610, 612, 614.
Meyer, A., \& Schartl, M. (1999). Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol, 11(6), 699-704.
Moreno-Mateos, M. A., Vejnar, C. E., Beaudoin, J. D., Fernandez, J. P., Mis, E. K., Khokha, M. K., \& Giraldez, A. J. (2015). CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods, 12(10), 982-988. doi:10.1038/nmeth. 3543
Muto, A., Orger, M. B., Wehman, A. M., Smear, M. C., Kay, J. N., Page-McCaw, P. S., . . . Baier, H. (2005). Forward genetic analysis of visual behavior in zebrafish. PLoS Genet, 1(5), e66. doi:10.1371/journal.pgen. 0010066
Nasiadka, A., \& Clark, M. D. (2012). Zebrafish breeding in the laboratory environment. Ilar j, 53(2), 161168. doi:10.1093/ilar.53.2.161

Peca, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman, T. N., . . . Feng, G. (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472(7344), 437442. doi:10.1038/nature09965

Perez-Escudero, Alfonso, Vicente-Page, Julian, Hinz, Robert C., Arganda, Sara, \& de Polavieja, Gonzalo G. (2014). idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Meth, 11(7), 743-748. doi:10.1038/nmeth. 2994
http://www.nature.com/nmeth/journal/v11/n7/abs/nmeth.2994.html\#supplementary-information
Petek, E., Windpassinger, C., Vincent, J. B., Cheung, J., Boright, A. P., Scherer, S. W., . . . Wagner, K. (2001). Disruption of a novel gene (IMMP2L) by a breakpoint in 7 q 31 associated with Tourette syndrome. Am J Hum Genet, 68(4), 848-858. doi:10.1086/319523
Peterson, R. T., Shaw, S. Y., Peterson, T. A., Milan, D. J., Zhong, T. P., Schreiber, S. L., . . . Fishman, M. C. (2004). Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol, 22(5), 595-599. doi:10.1038/nbt963
Portugues, R., \& Engert, F. (2009). The neural basis of visual behaviors in the larval zebrafish. Curr Opin Neurobiol, 19(6), 644-647. doi:10.1016/j.conb.2009.10.007
Rennekamp, Andrew J., Huang, Xi-Ping, Wang, You, Patel, Samir, Lorello, Paul J., Cade, Lindsay, . . . Peterson, Randall T. (2016). Sigma-1 receptor ligands control a switch between passive and active threat responses. Nature chemical biology, 12(7), 552-558. doi:10.1038/nchembio. 2089

Rihel, J., Prober, D. A., Arvanites, A., Lam, K., Zimmerman, S., Jang, S., . . . Schier, A. F. (2010). Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science, 327(5963), 348-351. doi:10.1126/science. 1183090
Siew, Xiaosheng Peng ; Chengke Zhou ;Donald M. Hepburn ; Martin D. Judd;W. H. (2013). Application of K-Means method to pattern recognition in on-line cable partial discharge monitoring IEEE Transactions on Dielectrics and Electrical Insulation, 20(3), 754-761
Spedding, G. (2011). Aerodynamics: The cost of flight in flocks. Nature, 474(7352), 458-459. doi:10.1038/474458a
Spence, R., Gerlach, G., Lawrence, C., \& Smith, C. (2008). The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc, 83(1), 13-34. doi:10.1111/j.1469-185X.2007.00030.x
Sumpter, David J. T. (2010). Collective Animal Behavior: Princeton University Press.
Sztal, T. E., McKaige, E. A., Williams, C., Ruparelia, A. A., \& Bryson-Richardson, R. J. (2018). Genetic compensation triggered by actin mutation prevents the muscle damage caused by loss of actin protein. PLoS Genet, 14(2), e1007212. doi:10.1371/journal.pgen. 1007212
Tinbergen, N. (1952). The Study of Instict. Oxford, ISBN-0198577222.
Todd, J. G., Kain, J. S., \& de Bivort, B. L. (2017). Systematic exploration of unsupervised methods for mapping behavior. Phys Biol, 14(1), 015002. doi:10.1088/1478-3975/14/1/015002
Torney, C. J., Berdahl, A., \& Couzin, I. D. (2011). Signalling and the evolution of cooperative foraging in dynamic environments. PLoS Comput Biol, 7(9), e1002194. doi:10.1371/journal.pcbi. 1002194
Tunstrom, K., Katz, Y., Ioannou, C. C., Huepe, C., Lutz, M. J., \& Couzin, I. D. (2013). Collective states, multistability and transitional behavior in schooling fish. PLoS Comput Biol, 9(2), e1002915. doi:10.1371/journal.pcbi. 1002915
Vapnick, V. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.
Wiltschko, A. B., Johnson, M. J., Iurilli, G., Peterson, R. E., Katon, J. M., Pashkovski, S. L., . . . Datta, S. R. (2015). Mapping Sub-Second Structure in Mouse Behavior. Neuron, 88(6), 1121-1135. doi:10.1016/j.neuron.2015.11.031
Yabuki, Y., Koide, T., Miyasaka, N., Wakisaka, N., Masuda, M., Ohkura, M., . . Yoshihara, Y. (2016). Olfactory receptor for prostaglandin F2alpha mediates male fish courtship behavior. Nat Neurosci, 19(7), 897-904. doi:10.1038/nn. 4314
Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., . . . Sumpter, D. J. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proc Natl Acad Sci U S A, 106(14), 5464-5469. doi:10.1073/pnas. 0811195106
Zhu, P., Narita, Y., Bundschuh, S. T., Fajardo, O., Scharer, Y. P., Chattopadhyaya, B., . . . Friedrich, R. W. (2009). Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System. Front Neural Circuits, 3, 21. doi:10.3389/neuro.04.021.2009
a 36 dpf
b 50 dpf
c 66 dpf
d $>90 \mathrm{dpf}$

Supplemental Figure 1 Development of collective behavior, showing ethograms of wild-type fish (a) 36 dpf (note that most of the usage concentrates in state 15 , the tightest cohesion state, and that the dispersed schooling state 8 is missing; (b) 50 dpf (tight cohesion states 15 and 17 are still the majority of state usage); (c) 66 dpf (the collective behavior state usage is similar to adult fish, although the transitions between states are less dense); (d) adult fish. Collective behavior is not mature until the fish are about 3 months old.

5\% Usage ratio

Supplemental Figure 2 Dendrogram of wild-type fish collective behavioral states defined using hierarchical clustering.

a Polarized states

immp21-/ $\mathrm{n}=9$ groups;

scn1lab+/-
$\mathrm{n}=22$ groups;

adra1aa--
n=9 groups;

Polarized states (ranked by usage ratio of wt)
b Unpolarized states

Unpolarized states (ranked by usage ratio of wt)

[^0]

Supplemental Figure 4 Block duration of states (Fewer than 1.2% last longer than 4 seconds). The mean is 0.78 ± 0.96 seconds.

Confusion Matrix

Supplemental Figure 5 Cross-validation by multi-class Support Vector Machines confirms robust phenotypes revealed in highlighted mutants. Confusion matrix computed using features, including state usage ratios, transitions, etc. immp2l-/- (n=9 groups, Prediction Accuracy (PA) = 0.95; Leave-OneOut); scn1lab+/-(n=22 groups, $\mathrm{PA}=0.88$; Leave-One-Out); adra1aa-/- $\mathrm{n}=8$ groups, $\mathrm{PA}=0.92$; Leave-One-Out).

b

Supplemental Figure 6 Ranked usage ratios of fish having each mutation, compared to: (a) immp2l-/-'s tendency to cohesion; using the usage ratios of the top two tight cohesion sates which are significantly enhanced in immp2l-/compared to wild-type ($\mathrm{n}=9$ groups, $\mathrm{p}<0.001$; Mann-Whitney U-test). By this comparison, significantly more cohesion is also demonstrated by drd4-rs-/- ($\mathrm{n}=6$ groups; $p<0.05$; Mann-Whitney U-test), disc1-/- ($n=9$ groups; $p<0.05$; MannWhitney U-test), homer1b-/- ($\mathrm{n}=11$ groups; $\mathrm{p}<0.05$; Mann-Whitney U-test), and gnrhr4-/- (n=9 groups; p<0.05; Mann-Whitney U-test). (b) scn1lab+/-'s tendency to disperse, using the usage ratios of the top two dispersed states significantly enhanced in scn1lab+/- compared to wild-type ($n=22$ groups; $p<0.001$; MannWhitney U-test). By this comparison significantly more dispersion also is shown by kctd13-/- ($\mathrm{n}=28$ groups; $\mathrm{p}<0.05$; Mann-Whitney U-test). (c) adra1aa-/-'s tendency to freeze; the ratio is calculated from the duration of simultaneous freezing of 3 fish in the last 10 minutes of the recording ($n=8$ groups; $p<0.001$; Mann-Whitney Utest). This tendency also is shown by, immp2l-- ($\mathrm{n}=9$ groups, $\mathrm{p}<0.01$; MannWhitney U-test) and adra1ab-/- ($\mathrm{n}=10$ groups, $\mathrm{p}<0.01$; Mann-Whitney U-test).

Supplemental Figure 7 Lack of relationship between group polarization and inter-individual distance (top panels) and speed (middle panels) or between inter-individual distance and speed (bottom panels), for the mutations discussed. The colors indicate the number of frames in each bin (100 bins in each dimension).

b

Derivative of cost for polarized status

Supplemental Figure 8 (a) Hierarchical clustering flow chart of collective behavior unsupervised learning (b) The derivative of cost of the clustering for porlarized and unporlarized states, respectively. The red square boxed mark the cluster number we chose.

d

Supplemental Figure 9 Behavioral assay setup (a) Collective behavior assays and (b) courtship behavior assays were recorded from Top View, with bottom IR (940 nm) illumination.
Examples of background removed images are shown for (c) collective behavior assays and (d) courtship behavior assays.

b t-SNE plot for unpolarized states

Zebrafish gene	Human gene	Description
adra1aa	ADRA1A	Adrenoceptor Alpha 1A
adra1ab	ADRA1A	Adrenoceptor Alpha 1A
chd8	CHD8	Chromodomain Helicase DNA Binding Protein 8
chrm4a	CHRM4	Cholinergic Receptor Muscarinic 4
chrna2a	CHRNA2	Cholinergic Receptor Nicotinic Alpha 2 Subunit
disc1	DISC1	Disrupted In Schizophrenia 1
dlg4a	DLG4	Discs Large MAGUK Scaffold Protein 4
drd1b	DRD1	Dopamine Receptor D1
drd2b	DRD2	Dopamine Receptor D2
drd3	DRD3	Dopamine Receptor D3
drd4-rs	DRD4	Dopamine Receptor D4
drd4a	DRD4	Dopamine Receptor D4
esr2a	ESR2	Estrogen Receptor 2
gnrhr4	GPR150	gonadotropin releasing hormone receptor 4
grm5a	GRM5	Glutamate Metabotropic Receptor 5
homer1b	HOMER1	Homer Scaffolding Protein 1
immp2l	IMMP2L	Inner Mitochondrial Membrane Peptidase Subunit 2
kctd13	KCTD13	Potassium Channel Tetramerization Domain Containing 1
Irrn3	LRRN3	Leucine Rich Repeat Neuronal 3
nfkb1	NFKB1	Nuclear Factor Kappa B Subunit 1
oxt	OXT	Oxytocin/Neurophysin I Prepropeptide
sapap2(dlgap2a)	DLGAP2	DLG Associated Protein 2
scn1lab	SCN1A	Sodium Voltage-Gated Channel Alpha Subunit 1
shank3b	SHANK3	SH3 And Multiple Ankyrin Repeat Domains 3
slc18a2	SLC18A2	Solute Carrier Family 18 Member A2, Vesicular Monoamir
slc1a1	SLC1A1	Solute Carrier Family 1 Member 1, Sodium-Dependent GI
slc22a15	SLC22A15	Solute Carrier Family 22 Member 15, Organic Cation Trar
slc25a27	SLC25A27	Solute Carrier Family 25 Member 27, Mitochondrial Uncou
slc39a11	SLC39A11	Solute Carrier Family 39 Member 11, Metal Ion Transportı
slc6a3	SLC6A3	Solute Carrier Family 6 Member 3, Neurotransmitter Tran:
slc6a4a	SLC6A4	Solute Carrier Family 6 Member 4, Neurotransmitter Tran:
slc6a8	SLC6A8	Solute Carrier Family 6 Member 8, Neurotransmitter Tran:
srr	SRR	Serine Racemase
tph2	TPH2	Tryptophan Hydroxylase 2
ube3a	UBE3A	Ubiquitin Protein Ligase E3A

Associated psychiatric disease	Rererence PubMed ID
autism, schizophrenia, ADHD	$19204725,22037178,19918262$
autism, schizophrenia, ADHD	$19204725,22037178,19918262$
autism	$22495309,22495311,24998929$
autism, schizophrenia	23490763,14606695
autism, epilepsy	19204725
autism, schizophrenia, asperger syndrome, psy 15386212, 17579608	
autism, schizophrenia, cerebral degeneration,	r 25549968
autism, schizophrenia	18205172
autism, schizophrenia	22559203
autism, schizophrenia	25224105,19897343
autism, ADHD	15892149
autism, ADHD	15892149
autism, asperger syndrome	19598235
autism, fragile X syndrome, epilepsy	22542183
autism	22558107
autism and Tourette syndrome	17043892
autism, schizophrenia	22596160
autism	20678249
schizophrenia	$27992301,27759212,22479419$
autism, asperger syndrome	27242401
autism, schizophrenia	27271353
autism, epilepsy	12610651
autism	26886798
schizophrenia	28094812
autism, schizophrenia, OCD	19360657
autism	22843504
autism	23116158
autism	22843504
autism, ADHD, epilepsy	23979605
autism, epilepsy, dystonia	23583772
schizophrenia	16601898
autism, schizophrenia	19483194
autism, epilepsy	15768392
	11543639

Zebrafish gene	guide RNA 1
adra1aa	GGTTCCTTCCAGCCGAATAGAGG
adra1ab	GCAGCACAACACGTCAAGAGCGG
chd8	GGATGTTGATGAAGGCAAAGTGG
chrm4a	GCCAACTTCAGCTGTGACAGTGG
chrna2a	GTTCCAGCAGGAGACTGGAGTGG
disc1	GATTGTTTGTGTTCAGTTCTGGG
dlg4a	GGATGTGATGCATGAGGATGCGG
drd1b	TGGTCAGAATGAGGAGTGAGAGG
drd2b	GTCATAATAAGTGTCATTGTAGG
drd3	GCTAAACATTGCCATAAGTGTGG
drd4-rs	GCCCAGTATAGACCCAACGGCGG
drd4a	GTCGCTGGTCCACGTGTTTGCGG
esr2a	GGAAGTGGACTCAGGCCGTGTGG
gnrhr4	TGGCAGCCCACAACACGCCGAGG
grm5a	CCATCAGCCGCCAGCAGACAAGG
homer1b	AGAAGCAGCCAGAATAGCCAAGG
immp2l	AGATCATCAAACGGGTCATCGGG
kctd13	GGGTGGTGTTGGACCGATGCGGG
Irrn3	GGAAAGTCGGGGGTTGTTTGTGG
nfkb1	GGGGCTTCAGGTTCCGCTATGGG
oxt	GGAAAGGCCTGCGGTTATGAGGG
sapap2(dlgap2a)	GGAGACTCTCGCTCAGACAGCGG
scn1lab	GGTTAATCTCATCCTGGCTGTGG
shank3b	AGGAGCCCCGGGCCCAGATGG
slc18a2	GGACGACGAGGCTGCTCAGATGG
slc1a1	AGATGCTGGGGAAGAAAGAGCGG
slc22a15	GTCTGGAATGGATTTAGAGGAGG
slc25a27	TGGTTTTGGTAAGATCCAGGGGG
slc39a11	GCCTGGAAACATGCTGTCTGTGG
slc6a3	GGAGTACTAATTGAGGCCATCGG
slc6a4a	GATGATGAATCAAGAGTACGGGG
slc6a8	CGCCCTGAATATGGTCCTGGTGG
srr	TGTCGTACCCTATCCAGATGTGG
tph2	GGTGAGAGATATCCAGCCACAGG
ube3a	GGACCTGCCACCCACAAGGGAGG

guide RNA 2	guide RNA 3
AGAGAATCACCACTAGAGGGAGG	GTATTGTCGTGTGTATGTTGTGG
GATCCACAGAGATTACGCAGAGG	GCAAAGGAAGGGTATTGCAGCGG
TGGCTCATGTGCAGCGGTTGAGG	CGAGAGCCCGTACAAGACGGTGG
GGATGGAGAGGAGATGGATGTGG	AGACAAATGCAGAGAGGTTGCGG
TGTCCTCCTCATCATGCAAATGG	TGGCGAGAAATGGCTGACAGAGG
GATGCCATGGAAAGCCGCCACGG	GACGCACAGATTCAAGATGGAGG
GGCAATGTGTTGGTGTGTATGG	GACAATGAGGTAATTAGTGGTGG
TGAGCATTCATTCACCCCTGGGG	GACCACCACCAACTACCTGGTGG
AGACCCAACGGCGGCCCACGAGG	AGCGTTCGGTCAGCACACTGAGG
GGCTAAGGCCAGGATCCACGTGG	TGTTGATGCCGAACATCACGGGG
AGAGGATGAGTTGAAGATGGGGG	AGGGCGATGGGATGCAGATGGGG
CGGCGCCACACTTGCGCTCGTGG	GCAGTATGGCATCCAGCGGGTGG
GTCTCTAGAAAAGATGGAGCTGG	

GGGTGTGAGGGCCCGTCTCACGG GGACTTGCGGTTCTTCTCGCTGG

GGTGCTCGATGGAGAAAGAGGGG GCTGAAGCCTGTCACACGTGTGG GCGGAGAAGCAGAGATGTGAAGG AGGGTTTGCTGAAGAGGAACTGG GAGGAGGCTTTCCAGGTGGTTGG TGCATGTATCATTAGTTACCTGG GGCAGATCTGGAAAGAATGGTGG GCCCTTGAAACTGTGGCAAGGGG GGGCCTGAACCAGCGGACTGAGG GGAGAAGATGAAGACCAGTGCGG

AGAGAACGGCAGGCTGGTTGTGG	TGGAACATTTAGGACTCTGGTGG
GTCAACGGGACCCTCAACGGGGG	TGGGTTTTGCAGTGGGGCTGGGG
CGTACCCTATCCAGATGTGGTGG	GATGTGGTGGTTGTTTGCTGTGG

guide RNA 4	guide RNA 5
GAAACGCGAGGACTGATCAGCGG	CGCCAAGACTTTGGGTATCGTGG
GGTTCCCTCCATCCAAATAGTGG	GTACTGTAGGGTGTATGTAGTGG
GCCCAGTGGTGTGTGACCTGTGG	GAAGGACAGGATCCAGGCAGAGG
TGAGTCAGACAAATGCAGAGAGG	GCTCCAGCATTTGGGACATGTGG
GTTCTCCACAGCAGGCGACTTGG	GTCTGAGCCGATTAACCAGCTGG
GCGAAAGATGACACCCAAGGTGG	
TGGCCACATTAGTTATGCCCTGG	
TGCCCAAGGCATGACCAGTGAGG	
GCCGCTTTATGTCTACTCTGAGG	
GGGCCTGAGGAACTGGGAAGAGG	
AGGGCAGAGTGCTGAAGTCGTGG	TGTGCTGTACCCCAGCAGAGCGG
TGAGCGGGTCTGCGTTGATGCGG	GGACACTCTGGTCTCAGCCGAGG

GCACTTGTGGGTAGGACTTGCGG

GGACAGTCGGACTGGTTTTGAGG

PCR primer F	PCR primer R
TATGAGCTTGTGCGTGATTTCT	TCCCAACATTGACAGGTATTGA
ATCCTCCTTCCTGGTGTCATT	CCTTCGATCCGTGACTCATTAT
TGTTCTACTGTACGTTGCCAGC	CAGGCCGAGGCTGATGGAAGAGC
GGTTGGAAAGGAACTGGATGTAAC	TCATAATGAATGTCATGCTGTTTCC
AAAGTCTTCATCCTCAGCCCT	TCCATTGTCATTACCGTTTTTG
TGCATTTCCTCATTTGCAAGTTGG	GCTTGATTTTGATTGGCTTACC
CTATGACGATTGTTTCAGCCCCAA	TGCAAGATCCAGCAGTTCTAGAAA
AGGAGGAGATGGCGTATGTC	CAGCATAACTACGGACAAACCA
TATTTGCATACTCACAGGCTGGG	AATGACAACTCAAGATATGATGG
CTCAAGTCACCAAGCAAGCA	TTGCAACATAGGTCAAATGGTC
TGAGGGCGCTTGTTCATATT	GCTGCCATGAATCCATCTTT
AAGGGGCAAACTGAAGGACT	CCAACATGGACACAGGATCA
AAGGCTTGTGAAGGGTGAGTAAAC	GAAGTTCACCATGACACACATCAAC
CCAGAGGGTTGAGAATGGCCGAC	CCTCACTGTACAGCAGGGTGTCG
GGTTTTTCATTTGCTGGTGTTT	GGATGGCCACAGAGCTGGAT
CACAAAAAGAGAGTCAGAGGCAAATAC	ATTTGCAAAGGTAATCAGGGTGTT
CCTCCAATAGATAAGACCCATCTGG	TTTCAAGCTTTATTTTTATGGTGA
TGTAAATCCACCAATCATGCTTCTT	AAACATAGTAAGTCTAAGGGTACACGCC
TCAAGCTGCTCTCAGACAAGTGC	CCATTTCTCGTGAATGCACCTGC
CCGAGTTCAGAATACACGTTCAC	CCATATCAGTGCATCCCTAGCAT
AGGAACGGTCATAATAGGTTTCCC	TATCTAGCGCCTTTACAAAGTTGG
ATGCACTACAGTTCACATCAGGAC	AGTGAGTGATATGATCTCCGTGGT
AAACTCTTCCTCTTTCTGTTGAGC	TAGGCAAGTCTTCATCACTGACTC
TTTGTCTTCAGAGAGCACAGACTC	TATGGAAAGGCAGTTTAACCAGAT
TTTTCAGCACGGTGGTTATG	TTAAACTAGCGGCTGTACCTG
CCTAAAGATGGGCTATGTCTGAA	GGGATTTTACAGTGTCATACTGG
CAGTCTCATCCAAACAACTTCG	AAGACAACGTTTGACCCTCAAT
CTGGCCATGACTCACCATTAT	AAGTTCACTTTATCAGCCTGTGC
TGACACCAAATACTCCTCAAAA	CTGTGGTGTTTCATTGTCCTGT
CACTGTAATGATGGAGACGAGTGG	ACTTGGGGAAATGTTCATCGTAGG
ACTCTGTTCCACCCCTTAACC	ATTTGACCTTACCCССТССАТ
GTTCTCCACCGTGTCTGTGAC	AGATCCCTCGCACCTGAAGA
TACCTCCTTCTGGTTCAACTCC	TTACTCTGACTGTGCTGGTGCT
CAGAAGTGGTGAAGGACAATGACA	ACAGGTGTAAAGCCAAGTCAAACT
ATGTCTGATACAGGAAGCGAGCG	CTGCTGGCCTCACTAACACCACT

Reference sequence
TATGAGCTTGTGCGTGATTTCTGTGGACCGATATATCGGCGTTAGCTATCCTCTACA ATCСTССTTCCTGGTGTCATTCTGGGCTTTTCGACAGTGGATACGTAGAGTCATTCC। TGTTCTACTGTACGTTGCCAGCAAAAGTGTGTGTGGATGTTTGTTTTGTGCTATAAC® GGTTGGAAAGGAACTGGATGTAACATTCCCCAGGTGCTACGGTTCGGGCTCCGACG AAAGTCTTCATCCTCAGCCCTCAGATGATCAGCGATGTACCGCACCCCTTCCAGAGC TGCATTTCCTCATTTGCAAGTTGGTTTCATTTCTCAACAGCTGTATTGCACGGATCAC CTATGACGATTGTTTCAGCCCCAACTTCAGACACGCTTTCCGTCAAGCATTGACGCTI AGGAGGAGATGGCGTATGTCCGATTAAGGCTGGAGTCGCAGTTATCTGGGGGAAGT TATTTGCATACTCACAGGCTGGGGTTGGGGTGTTGCTCAATGCTGTGTTCTTTTCTT CTCAAGTCACCAAGCAAGCAGCATGTCATCTTGAGCAGTGAATTGTTTACCGAGAAT TGAGGGCGCTTGTTCATATTTATGGCTTCATCTTGTCATAATTCCTCTTCTTGTAACA ${ }^{-}$ AAGGGGCAAACTGAAGGACTACCATAAAATATGGGTACAAACAGTTTAAATTCATGTา AAGGCTTGTGAAGGGTGAGTAAACAGTGGCAGAAATTAAATTATGTGAACTATTCCT CCAGAGGGTTGAGAATGGCCGACTGTCTGTCTAGGCTTATGACCACGGTCACAAAT(GGTTTTTCATTTGCTGGTGTTTGTGCTGATTGGGAACAGATTGGGTCCTACCCGGAT CACAAAAAGAGAGTCAGAGGCAAATACTTTTTCACAACAATGCATCATTTGTCAGCT® CСTCСAATAGATAAGACCCATCTGGTCTCTGAAAACTGTCCCTAATGCCCCATAATCC TGTAAATCCACCAATCATGCTTCTTAATTTGATGTAGCGGTTAGCTAACTGAACTAAC TCAAGCTGCTCTCAGACAAGTGCGGAACCTCAAATTTCTGGACCTTAACAAGAATCC CCGAGTTCAGAATACACGTTCACACTAGCTAAACGTACCATACTATGACGTCAAACG, AGGAACGGTCATAATAGGTTTCCCTTACCATCTGCAGTGTATGCCGTGTGGCCCCGC ATGCACTACAGTTCACATCAGGACAGCTTGCGGGACGACGGCTCCACTTCTCATGG AAACTCTTCСTCTTTCTGTTGAGCCTCCTCTATAGTGGCCTGGTTCTGCTCATCATAC TTTGTCTTCAGAGAGCACAGACTCCGCTCATGCAAGCAAACCACGTTGTGGGGTGG(TTTTCAGCACGGTGGTTATGTTGTTTCCTCTATTTCATCTCTCTAGTGCCTATTATCCC CCTAAAGATGGGCTATGTCTGAATTCAAACACACTAAAATGTGTTGTATTAACCCAAC CAGTCTCATCCAAACAACTTCGTCCTTTGTATCACGTGGTTTCATTCCACGTCTGCGA CTGGCCATGACTCACCATTATAACAGTATTCATACTGAATAATTATTACTAATTTAGCT TGACACCAAATACTCCTCAAAATATCTTCTTAATTCCTCTAAAGAAACGAGCAGATTT(CACTGTAATGATGGAGACGAGTGGCTGGTCACACTGTCTGAAAACACATCAGTCTCT ACTCTGTTCCACCССTTAACCCCСTTCTCCAGGCTCTCTATCCCCTCATGGGCACGA AGATCCCTCGCACCTGAAGAGGAACAAAAAGGGACATCTTGGTGTGAAAAAAAACT¢ TACCTCCTTCTGGTTCAACTCCATAGATCTTTGTGTCTTCACAACCAGACAGTTTGAT CAGAAGTGGTGAAGGACAATGACAGGATTGTGTGTGTGCTAGTACTCACGGCTCTG ATGTCTGATACAGGAAGCGAGCGGCTGCAAAGCATTTAATTGAGCGCTACTACCACC

ЭTACCCATCTATTGTGACAGAGCGACGTGCATTGCTTGCGCTCATAGCTTTATGGG＊ こTGCTCACTTAACCCATTCGTCTCCCTGCTCTTACTCATTGCACGAGTCTTGTGTCG эTTTTACATCACATTTTATTTCAACTGCACACAAGCAACAAAAGCACAGATTCTGAAT iATAAACTGCCAGAACAGGATAGCGGGAGCCCACAGGATGAAGGACAGGATCCAGC ：TCGCAGGACACACGGTGAAAACAGCAGACCAGGCTCTGACACCAGGTTACCAAGC ACTAATTTTATTGCTCAGTCACATGAATGCAGCTGTCATGGGTCATTATTTGTTTAC／ GAAGCCCCGTGTGAATGGGGCGTTAGACCAAAAAGCGTGGAGATGAATGTGTGCA －TCGCCATAGGTACCGTTAAGCTCTGTATAACTAGTCGTCTGGGCTTTGTGCCAATT ГTGTTTGCATGTTTTTGTAAGCTTTTGTGCATATCAGAATATTTATTCTGGTATTTGG（ TTTGCAGAATATAAAATTCAGAGATGTCAGTAGACAAACACAAGGATTCAAACAGAT ГATGGGCAAGAACACAAACACGTATTAGCATATATTACACACACAAAGAGCCATCCA ГAAATTTCAGTCTTTGTTACAGTAAAATATTAATAATAATAAATCACCTCATCTTTTTG ITAAGAACATTCCATATGGAGTATTAAGCTTAAACCTACCTGTTTTCCTCTTCAACAT亏CACAGGAGTACATAGCCACGAGCTTCAGAAACATTAACAATCTGCAAGCCAGATC TTTAGCCGAGGCCCAGGCTAGTGAGCGACGAGTTTTGGCCCACATTCCTGGAGAC ¡CAAAAATTACAATGGACGCGAATCACATTTAATCTTTTCCTCTTCTCAGTTCGCAGA こACTGAGCTCAGCAGCATCCTCAAATAAACCGCTAGCAGGTCTGTCATCACTATGC $/$ AGATGCAGAAACTAGCTCAGAGATGCACATTTAAACATGTGTCCATTTGTATTGAAG CATCGAGAGGATCCAAAGGGGTGACTTTGTCGACATGATCCATTTGAAAGAACTTG AACCCGGGTGCGGACCAAAAGTGCTAGTATGAAAGCACCCTAAATGAATGAACAAA うGGACCGCGGACGCTGTTTCGGCCCCAGTATCTGCTGTGGTGAAGGCATCGGCTG「GGAGGAGGTGGCGGAGGAGGGGTTAGCATTGTTAGCGGGGGTGGCGGATCCGG ；GCCATGGCCACCACAGCCAGGATGAGATTAACCAGATAGAAGGAGCCCAGGAAG\＆ ЭGCGTGGTCGCCCCGCCCATCTCAGGGACCCACTGCTTAAACAGTCATCAGACAG＊ こAAGTTACCTGTACACGGTGGACGACGAGGCTGCTCAGATGGTTAAGAATCACTCC ：AATGAGTCAATAATGGGCAATAATTACAATTCTTTTCACCCAACTGTTGGGTTTATC $\downarrow A G G G A A G C C A G A T T T A C A G C G G A G C A T C T G A A A C C T C G A C T G C T A T C A A A C C C C A$ ־TTTTTTTGCACATGCAGCTAAAGATTAAGTTAATTTAGATTTTGGTTTGTGCATTGA7 ЗAGTGAACATTCTCATTTCTCAGAGTCTCTGCATGATATTAATGTGCATCAGCACAG －AACGCAGCATCAGCTTGCTGGAGAAAATGCTGCAGCTCACCGTAAAACCAGGCGA TATCAGTCAGTGCAAGAGGACCACCATCTCAACCCTAACAGCAGTCCTCACCATGG ¡ACTTAATCCAAAAACAATAAGAGATCAAATATTTATTTTTGACTGCTGATTGAAGAAI GGCAGCGGCCACACCAGAAAGTAACCCTCCACCACCACAGCAAACAACCACCACA ЭTGTATAGAGAGGGTCTGTGCTGTGACGTATATACTGAGTGCAATTAAACACTCGA＊

TACTGTCCATCACTATTTCCATCGGACCTCTATTCGGCTGGAAGGAACCGGCACCG ¡GGCCACTACATACACCCTACAGTACATTGCCAGAATGACTGCCAACGGAACATAG\& TCTATTTTTCCTTTTTACAGCCAGTTGTGTACTACCTGGTGAAGTGGTGCTCTCTAC эCAGAGGCAATCATGAGGCCGGCCATCTTGGTGGTTCTGCGTGTGGGGTAGCTCA决TAGCAGGATGCTGACAAAGATTCACCACATGTCCCAAATGCTGGAGCTCATACTT AAAAATGCCATTGTGAAAGTTTGCATGTCGGATATCCAGCTATAAATTACTTCTCAC॰ CATGTTGTACTCACTGCTGGTGAGGTCTGGTGGGTTGTAGTTGTTGGTAAGGTACA TAGCTGCACAGGGATGAAGGAGATAAGGATGGACAGCGTCCATGCCACGCTTATC ЗATTATTTTAAGTCTGCTTGATGACCAAATAAAACTTATTTGACAAAAAAGTAACATA GTACAAAGATGTTACACTGCATGTTGTCAAGCATTTATTTTGCAAAAGTCAAAATCT ITCTCCATAAACAGCCCCCTCTGTGTCAATCTTTCCATCTCGCAGATGTTGAATCCG TCTCCAGGTTCATCGCCGTCTCCATCCCTCTAAATTACAACCGCAAACACGTGGAC GATCATGTGGTGTATGTTCTGTCCAAGTCCCACTAGTAGCATGGTTCTGTTGAAGTI TCCCGCCAGCCACTGAACTGTGATGTTCCAAGCTGCATCCACTGGCATCACGATGA ATCATTATCGGGGCACTTTTCTCCGTCCACCATCAGCCGCCAGCAGACAAGGTCCA ITAAATTTGCAGAGTACAAAGAAGCAGCCAGAATAGCCAAGGAGAAGTCTCTAGAA/ AAATGTACAATCTCATATCTCTTCACAGGAGCCCAAAGAACCCTCAGCAGAAGATCA ;GCTGGGTGGTGTTGGACCGATGCGGGAGACACTTTTCCCTGGTGTTGAACTTCCT GTATTAACAGCATGCCAGAGTTAGTTTCAATCGACAGCTTCGCCTTGCATAACCTAC , TGAATGAATGAATGTGTGATTTACTGAATGAATGAGTCATTAAACGAGTAAATGAG1 CTTGGTCGGCTCTCCAGAAACCCTGCGCTGCCTGGAGGAGGATTTTCTCCCTTCT ;GAAGATGAACCGTATTCCTGCGAACCTCCTTGACCAGTTCGAGAAGCAGCTACCG, ITCACAAGAACAAAGAAGATCATATAGGGCTTTCCAGCTGCACGCAGAGTCTGTAAC TGAGCTGCTTCCACACCCACCCAGCACAGGCCCCAGCCGTCCTCGCTACCTATTCC :ATGACCCCTCTTTCTCCATCGAGCACCTTTCAGAGCATTGTGTCTTTGTATGACAAC CACATCTGACCCAACGTTTTGGTTAAAACAACTCATTTTTTGTCATGTGAGGAGGC® ATTTAAAGATGAAAATATCCAGTCGGTGTCATGCAGTTGGATGAATTGAGTCTGGA\& ГGTAGTTGTGAATAAAGTTCATAACACATTACCTATATGTCTGTAGATAGCTGGTGTC CTGTGGAGATCAGGATCTCCTCACCTGTCTGCTGGAGAAGATGAAGACCAGTGCGI TGCCGATGGCCTCAATTAGTACTCCAAAGAGAATTGACGTCCCCGCAGCGAAGTG(;ATATGAAAGAGTCGATGATGATGAATCAAGAGTACGGGGGAGAGCAGCAGAAAGT GTCCTTCCTTCTCGAGTCTCGTGAGGAGGTTCGTATTTGCTTTGTTTACACGAGAG\& TCTGGATAGGGTACGACATCCAGGATCTCAAAACCTAAGCTACAATTGGATTAAAT/ TAAGCCAGTCCAGCCAGGAAGTCTCGTGGTGAGAGATATCCAGCCACAGGCCTTA(:TCCGGGTTTCCAGCGCATGGATAACAATGCAGCAGCCATCAAGGCCCTGGAGTTA

GATGATGAATCCATATGCAAGATAACTGAGGAACCCGGTTATGCCATTTTCTCAGC ไAGGAGCATGCAGCAGAGAAGATGGCGTATCCTGGATCTTCGTTAACTCTGCACAC CCTATGAAGATGCTACTTGGGAGCTGAAGGAGGATGTTGATGAAGGCAAAGTGGA AGGGTTTGGTCACACAGAAGTATCGGTCGAAGCTGATGATTAGCAGGTTCATGACT －CTGGAGTAAAGGCTCTGAGTCAGACAAATGCAGAGAGGTTGCGGATGGAGAGGAC AGTTGGTTATTGAGACTAAGAAGTTTAATCTGTAATCTGTGCTCAACAGGTGGTGTG IGGTTATTTGGCTTGGCCACTCTGAGGTAGACCACCTCTGCTGTGTTTTTCAGCGCT ATGATGAACGCCACCTTGGGTGTCATCTTTCGCTCATAGCGAAACGGGCTTGAAAT CTATAAACAGGCATATTGGGATGCAGCAACAGTCTGTGGTTACTTCTAGCAACCCC GTCCACCCTCTCCAGATCTTCCACACTTATGGCAATGTTTAGCAGTGGTGAATGGC GGTTGGCAGCTGATCTTTGGGGCATCATGGTCAATGTGACGCCCAGTATAGACCC\＆ CAGCGACAGATTGTCCTGCTCTCCGCCACGTGGATCCTGGCCTTAGCCGTGGCCT CGACTCTGTTGTTGCAATGTGAGTGAGGAAACATGGCTGTGAGGTGGCCAAAATAA \AAGTCACCAGCAGGTCGGCAACGGTGAGGTTCATGATTAAAATTCGTACATGGGA łCGAGCGCAAGTGTGGCGCCGTCCGAGAGCAGTATGGCATCCAGCGGGTGGAGG（ $\downarrow A G A T G G A G C T G G C A A G T T C G C C C T C T C A G G T A A G T C G T G A A A T G T C C T G C T A C T T ।$ ITCAAACGGGTCATCGGGATCGAAGGGGACTTCATTAAGTAAGTTTGTTGAACAATT ＇GCGGGACGGGACAGTTCCTTTGCCAGATAGCACGAGGGAGCTGGAGGAGGTGTT こCAGAGCTTACCAAAATCGAAGCCACAAACAACCCCCGACTTTCCTATATTCACCCA「TGATGAATGAGTGAATGATTAAATGAATGAGTCAATCAATAACAAACTAAATAAATC こCGTGTGAGATGTCTGGAAAGGCCTGCGGTTATGAGGGACGCTGCGCTGCTCCTG ATTCATAGGGATGGTTTCCACACGCTGCAGTACCAGCGCACGTCTGCCACCACCAC ЭAGACACAACGCACATACATAAACAAACCAAATTAAAACAGTTTGTATCGTGCTTTA こAAAGACGTTCCAAACTGTGGGGGGAGGAGCCCCGGGCCCAGATGGGGTCATCAC ンACCACACGTGTGACAGGCTTCAGCCCGCAGATGAGCACAGCTGGTCCAATGAGC（ ¡AAATGAAGAAAAAGAAATGAATATAAACGACCGAGCAAAGGTTATCAAGAAAAGAG łTGGATTTAGAGGAGGCTTTCCAGGTGGTTGGAGAGTTCGGAAGTCACCAGAAGCC亏ACCCCTTGCCACAGTTTCAAGGGCCCCTCTTCTCGCACTATACCTGCAGCTGTGC GCTCCAGCTGCAGTCAGCGCCCAGGTGAACAGAGTCCCCAGCAGGGCCTGAACC／亏TCCAACAGCGTAAACACATAGATTCCACCCTACAAAGAGAGCAGCAGAGTAAACA GCCGGAGTCTCAAGAGAACGGCAGGCTGGTTGTGGATAGCGTTCCGGAGAAGGA＊ ATGGAGAAATCCTCTCTGGACGCAGACTGCTGCGCCCTGAATATGGTCCTGGTGG\＆ †CATTACATTATTTGTGTTCAATATATTGCAAAAAATGGATCAAAAGCTGTTTCAAAA こGGTAAACCCTGACCTCTCTGTAAAGAGTCACAACCCAGACATCCATATTGAAGAG ．TATAAGAATAATGCCAAACTGTGTGATCCTCATCCCTCTAAGAAAGGAGCCAGTTC，

TTTGGGATCTTTTTACCTCCCTCTAGTGGTGATTCTCTCAATGTATTGTCGTGTGTA＊ CGACTCGTCTTCTGGCATGGGTTCCCTCCATCCAAATAGTGGCCCGACGGAGATA（ AGAATTCAGGAAGATTGAAAGCCGCCAACCACGACTCAAGAGAACTGTGAGATACT －GAAGCGTTGCTGACCACGTAATCCAGCGCGAGCCACAGGTCACACACCACTGGG（ ЗATGGATGTGGATAAACCAATCCCAAACTCCATATCCTGACAAACCAGACCATCCAC ；AATCCTTCGGGAAACCACCGCAGGAGGAGCTTCAGACGGCCCGGATACATGCGG －$С$ CCACCGCATCCTCATGCATCACATCCTCCAAACACACATTATTCACCTGCAGGTC GGCCCAGTAGCGGTCCACACTGATGACGCACAGATTCAAGATGGAGGCAGTGGA\＆ GAAATCTGGCTCCGTGTGACACAATTAATATTTCTTACCTCAAGATACACCACCCAG TCTGGAATGACTCTGAGCATTCATTCACCCCTGGGGGAAACTACAGCCCAGCGTCA $\downarrow A C G G C G G C C C A C G A G G G G T A C A A C T A C C T G G C T T T G A T A T G T G G C G T G C C T C T C /$ CCCCCGTGATGTTCGGCATCAACAACGTCCCCAACCGGGACCACAGCGAATGCAA \AGTCGGGCTTAGCGACTGGCGCACAGACGAGCAGTCCGATAAAGGCGATGTGCTI CTTGCGCTTGTTGTTGGTGCTGGCAGCCCACAACACGCCGAGGTTGCACACAGCTI こCATGATGCACACCCTGGACCGCATCAACGCAGACCCGCTCATCCTTCCCAACATC CAGTGTAATGTATGTGCATGAAATGATGAAAATCTGCTCAGATTATTTTAGCAACAC． ＇GTTAAAAATAAACATACAGTTTAAATCTGATGAGGCCAAAAGGGTTTTAATGGCAG\＆ GAAGGAGGCGCAATACTACAGACTTCAGGGTCTTGTGCAGCACTGCCTCTCCACA ，AATGCTTTTTCTCAACTCCCAAGACTGGAGTCCTTGATGCTGAATAGCAATGCCCT＊ ：AGTAGATCAATAAGTAAATGAATCAGCTCCATAACATGAGAAGAATAAAATAAGTAA GAGTCTGCTGCGACTCGGGTTAGTTTCAGCTCAAATTCAATTGACTCCAGAACAAA こCAACAGCGAGCAGCGCAACGAGAGTCCCGGGCGCATTCGCCACCTGGTGCACTC こGCAATATAGATTGTTCCAAGGCAGCTTCCCAGTAACAGGAAGAATCACAGAGTCAI jATGAAAGTCGGCCTGCTGCTATGGGGGCAGAGTTGCTTAGCAAAGACACTCATTC こTGGCTCCTACTTTTGTGAGCCCTCAAAACCAGTCCGACTGTCCCAAAGCAGATGAI ；ACGGAGAAAATAGAAACAGCAGCAGCAGATCATCATCACTTCACCССТСССТСТСТ亏AATGATCACAGTGCTGGTGTTCCTCCAGGTAACTAATGATACATGCAAATGCATAA TCAACATGCCCCTGTATTTCTGAGTCTGTACGCTTCCACCATTCTTTCCAGATCTGC łGCGGACTGAGGCCTGGAAACATGCTGTCTGTGGAGAAAATCAGGACACACTGCA7 CGTAGATACCACCCTACAGAGAGAGCAACAGAGAGATGAAGACACAGTGATTAACC TCAGAAATCTGGCTCTGGGCCTGGGCAAGTCTCCAATGGTTATCGCAGTACATCTC łGGAGAAGAAGGGCCATCTCATTCCCAATGGAAACGCGCACCCAAGCGTCAACGG（ IGTACCGTTATGTACATTTTAGAAAAAAGCTTTAGGACTACAGCACCAGCACAGTCA ГGCTTATGTTTTTGTTAAAGAATAAATATATAGTTAATCAATCATTAGCAGAAAATAG（ AGCCTTCCCGGAGAACAGTGCCAAAGGAGCTCACAACTTCTCTGCTTGCAGCAAC®

TGTTGTGGCGAGGAGGGAAACGCGAGGACTGATCAGCGGACAGAAAACTGAGAAC 3CAGCTGAAAGGGCCCAGAGAGCTGCCACTGCAGTCATTGCCCTTCGACCCGTAG －GTTTTGTCTGGCTCTTTCTCTCTTCTCACTGGATCATTTTTATCCTGCCTGTATTTTT こCAAGCGGCCAGTAACCCTTAATGATGTAGACGGTGTAAAGGTTCATGGAGAACAC こTCCAGTCTCCTGCTGGAACCAGCTCTTGGATGTGCTCAGATTGGCTGTCTTTTTTG TCTGAGCCGATTAACCAGCTGGACGTTGCAGAAACATCATGTGATTCTGAACATCA（ ACAGCACACAACACAAAGAATGACCTTACTGTGTGCTTTTTGAAAAACAAGATTTAT †CACATGATGTCAAAGGCCACCCAAACATCGCAGAAGGCGCCGAACGGCCAAAAAC ；GGCATAACTAATGTGGCCACGAGAAGATCTGCCACCGCCAAGCTGACAATGAGGT ıGGCGTTGAAGAAGCGAAGAGGAATTATTATGCCATGCTCTATTCCCTGCTCATCCT ATCCTCATTATCATTTTGGGGAATGTCCTGGTATGCCTCAGTGTGCTGACCGAACGC GCTGGAGGACAACAACTACGTTATCTACTCCTCCGTCTGTTCGTTTTTCGTGCCGT GTACCCCAGCAGAGCGGGACTGTAAAAGGGCAGAGTGCTGAAGTCGTGGCCAAGC GACACTGCGCAAAGAGTGAAGGTAATTATCACCCTCACTTTTGCTGCCATGGAAAA＊ ：ACCCTAGGCTGTGAAATCCGAGACTCCTGCTGGCATTCTGCCGTGGCTCTGGAGC ACTAGCAACTGTTAAGTAAACACCCTGATTACCTTTGCAAAT
łGCGTGTTTTCTTGCCACTAAAATGTTGCCTGAACAGTGTTTACACAGACTAACAGG ГTACAGGTCAGGCGTGTACCCTTAGACTTACTATGTTT
TAGGGCCCTTCATCACATAACAGTGGAATCCTTGCCTAACCTTCAAGAGGTGAGCA ，AGAGCAGCAAAGTAAAAACACACAGTGGTTAAACATGTCTAGCTGTGTAACATATC CCACTGTTATACAATGACTTGCCTAATTACCCTAACTTTACCCTAATTACCCTAGTG\＆ ：TGTCCAGAAGCTCTTCACCAAATCGCACTCTCTTGAAGGCTCTTCCAAGATGAACG GTGATGAAGACTTGCCTA
ACTGGGTGAGGAGCCACCAATGGGAGCACCACTTGACCCTGGCAGGAGATCGCC CCAGCTTCTGAACGAGAATGTGAAAGTGGGTCTGTTGTTTGCCTCTAAAGCAACAG －ACCGACAGCAGCTCCACCGTAAACCGCCTCGGTTTTTTATTATTCTCCGCCGGTC® ACAGAGGACTGACATGTGTTTATGTAGGTAAATGTATTTGCATTTCCGATAGCACG， ：CTTCACCCTGGATCTGGAGTCTGGTTTTGGTAAGATCCAGGGGGAATGTGACTAA\＆ гTCAATACACTCACAGAGAGAGACGTGTCTATATCTTTGTGTGTGTGTGTGTGTGTG こCTACGATGAACATTTCCCCAAGT
：CTCAAAGCCCCAAAGAAGGTGCGGGCACTGGGACGGACAGGGTCAATACCCCTG（ ЗACCCTCAACGGGGGGCCCATGTCAGCGGCTACCGGAGCCATCTCGGCGGTGGAI ，GAGTAA
ЗATGAAACTCTACTTTTGTAAGTGTCTTCACTGGTGAGCGTAAAAAAAAAATGGACA ；GAAAGATGAACCATAAGGACCTGCCACCCACAAGGGAGGACTTTAGAGGTGAGTA
jTCGGATCACGCTGAGACCGTGACCTTGCGAATACACCGCGGAAACATGACGGTG1 CAAAGGAAGGGTATTGCAGCGGGTAACTGACGGCCATGCAGCGATCCACAGAGAT －TGGTTTTCATTAAGAAACAGACGAAACCGTATGAATTATTAACAAGTCTTGCTCTTC ACCGATGATCAGATCTGCACAGGCCAGGCTGAAAAGGAAGTAGTTGTTGACCGTC＊ ；GTTTCTTTTCAGGCTCTGGACGTCTCATGAAGAGCCAGCGGGGAATGTGGTCCAG こAGAAGTCCTATTTCCAAGTCGCCTGCTGTGGAGAACACTCAAAAGAGTGCTTCAG، TCGGTATAATAACCACACACTATAAATCATTTATTAAACATGAGCAAATAGTGAATTC ンCTACAATCTCCGTGGCGGCTTTCCATGGCATCACCAAAATGGCCACAAGCAAGTC， －AATTAGTGGTGGTCTGCAGCGCTTTCTCTCGGGAGACTGCCATACACACCAACAC／ －GGCTATCGTGTTTGGGAATGTTCTGGTTTGCATTGCTGTGCTTCGAGAGAGAGCTC こTCACTCAAAACAGCAACCAACTACTTCATTGTCAGTCTGGCCGTGGCTGATCTCCT ЭCCCCATCATGCTGCTCCTGTACTGCGGAATGTTCCGGGGCCTGAGGAACTGGGA うTCTGTGTAGGGCGATGGGATGCAGATGGGGTGATTCTCCACTGGCAGAGATGGAI TGTGGGCAGCTGCAATGCCGCTTCACCTGTGTTATTGTTACACGTGGGCAAATCAC ：AGAGCATTGAGTTCATCCGGGACACTCTGGTCTCAGCCGAGGAGGAGGAAGGCA7

CCTTGATATCACCATAAAAATAAAGCTTGAAA

TCCACTCCAACCCCATTTACTGTGACTGTGTCATTCGCTGGATCAATATGAACAATA CTGCTTTCTGGAACCCTCTGATGTGTTAATCTGAACTCACTATATCAGCTCAACAGT łAGCCTTTACATGTCACTTTAAGCTGAACACTAGTGTCTTGAAGAATATCTAGTCTA\＆ GCACCAAGGGAGACTCTCGCTCAGACAGCGGACACCACCACCATCACCACCATCA

IGTGGGAGGTGCCAGGTAGGACAGAGCTGCTCAAAACTGTGCCAACTTTAGCAAG（ TACAGCTAATCACTAACCCCTTCATAGGACCACTAACCAACAGGTACAGCCGCTAG ；ACCGTCAGTCTCAAAGCTCCGAGCCTCGCCATATTCTCTCGCCTGCTCACAGATT／ 4GCCGGCAATCTATGCAAAATGGATATATTGAGGGTCAAACGTTGTCTT ŁCAAAAACATTATTAATAAAACAGAAAGTAGACAAAAAAAATATTCAAATACATTAGG iTGT（

ЗAACATTTAGGACTCTGGTGGTCCAACAGACGAGCCTTGATCCACCTAGGGAGACC GAAGAAGAGGGAGGGCTACCCCGAGCGAGAGACGTGGACCAGACAGATGGACTT（

AGCTCAAAATTTTTTAGTTTGACTTGGCTTTACACCTGT
，ACGGTGTTATGTTTGTAGACATTTTATCAGAACTAGTTTGATTAAAATTCCTTAAAG

Abstract

ГCCGAGGACGAGGCGTTACGCAACCGGACACACTTCGCACTGCGTCTGCTCAAGT－ TACGCAGAGGCTGAGGATGGATGCCGTGCAGCACAACACGTCAAGAGCGGTCCAI CATCAGCCTCGGCCTG TGCAGGTGTCGATTAACCTTGATTGAGAGCATGACGAGGATGTTGCCCACGACGG GAACACCGAATGAACCCAACATGGCATTGAATGCGTGCTAGGTGAACGATGGTGC， AATTACTTGGCGAGAAATGGCTGACAGAGGGTTTCGAGAGAGACAACTCATCAAAG こATTATTTATTAAGCATTAACTCTACATTAGTAGGTGTTAGTAAGCAGTTTATAACTA／ AGAAATAGCCAGTGATATAACAAAGAAGTTGGTGACTTTAGAGCGCAGATGGCGAA ITTGCCAAAGACAATGACAAAGATGAGGAGAGTCAGGAGCATGGCATAGTAGTTAT． こTTCAGACCACCACCAACTACCTGGTGGTCAGTCTGGCAGTGGCTGATCTGTTGGT －GCTGGCCATTCTCGTTCTGCCGCTTTATGTCTACTCTGAGGTGAGGACCAGAGATר AGAGGCTCGGAAAGCTAAATTAAGGAGCAACATGGAGGCCTGCCGAAAGCTTCAG GAGGATGAGTTGAAGATGGGGGAGAGGATGTGACCTCCCACACGGCCTGAGTCC AACTGCCATTCAGAGTATCTGCAGTCAGCTGGTGAAACATGATGTTCTCAGATGTT।「GGCTAAATGTTCCACCGAAGGCGGAGGGACTCCCATGAAAGGGAAGAAGCCTAT1

．CCAGGGTCCGCTTCATGGAACTGGATGCCCTTTTATGCGCAGGGCCTTCAGAGTT AAACCTGAGTTCTCTTCTCTGCAGAGGGGCTTCAGGTTCCGCTATGGGTGTGAGG ITATTATGTGCTGTCATCATGGAGAAGAGGAAACACATCAGCTATTAGAGATGAGTT TCACGGCCATGACCATGGGAGCCACAAACACAGCAAACGAAGTAAGAGCAAGGAA

> こACACGCACACCTGCATGAAACACTGCACAAATTTCAATATCATTTAGCAATACACC TTTAA
> łAACTCCATCATGGAGATGCTGGGGAAGAAAGAGCGGAGAAGCAGAGATGTGAAG

CAGATATCAATGAATACAAATGTATAGATATTATTTGCTTAAAGATACATTTATTTAA｀亏AGAGAGCAGATCCTGTTTATCCAGGGTGTCTGCAAATACAGGACAATGAAACACC．
 こATCATGTCCTGCGTGGGTTTTGCAGTGGGGCTGGGGAACGTCTGGCGCTTCCCG

ГCTCAAGGGAAAAGAAGGCCGCCAAGACTTTGGGTATCGTGGTGGGATGCTTCGT/ GGCGTTACATAAATGACGACCGAACACCCAGCGACCCAAGGCTTCAGATACAGCAC

Abstract

「GACGAAACTGAGAGATCCAGTGACCAGTGCGATGAAGACCATCTCCACCGTCTTG ACGTTGAGCACAAAAACGGTAATGACAATGGA ;TCTTCAAATAAACACCATTTGCATGATGAGGAGGACAATTTACCAGTGCAATCACG* AATCTACAAATGCTGTATTCTTGACTTATAAGCTCATGTGGTTTTATACTTTGTTAAT(ACTTTGTGACTGCAGCACAGACCAACGTGTTTCCCAGTAAGGTGGTCAGAATGAG(ACTGATGCTTGGCCTCACAGTCTGTGCAGTTGAGAGCCCCGGTCCCATTGTCATAA CGCCTCACTGGTCATGCCTTGGGCAGTTTATTTGGAAGTAAGTACACTAGGAACTA rGATGATGGAAGTAGGTGGTTTACAATCTCTGTTTGACTCTAAGCATGTGATGGTAT GAGGCCGCAGCGTCGCTCCAGCCGCTGTCTGGCCTGCCGCCGCCGCTCCCGCCT ICTTCCTGCAGCTGAAGAAGAGGACTGTCTCCTTCGGGATACTCGGACATGGTGAA GGAGAGCTGTCATTCATCACTGAAGAGCGAAAGCGTGTGTTTGCTGCATTTGCTCG「GTGGGTCTGATCGGGCCTGGATCCAGCTCTGTGGCCATCC

tGAAGGTCGTCTTGTCAAGCAGGTGCATTCACGAGAAATGG 3CCCGTCTCACGGAGGGCTTCCAGGGGCCTCCAGCGAGAAGAACCGCAAGTCCTA 'ATTAAAATTAAAACAGAAATTGGGGAAAAACATAAAAGAATTAAGATTTAATTACTG/ .CGCAAGTCAGACTCCAAGCAACGCTCAGGGATAGCAGGCTGGTGGAGCTCTGACC

CAATTGACTTTTGACACCCTTAGCCACACATCTGGTTAAACTGCCTTTCCATA
GGTTTGCTGAAGAGGAACTGGATTCTCATTGCAACCATCATTGCGGTCATTCTGGG
ГTATACATATACATATTTTTTAACTACAAAGGTTAAGTAGCTATATGTTTCTGTTAAAT ACAG
;GCAATGTGTGGCGCTTTCCCTACATCTGCTACCAAAATGGAGGGGGTAAGGTCAA, TACCTGTGCTACAAAAACGGTGGAGGTAAGAACTGCCGGTGTCTCTCTGCAGCGC
iTACGGGCTCTCGCCGTCGCCCTCAACCGCTGCACATGAGCCATTGGCGCTGCCAC TGATGTTTTCAATTCCAGTTTCAGTTTCATTCAACAGTCGCTAGACACTAGCGATTT/ ЗАTTCATTTTTCATTACTCAATTAAGTGTTAACGATTCATGACCAACTAAACTTCTCT亏AGTGAGAGGAAACAACCAGTCAAAACTCGCTTTGATGAATCGCGCTGCGACACAC ITAAGTGTCATTGTAGGGATACTCCGTGAGGAAATCCATGAGCTGTGGCCAGGGAA ،CTGTAGTTTACCATGTTTAAGGAAAAAAACAATAAATTTTCCCATTCGAAAATCTGA ACTTTTTCCAATTGCTGAATCTTATTTGATGATATAGTCACTGCACTTTTATAAATTAI GTTATAGAGAAAGACATTACATTGGAGGAGCTGGACCAAGATCACTATCCCGATCC ،GGCGGATGAGTTCAGAGCTGTCGCATCAGTAACGGGGGACTGTTGATGTGTGTCA ;ACACCCTGCTGTACAGTGAGG

ICCCACAAGTGCAGGTAAAGTTTTTAATTATATATTTGTATTTAACATTTATAAGATTT łAATAACATGTAATATTCATGTTTAGGTATTGTCTCTGCAATAGTTTCCAGTGGAGCT ¡ACAACCTGGACAGTGACAGCACCTACCGGACTCCCAGCATCATGAGTCGGCACC/

TAAGAGACACCGTTCATTTATTGAGCATGTTTCTCAATGCATATTTGTTGCTATCAT1 'GAAATGAATGAATGTAAATGCATCTACCCAATTCTGCCACAGCTGCAGCACAGGCT

AT
GTTCATGTTCAGATCTTTCGGATGACACGCCGTCTGTCACTCССССТСССССТСТС।

ГATATTTCATTATAGTCAATACCTGTCAATGTTGGGA 'AAAATAATGAGTCACGGATCGAAGG

こTGTCACAGCTGAAGTTGGCATCACTGGACACGTTGCTCAAAGAGCCTGAAACACA

ATTAGATGTAAACACATGCTATTCACCCAGAACTGAACACAAACAATCTGAATCAGC ЭACCACATTTCTAGAACTGCTGGATCTTGCA
:TGCTGTCCAGGACTGTGGAGTAATTCACATCCATGGCTTTTCACCGAGTCGAGTTA GAAGCCTGAAACTGAGAGACATAATTCACTGTCAGTCAATGCAACAAACAAAGGAT• ГGCATGGAAATATAAAAATGACAAACAAGTTTATATTTGAATTTGATCTATGTAAAATı GAAAAAGAGGTTGAAAAGATGGATTCATGGCAGC :CGACAGTCCTGATCCTGTGTCCATGTTGG ITGGTGAACTTC

'GTCGACGTTTATGTTTTCACTATTTCTCTTCATTTTTTTTTGTTTTATTACAATTTTAT' -GATTGTGTGTGTGTGTGTGTGTGTGTCTCAGAGGGCTGCAGTGTGGACCAGTCGT tCGGAGATCATATCACTCACT

「GTTGAGCTCTAATACGTCTCGTCGTTAATTATGTATCGTTTTATTATTGCTTCACTG*

GATAAAGTGAACTT

GAGTGACGTCACAGACACGGTGGAGAAC

TAGGTTGCTGTTGGAAGTGGTGTTAGTGAGGCCAGCAG

AGCACACACCGTGATATAAATTACACAGCAGCAGATATGTCTGGATGCAGTCATTG, GTCAGGGCACCAGCTGAAGTCTAAAACTTCAAATTCAGGCTTTCTTAAACCTCCATC ıGCAGTCACCCCATAATTCCAGACCAAACTAAGAGTGCTTACACATGAATCGGAGCA GAAGGAAGCAGTAACACGCCAAGGCAAAAAGGAACGATATTGATCAGAAGCTTCCC GTTATAAATGCAACATATTTCAAAATATGGCTAAATGTACGCTTAATTTAATTTCAGA

TTAATATTTTTCACTAACATGTTAATTTGTGTGTATAATTATTGACCTGTGATCTTCA\& -GTGTGGACGGAGATGCTGACGCTGCAGCTGTCAATCAACCGGCCAACAGCCCAG/

TCTGTGGTGCTGCATGATGGCTTTACACCGCAAACAGTCGCTGGTTTGACTATAAG

AAAATAATCACAAGCTGATACGAATATAGCTGATACAAATATAGTGAGTGTATAGAA

こTGATTTAATGAATCACTTGAGCCAATCAGAAACCAGCATTGTTCAAATGAACCAAT
\ACTGGTTGATCTGGTTTGTCCGTAGTTATGCTG
こCATCATATCTTGAGTTGTCATT
CCATTTGACCTATGTTGCAA
łGCTGCTGACTAATCTAATGTACATGCTAGGGATGCACTGATATGG
ATCTGCTGCTGAAGCTCCTGCACCTGTCAAGCCACGCACACCCCTCTAGAATCCAC

AGTAGGCTAATTAAAGTATTGCACATTTAATGCACGTATCTGCAGGTGTGTTGATGC

Supplemental File 1

adra1aa

NM_001324454.1	gagcgacgtgcattgcttgcgctcatagctttatgggtactgtccatcactatttccatc	1560
NV1180	gagcgacgtgcattgcttgcgctcatagctttatgggtactgtccatcactatttccatc	1560
NM_001324454.1	ggacctctattcggctggaaggaaccggcaccggatgatgaatccatatgcaagataact	1620
NV1180	ggacctc	1567

NM_001324454.1	gaggaacccggttatgccattttctcagctttgggatctttttacctccctctagtggtg	1680
NV1180		1567
NM_001324454.1	atcctctcaatgtattgtcgtgtgtatgttgtggcgaggagggaaacgcgaggactgatc	1740
NV1180		1567
NM_001324454.1	agcggacagaagactgagaagtcggatcacgctgagaccgtgaccttgcgaatacaccgc	1800
NV1180	agcggacagaagactgagaagtcggatcacgctgagaccgtgaccttgcgaatacaccgc	1627
NM_001324454.1	VLCCTASIMSLCVISVDRYIGVSYPLQYPSIVTERRALLALIALWVLSITISIGPLFGWK	180
NV1180	VLCCTASIMSLCVISVDRYIGVSYPLQYPSIVTERRALLALIALWVLSITISIGPQRTED	180

adra1ab

WT-		
mutant-		
	1002004	
	7 transmembrane receptor (rhodopsin family)	
XM_680297.7	ctgctgtatctgaagccttgggtcgctgggtgttcggtcgtcatttatgtaacgcctgga	600
NV1175	ctgctgtatctgaagccttgggtcgctgggtgttcggtcgtcatttatgtaacgcctgga	600

XM_680297.7	ccgctcttgacgtgttgtgctgcacggcgtccatcctcagcctctgtgtgatctctgtgg	660
NV1175	ATTTATGTAACccatcctca-----------------------1ctcgtgatctctgtgg	638
	* ** * ************	
XM_680297.7	atcgctgcatggccgtcagttacccgctccaataccettcctttgctacgggtcgaaggg	720
NV1175	atcgctgcatggccg	653

XM_680297.7	caatgactgcggtggcagctctctgggccetttcagctgctatctctgtcgggccactat	780
NV1175	--------------tcagtta	660
	** *	
XM_680297.7	ttggatggagggaacccatgccagaagacgagtcggtgtgcagagttaacgaagatccag	840
NV1175	cccgctggagggaacccatgccagaagacgagtcggtgtgcagagttaacgaagatccag 	720
XM_680297.7	VACHRNLRSVTHYFIGNLAIADLLLSSVVLPFSAVSEALGRWVFGRHLCNAWTALDVLCC	120
NV1175	VACHRNLRSVTHYFIGNLAIADLLLSSVVLPFSAVSEALGRWVFGRHLCNAWNLCNPSSA	120

chd8

WT -		
mutant-		
	1000 2000	
	Chromo Helicase conserved C-terminal domain \square SNF2 family N -terminal domain	
XM_005171312.3	tgttgatgaaggcaaagtggaagaattcaggaagattgaaagccgccaaccacgactcaa	2940
NV9 70	tgttgatgaaggcaa----gaagaattcaggaagattgaaagccgccaaccacgactcaa	2936
XM_005171312.3	EDVDEGKVEEFRKIESRQPR---LKRTPRPAASAWKKLDESTEYKNGNQLREYQLEGVNW	897
NV9 70		873
	******* : * : : * * *	

chrm4a

chrna2a

disc1

NM_001142263.1	tgtgaatccttcgggaaaccaccgcaggaggagcttcagacggccoggatacatgcggtc	240
NV1142	tgtgaatccttcgggaaacc-----aggaggagcttcagacggcecggatacatgcggtc	235
NM 001142263.1	MMFAGMVRVENTSKTLKTDIDSPCHRCAVRTGGVNPSGNHRRRSFRRPGYMRSEPINQLD	60
NV1142	MMFAGMVRVENTSKTLKTDIDSPCHRCAVRTGGVNPSGNQEELQTARIHAV*-------	51

dlg4a

drd1b

WT-mutant-		
0	100200400	
	7 transmembrane receptor	
NM_001135976.2	tcagtgtggaccgctactgggccatttcaagcccgtttcgctatgagcgaaagatgacac	660
NV1145	tcagtgtggaccgc----gggccatttcaagcccgtttcgctatgagcgaaagatgacac	656
NM_001135976.2NV1145	VISLAISDLLVAILVMPWKAATEIVGFWPFGAFCDVWVAFDIMCSTASILNLCVISVDRY	120
	VISLAISDLLVAILVMPWKAATEIVGFWPFGAFCDVWVAFDIMCSTASILNLCVISVDRG	120
NM_001135976.2	WAISSPFRYERKMTPKVAFIMISVAWTLSILISFIPVQLNWHKAQTTSYTELNGTYGELP	180
NV1145	-----PFQARFAMSER*	131
	**: . *: :	

drd2b

WT-
mutant-
XM_009301838.2 tgacaatgggaccggggctctcaactgcacagactgtgaggccaagcat 409
NV1147 tgacaatgggaccggggctctcaactgcacagactgtgaggccaagcaTAGTTAGCAAGt420
XM_009301838.2 cagtataactactatgccatgctcctgactctcctcatctttgtcattgtctttggcaat 469
NV1147 cagtataactactatgccatgctcctgactctcctcatctttgtcattgtctttggcaat480
XM_009301838.2 MDFLTEYPYNDTYYDNGTGALNCTDCEAKHQYNYYAMLLTLLIFVIVFGNVLVCMAVSRE 60

100 200 300 400

drd3

drd3-001 AAGTGCGTTCAGATGGGGTTCTGTTTCGGTTCTTCGCTGGAGAAGCTTAACAGATCTTCC 300
NV1227 AAGTGCGTTCAGATGGGGTTCTGTTTCGGTTCTTCGCTGGAGAAGCTTAACAGATCTTCC 300
drd3-001 ACACTTATGGCAATGTTTAGCAGTGGTGAATGGCTCTGGAATGACTCTGAGCATTCATTC 360
NV1227 ACAC 304****
drd3-001 ACCCCTGGGGGAAACTACAGCCCAGCGTCAGGCGTTGAAGAAGCGAAGAGGAATTATTAT 420
NV1227 -----TGGGGGAAACTACAGCCCAGCGTCAGGCGTTGAAGAAGCGAAGAGGAATTATTAT 359
drd3-001 GCCATGCTCTATTCCCTGCTCATCCTGGCTATCGTGTTTGGGAATGTTCTGGTTTGCATT 480
NV1227 GCCATGCTCTATTCCCTGCTCATCCTGGCTATCGTGTTTGGGAATGTTCTGGTTTGCATT 419drd3-001 GCTGTGCTTCGAGAGAGAGCTCTTCAGACCACCACCAACTACCTGGTGGTCAGTCTGGCA 540NV1227 GCTGTGCTTCGAGAGAGAGCTCTTCAGACCACCACCAACTCAG-----------TCTGGCA 469** ******drd3-001 GTGGCTGATCTGTTGGTCGCCTCACTGGTCATGCCTTGGGCAGTTTATTTGGAAGTGGTC 600NV1227 GTGGCTGATCTGTTGGTCGCC-----TCACATGCCTTGGGCAGTTTATTTGGAAGTGGTC 524ENSDART00000130568 MGFCFGSSLEKLNRSSTLMAMFSSGEWLWNDSEHSFTPGGNYSPASGVEEAKRNYYAMLY60NV1227 MGFCFGSSLEKLNRSSTLGETTAQRQALKKRR-------GIIMPCSIPCSSWLSCLGMF-
drd4-rs
WT-
mutant-

$$
\dot{0}
$$

100 200 300 4007 transmembrane receptor (rhodopsin family)
NM_001012620.2 agtatagacccaacggcggcccacgaggggtacaactacctggctttgatatgtggcgtg 480
NV1217 agtatagaccc- 431
NM_001012620.2 cctctcatcctcattatcattttggggaatgtcctggtatgcctcagtgtgctgaccgaa 540
NV1217
cgctcactcaaaacagcaaccaactacttcattgtcagtctggccgtggctgatctcctg 600
NV1217 60
NV1217 MVNVTPSIDPKQQPTTS 17
**********。

drd4a

NM_001012616.3	acaaccgcaaacacgtggaccagcgacagattgtcctgctctccgccacgtggatcctgg	660
NV1218		610

NM_001012616.3	ccttagccgtggcctcccccgtgatgttcggcatcaacaacgtccccaaccgggaccaca	720
NV1218		610
NM_001012616.3	gcgaatgcaagctggaggacaacaactacgttatctactcctccgtctgttcgtttttcg	780
NV1218		610
NM_001012616.3	tgccgtgccecatcatgctgctcctgtactgcggaatgttccggggcetgaggaactggg	840
NV1218		610
NM_001012616.3	aagaggctcggaaagctaaattaaggagcaacatggaggcctgccgaaagcttcaggagg	900
NV1218	--gaggctcggaaagctaaattaaggagcaacatggaggcctgccgaaagcttcaggagg	668
NM_001012616.3	IAVSIPLNYNRKHVDQRQIVLLSATWILALAVASPVMFGINNVPNRDHSECKLEDNNYVI	180
NV1218	IAVSIPLNYNRKRLGKLN*	138
	************: .: :	

esr2a

NM_180966.2	caggaagtggactcaggcegtgtgggaggtcacatcctctccccc-atcttcaactcatc	239
NV1182	caggaagtggactcaggccgtgtgggaggtcacatcctctcccccaTtcttcaactcatc	240
	*** *************	
NM_180966.2	MSEYPEGDSPLLQLQEVDSGRVGGHILSPIFNSSSP----SLPVENHPICIPSPYTDLGH	56
NV1182	MSEYPEGDSPLLQLQEVDSGRVGGHILSPILQLILSISASGESPHLHPIALHRPWPRLQH	60
	******************************: : . . ***. : * * *	

gnrhr4

NM_001098193.1	agcaaaagtgagggtgataattaccttcactctttgcgcagtgtcagctgtgtgcaacct	240
NV1280	agcaaaagtgagggtgataattaccttcactctttgcgcagtgtcagctgtgtgcaacct 	240
NM_001098193.1	cggcg--tgttgtgggctgccagcaccaacaacaagcgcaagtcccatgtacgaatttta	298
NV1280	cggcAACGgttgtgggctgccagcaccaacaacaagcgcaagtcccatgtacgaatttta 	300
NM_001098193.1	VSAVCNLGVLWAASTNNKRKSHVRILIMNLTVADLLVTFIVMPVDAAWNITVQWLAGDLA	120
NV1280	VSAVCNLGNGCGLPAPTTSASPMYEF *	86
	******** : . . *	

grm5a

homer1b

NM_001326290.1
tttgcagagtacaaagaagcagccagaatagccaaggagaagtctctagaaaagatggag 720NV1165 tttgcagagtacaaagaagcagccagaatac-caaggagaagtctctagaaaagatggag719$t * \quad *$
NM_001326290.1 ITPNMSFTKTSQKFGQWADSRANTVYGLGFSSEHHLAKFADKFAEYKEAARIAKEKSLEK 120
NV1165 ITPNMSFTKTSQKFGQWADSRANTVYGLGFSSEHHLAKFADKFAEYKEAARIPRRSL*ー- 117

immp2|

NM_001003755.2
NV1092

NV1092

NM_001003755.2 NRWSVRNYHVQRGDIVSVLSPKNPQQKIIKRVIGIEGDFIKTLGYKNRYVRVPDGHLWIE 120
gatcatcaaacgggtcatcgggatcgaaggggacttcattaaaacgctgggatataaaaa
gatcatcaaa-------tcgggatcgaaggggacttcattaaaacgctgggatataaaaa353
NRWSVRNYHVQRGDIVSVLSPKNPQQKIIKSG--SKGTSLKRWDIKTVM*107

Kctd 13		
WT-		
mutant-		
0	1003300	
	BTB/POZ domain	
NM_001077151.1	agcatcgactctgaaggctgggtggtgttggaccgatgcgggagacacttttccctggtg	480
NV9 66	agcatcgactctgaaggctgggtggtgtt--------gcgggagacacttttccctggtg	472
NM_001077151.1	MSAEASGSSGGHAVTVSGSSPSSSSHVGDEKPGRSLVSSKYVKLNVGGTLHYTTVQTLSK	60
NV966	MSAEASGSSGGHAVTVSGSSPSSSSHVGDEKPGRSLVSSKYVKLNVGGTLHYTTVQTLSK 	60
NM_001077151.1	EDSLLRSICDGSTEVSIDSEGWVVLDRCGRHFSLVLNFLRDGTVPLPDSTRELEEVLKEA	120
NV9 66	EDSLLRSICDGSTEVSIDSEGWVVLRETLFPG-----------VELPAGRD--------S	101
	************************* :	
NM_001077151.1	QYYRLQGLVQHCLSTLQKRRDVCRGCHIPMITSAKEEQRMIATCRKPVVKLQNNRGNNKY	180
NV9 66		105

nfkb1

NM_001353873.1	GCTTACAAATCACAGAACAACCAAAACAGAGGGGCTTCAGGTTCCGCTATGGGTGTGAGG	540
NV1244	GCTTACAAATCACAGAACAACCAAAACAGAGGGGCTTCAGGTTCCGTGTGAGGGCACGGA	540
	**	
NM_001353873.1	GCCCGT---------CTCACGGAGGGCTTCCAGGGGCCTCCAGCGAGAAGAACCGCAAGT	591
NV1244	GGTGTGAGGTGTGAGGGCACGGAGGGCTTCCAGGGGCCTCC----------------1GCGAG	587
	* ***********************	
NM_001353873.1	CCTACCCACAAGTGCAGATCTGTAATTATCAGGGCCCTGCTCGTGTGGTGGTCCAGCTGG	651
NV1244	AAGAACCACAAGTGCAGATCTGTAATTATCAGGGCCCTGCTCGTGTGGTGGTCCAGCTGG	647

PKQRGFRFRYGCEGPSHGGLPGASSEKNRKSYPQVQICNYQGPARVVVQLVTNSQHPHLH
oxt

NM 178291.2	ccttctccgtgtgagatgtctggaaaggcctgcggttatgagggacgctgcgctgctcct	360
NV1081	ccttctccgtgtgagatgtctggaaaggcctgc------------gctgcgctgctcct	347
NM_178291.2	GEGIGCLVGSPETLRCLEEDFLPSPCEMSGKACGYEGRCAAPGVCCDSEGCSVDQSCVDG	120
nv1081	GEGIGCLVGSPETLRCLEEDFLPSPCEMSGKACAALLLESAATRR-	105
	*********************************.	

sapap2

0	250 50̇0 750	1000
	Guanylate-kinase-associated protein (GKAP) protein Selenoprotein P, , terminal region	
XM_680713.7	cttccaagatgaacggcaccaagggagactctcgctcagacagcggacaccaccaccatc	c 1020
NV1136	cttccaagatgaacggcaccaagggagactctcgctca----gcggacaccaccaccatc	C 1016
XM_680713.7	KLFTKSHSLEGSSKMNGTKGDSRSDSGHHHHHHHHHGHDHGSHKHSKRSKSKERKSDSKQ	Q 240
NV1136	KLFTKSHSLEGSSKMNGTKGDSRSADTTTITTIIT-AMTMGATNTANEVRARN---ASQT	T 236
	********************** . . : : : : : : *:	

scn1lab

WT -		
mutant-		
0	50011500	2000
	Cytoplasmic domain of voltage-gated $\mathrm{Na+}$ + ion channel \quad Ion transport protein	
XM_005165770.3	tctatctggttaatctcatcctggctgtggtggccatggcgtatgatgagcagaaccagg	1740
NV978	tctatctggttaatctcatcc----tgtggtggccatggcgtatgatgagcagaaccagg	1736
XM_005165770.3	WAFLSLFRLMTQDFWENLYQQTLRAAGKPYMIFFVLVIFLGSFYLVNLILAVVAMAYDEQ	420
NV978	WAFLSLFRLMTQDFWENLYQQTLRAAGKPYMIFFVLVIFLGSFYLVNLILWWPWRMMSRT	420

shank3b

slc18a2

WT-

mutant-
0
100

$$
200
$$

$$
3000
$$

$$
400
$$

500

NM_001256225.2	ggtggacgacgaggctgctcagatggttaagaatcactccatgacccotctttctccatc	360
NV1206		325
NM_001256225.2	gagcacctttcagagcattgtgtctttgtatgacaacaccacacgtgtgacaggcttcag	420
NV1206	-agcacctttcagagcattgtgtctttgtatgacaacacc	364
NM_001256225.2	cccgcagatgagcacagctggtccaatgagcetggctcctacttttgtgagccetcaaaa	480
NV1206	---acacala	371
NM_001256225.2	ccagtccgactgtcceaaagcagatgaccagcttctgaacgagaatgtgaaagtgggtct	540
NV1206	ccagtccgactgtcceaaagcagatgaccagcttctgaacgagaatgtgaaagtgggtct	431
NM_001256225.2	MGLFDALRDFSLLTWLREERQSRRLILLIVFIALLLDNMLLTVVVPIIPSYLYTVDDEAA	60
NV1206	MGLFDALRDFSLLTWLREERQSRRLILLIVFIALLLDNMLLTVVVPIIPSYLYTVDDEAA	60
NM_001256225.2	QMVKNHSMTPLSPSSTFQSIVSLYDNTTRVTGFSPQMSTAGPMSLAPTFVSPQNQSDCPK	120
NV1206		89
	*****************.: *: *:	

slc1a1

WT.		
mutant-		
0	$20 ̇ 0$	
	Sodium:licarboxllate symporter family	
NM_001002666.1	atgctggggaagaaagagcggagaagcagagatgtgaagggtttgctgaagaggaactgg	180
NV1211	atgctggggaagaaagagcggagaagcagag--atgaagggtttgctgaagaggaactgg	178
NM_001002666.1	MEMLGKKERRSRDVKGLLK------------RNWILIATIIAVILGIGLGVVVRDYTSL	47
NV1211	MEMLGKKERRSRDEGFAEEELDSHCNHHCGHSGDWSWCG-------GAG--LHLSDPAGE	51
	************ : . . * : : *	

slc22a15

WT-		
mutant-		
0	$\begin{array}{llll} 1000 & 20 ் 0 & 30 ் 0 & 40 ் 0 \end{array}$	
Major Facilitator Superfamily		
NM_001109699.1		152
NV1209	tctggaatggatttagaggaggctttccaggtTGGAGGATGTTCCAGGATGTTCTCTCTA	180
NM_001109699.1	---ggttggagagttcggaagtcaccagaagcgaatgatcacagtgctggtgttcctcca	209
NV1209	TCAggttggagagttcggaagtcaccagaagcgaatgatcacagtgctggtgttcctcca	240
NM_001109699.1	MDLEEAFQVVGEFGSHQKRMITVLVFLQIYMACQSMLIILVGAVPEYHIEPVTEGVDGDV	60
NV1209		16
	********** \quad -	

slc25a27

0	100200	300
	Mitochondrial carrier protein	
NM_200341.1NV1195	cagaattggtcacattccccctggatcttaccaaaaccagactccagatccagggtgaag	240
	cagaattggtcacattTTC	199

NM_200341.1	gcagatctggaaagaatggtggaagcgtacagactcagaaatacaggggcatgttgagca	300
NV1195	-----TGagcgtacagactcagaaatacaggggcatgttgagca	238
NM_200341.1	MSHLOENSRWPRVSKFTLSACAAAVAELVTFPLDLTKTRLOIQGEGRS----GKNGGSV-	55
NV1195	MSHLOENSRWPRVSKFTLSACAAAVAELVTFSERTDS---EIOGHVEHSCRYSARRGALE	57
	:***. . . . *	

slc39a11

WT-		
mutant-		
0	$\begin{array}{lll} 50 & 100 & 150 \end{array}$	
	ZIP Zinc transporter	
XM_005170120.3	cacagacacgtgtacaatgcgaagcaggaagttcttcactcggtgcctgtaaacaacagc	60
NV1200		34

XM_005170120.3	atgtttccaggcctcagtccgctggttcaggccetgctggggactctgttcacctgggcg	120
NV1200	--ttcactcggtgc	46
	***** **	
XM_005170120.3	ctgactgcagctggagccgcactggtcttcatcttctccagcagacagaagcggattttg	180
NV1200	ctg--taaacaacagcatgCTCCACAGTCAAGcttctccagcagacagaagcggattttg	104
	*** * * ** * * * ***************************	
XM_005170120.3	-------------------MFPGL-------------------SPLVQALLGTLFTWAL	21
NV1200	MLHSQASPADRSGFWMAVWDLQQGLCSQPRIGLCWLLLLRWQRNLGNMETLLSSQWLWAL	60

slc6a3

WT-		
mutant-		
	200400	600
	Sodium:neurotransmitter symporter family	
NM_131755.1	tttacgctgttggaccacttcgctgcggggacgtcaattctctttggagtactaattgag	1500
NV1087	tttacgctgttggaccacttcgctgcggggacgtcaattctctttggagtactaattgag 	1500
NM_131755.1	gccatcggcatcgcctggttttacggagtggatcgcttcagtgatgatatcgaggagatg	1560
NV1087	g-------catcgcctggttttacggagtggatcgcttcagtgatgatatcgaggagatg	1553
NM_131755.1	FTLLDHFAAGTSILFGVLIEAIGI--AWFYGVDRFSDDIEEMIGQRPGLYWRLCWKFVSP	538
NV1087	FTLLDHFAAGTSILFGVLIEASPGFTEWIASV---------MISRR*---------------10	517
	********************* *: .****	

slc6a4a

WT-		
mutant-		
0	200 400 600	
	Sodium:neurotransmitter symporter family	
XM_009291669.2	aagagtacgggggagagcagcagaaagtgccggagtctcaagagaacggcaggctggttg	840
NV1208	aagag----ggggagagcagcagaaagtgccggagtctcaagagaacggcaggctggttg	836
XM_009291669.2	MDMKESMMMNQEYGGEQQKVPESQENGRLVVDSVPEKDQKSGSGPGQVSNGYRSTSPQSP	60
NV1208	MDMKESMMMNQEGESSRKCRSLKRTAGWLWIAFR-RRIRNLALGLGKSPMVIAVHLLKAP	59

slc6a8

XM_005166721.2 aatggaaacgcgcacccaagcgtcaacgggaccctcaacggggggcceatgtcagcggct 840NV1197 aatggaaacgcgcacccaagcgtcaacgggaccctcaTGTCggggcccatgtcagcggct************************************* ***********************)
XM_005166721.2
accggagccatctcggcggtggagaagaagagggagggctaccccgagcgagagacgtgg900
NV1197
XM_005166721.2
NV1197

```
XM_005166721.2
```MEKSSLDADCCALNMVLVEEKKGHLIPNGNAHPSVNGTLNGGPMSAATGAISAVEKKREG60
NV1197 MEKSSLDADCCALNMVLVEEKKGHLIPNGNAHPSVNGTLMSGPMSAATGAISAVEKKREG60
XM_005166721.2 YPERETWTRQMDFIMSCVGFAVGLGNVWRFPYLCYKNGGGVFLIPYVLFIFLGGIPIFFL 120
NV1197 YPERETWTRQMDFIMSCVGFWGTSGASRTCATKTVEE-SSSFPMCYSYFW-
XM_005166721.2109
-
******************** : * .. * : * *
NV1197EIALGQFMKAGSINVWNIAPLFKGLGYASMVIVFFCNTYYIMVLAWGFYYFIKSFNATLP180NV1197122

\section*{srr}

\begin{tabular}{|c|c|c|}
\hline XM_002661465.4 & gacattccagcttaggttttgagatcctggatgtcgtaccctatccagatgtggtggttg & 660 \\
\hline \multirow[t]{2}{*}{NV1157} & gacattccagcttaggttttgagatcctggatgtcgtaccctatccagatgtggtggttg & 660 \\
\hline & ** & \\
\hline XM_002661465.4 & tttgctgtggtggtggagggttactttctggtgtggccgctgccatcaaactgtctggtt & 720 \\
\hline \multirow[t]{2}{*}{NV1157} & t--------------------tactttctggtgtggccgctgccatcaaactgtctggtt & 700 \\
\hline & * ************************************** & \\
\hline XM_002661465.4 & NLGVEVERVPTTQLMGVVNRCVQEDGMTFLHSIDDPDLIAGHSSLGFEILDVVPYPDVVV & 180 \\
\hline \multirow[t]{2}{*}{NV1157} & NLGVEVERVPTTQLMGVVNRCVQEDGMTFLHSIDDPDLIAGHSSLGFEILDVVPYPDVVV & 180 \\
\hline & & \\
\hline XM_002661465.4 & VCCGGGGLLSGVAAAIKLSGCEDTKIYGVEPEGACTMYKSFIEKRPVGMDAKSIASGLAP & 240 \\
\hline NV1157 & & 194 \\
\hline
\end{tabular}

\section*{tph2}

\begin{tabular}{|c|c|c|}
\hline NM_001310068.1 & aaggcetgtggctggatatctctcaccacgagacttcctggctggactggcttatcgagt & 1140 \\
\hline NV1089 & aaggcetgt-gctggatatctctcaccacgagacttcctggctggactggcttatcgagt & 1139 \\
\hline NM_001310068.1 & LLTKHCGYREDNIPQLEDVSLFLRERSGFTVRPVAGYLSPRDFLAG-LAYRVFNCTQYIR & 359 \\
\hline NV1089 & LLTKHCGYREDNIPQLEDVSLFLRERSGFTVRPVLDISHHETSWLDWLIECLIALSIYVT & 360 \\
\hline
\end{tabular}

\section*{ube3a}

\begin{tabular}{clll}
Unpolarized & Kullback-Leibler divergence & Polarized & Kullback-Leibler divergence \\
'immp2lHO' & Inf & & 'immp2IHO' \\
slc18a2HT' & & 0.503872588 & 'adra1aaHO'
\end{tabular}```

[^0]: Supplemental Figure 3 Usage ratios of mutant states. Usage ratios of all (a) polarized and (b) unpolarized states are compared to corresponding states in wild-type (error bars indicate \pm SEM). The usage ratios are compatible with observations described in the text for the ethograms of Figure 2, and with significance test in Supplemental Figure 6.

