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Abstract 

Dysbiosis in the gut microbiome due to antibiotic usage can persist for extended periods 

of time, impacting host health and increasing the risk for pathogen colonization. The 

specific factors associated with variability in gut microbiome recovery remain unknown. 

Using data from 4 different cohorts in 3 continents comprising >500 microbiome profiles 

from 117 subjects, we identified 20 bacterial species exhibiting robust association with 

gut microbiome recovery post antibiotic therapy. Functional and growth analysis showed 

that microbiome recovery is supported by enrichment in carbohydrate degradation and 

energy production capabilities. Association rule mining on 782 microbiome profiles from 

the MEDUSA database enabled reconstruction of the gut microbial ‘food-web’, 

identifying many recovery-associated bacteria (RABs) as primary colonizing species, 

with the ability to use both host and diet-derived energy sources, and to break down 

complex carbohydrates to support the growth of other bacteria. Experiments in a mouse 

model recapitulated the ability of RABs (Bacteroides thetaiotamicron and 

Bifidobacterium adolescentis) to promote microbiome recovery with synergistic effects, 

providing a two orders of magnitude boost to microbial abundance in early time-points 

and faster maturation of microbial diversity. The identification of specific microbial 

factors promoting microbiome recovery opens up opportunities for rationally fine-tuning 

pre- and probiotic formulations that prevent pathogen colonization and promote gut 

health. 
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Introduction 

The human gut microbiome harbors trillions of bacteria providing diverse metabolic 

capabilities and with essential roles in host health, particularly energy metabolism, 

immune homeostasis, and xenobiotic metabolism1. A stable consortium of commensal 

microbiota is also believed to play a key role in resisting colonization by pathogens, with 

dysbiosis being associated with increased risk for infections2,3. Several recent studies 

have further highlighted the importance of the gut microbiome for host health, 

particularly in infants and the elderly, with loss of diversity and dysbiosis being 

associated with various metabolic, immunological and neurological diseases4, and 

poorer response to cancer immunotherapy5,6. 

Among the factors that can perturb the gut microbiome, antibiotic usage is known to 

be a major one that can cause profound and long-term alterations7-9. As antibiotics are 

widely used in healthcare, their impact on host health through microbiome dysbiosis is 

likely to be significant and has not been fully quantified till date10,11. In terms of acute 

response, antibiotic associated diarrhea is a common complication, while in the medium 

term recovery of the microbial community can be slow and variable7-9 and conditional on 

the initial state12. Antibiotic use can also select for drug resistance genes and 

organisms, thus creating a reservoir for onward transmission of resistance 

cassettes13,14. Epidemiological and model organism studies suggest that long-term 

consequences of antibiotic usage include immunological diseases in children15, 

metabolic diseases in adults16, and increased risk for infections (e.g. by Clostridium 

difficile17) in the elderly18. 

Despite the mounting evidence on the importance of gut microbiome function and 

how antibiotic usage can severely impact it, we still do not know what enables 

microbiome recovery. In particular, we do not know whether specific groups of microbial 

taxa and the functions they perform accelerate or impede recovery and explain the 

variability that is seen across individuals7-9,12. Ecological interactions are known to play 

a key role in the recovery of many ecosystems19,20 but an analogous understanding is 

not currently available for the gut microbiome. A systems-level comprehension of the 
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processes underlying gut microbiome recovery could thus aid in the design of rational 

interventions that reduce side-effects of antibiotic treatment and promote host health.  

RESULTS 

Identifying a microbial signature associated with gut microbiome recovery post 
antibiotic treatment 

In order to identify microbial markers associated with gut microbiome recovery, we 

assembled and systematically analyzed data from 4 different cohorts (a total of 117 

individuals with >500 samples). These cohorts represent individuals from 4 different 

countries on 3 continents (Singapore, Canada12, England8, Sweden8), a wide range of 

age groups (21-81) and using different classes of antibiotics, allowing us to infer 

unifying factors promoting recovery  (Table 1). One of the cohorts is new and has not 

been previously analyzed (deep shotgun metagenomic sequencing of 74 samples, with 

>80 million reads on average), involving mostly elderly subjects from Singapore 

receiving inpatient antibiotic treatment (manuscript in preparation; Suppl. Data File 1). 

Overall, the diversity of the assembled cohorts enabled robustness in the analysis (via 

cross-validation; see Methods) and ensured generality of results. In addition, each 

cohort was analyzed independently to account for cohort-specific biases, and the results 

were aggregated through meta-analysis.  

Metagenomic data from each cohort was systematically re-processed using 

appropriate analysis pipelines (16S rRNA or Shotgun metagenomic sequencing; 

Methods).	 For uniform analysis and to get balanced groups, subjects were stratified 

within each cohort based on median taxonomic diversity of the microbial community 

post antibiotics into ‘recoverers’ and ‘non-recoverers’. Recoverers exhibited a U-shaped 

recovery profile for gut microbial diversity, while non-recoverers start with a slightly 

lower median initial diversity and have even further reduced diversity up to 3 months 

post antibiotics (Fig. 1A). As expected, post-antibiotic microbiomes for recoverers were 

found to be more similar to pre-antibiotic microbiomes compared to non-recoverers, 

whose microbiomes generally appear to be diverged from unperturbed communities and 

dysbiotic (Mann-Whitney test p-value < 1.4×10-12; Fig. 1B, C). This pattern was seen to 
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be consistent across cohorts and using different diversity metrics (Suppl. Fig. S1). In 

agreement with the notion that recovery of microbiome diversity is beneficial to the host, 

we also noted an enrichment of species that are known to protect against pathogen 

colonization in the post-antibiotic gut microbiomes of recoverers versus non-recoverers 

(Suppl. Note 1, Suppl. Tab. S1). 

To determine microbial taxa with a role in microbiome recovery, a two-stage 

approach and cross-cohort validation strategy was used to increase sensitivity and 

specificity of the association analysis (Methods; Suppl. Data File 2; 56 bacterial 

species in stage 1). Overall, 20 microbial species were identified to be significantly 

associated with microbiome recovery in at least two cohorts (Recovery Associated 

Bacteria – RAB; Table 2), with 6 species identified in 3 cohorts and 2 in all 4 cohorts 

(Bacteroides uniformis and Alistipes putredinis; Fig. 1D). The observed validation 

across diverse cohorts highlights the robustness of the associations that were observed 

for various taxa. In general, variability across cohorts is expected given the differences 

in important biological factors that could influence the gut microbiome such as diet21, 

environment22, genetics23 and the antibiotics used, though some differences could be 

technical as well (e.g. 16S rRNA vs Shotgun metagenomic sequencing). It is interesting, 

therefore, that despite this expected variability common associations emerge, 

particularly in terms of genus level homogeneity of the results (e.g. Bacteroides species; 

Fig. 1D; Table 2). We noted that many RABs have been previously shown to have 

beneficial impact on host health and negatively correlated with disease states, e.g. 

Bacteroides uniformis and Parabacteroides merdae have been observed to be 

negatively associated with Inflammatory bowel disease and obesity24, Faecalibacterium 

prausnitzii and Roseburia inulinivorans are known for their butyrate producing and anti-

inflammatory properties24-27, and Bacteroides thetaiotamicron and Bifidobacterium 

species are known for their ability to prevent pathogen colonization27-29 (Table 2). 

However, not all RABs are as well characterized for their contribution to gut health and 

importantly, their role in resilience and recovery of the gut microbiome after antibiotic 

treatment remains unknown.   
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We further investigated the abundance patterns of RABs across various treatment 

stages (pre-, during and post- antibiotics; Methods) and noted that while most were 

enriched before treatment (in recoverers vs non-recoverers; e.g. Bacteroides uniformis, 

Bacteroides thetaiotamicron, Alistipes putredinis and Parabacteroides distasonis), some 

were enriched in later timepoints, indicating that they may play a secondary/synergistic 

role in recovery as explored further later in the manuscript (Suppl. Fig. S2; e.g. 

Bifidobacterium adolescentis and Faecalibacterium prausnitzii). In addition, we explored 

the use of machine learning models to predict post-antibiotic recovery status from pre-

treatment taxonomic abundances for an individual and observed that models with 

moderate levels of accuracy could be obtained (70.4% from leave-one-out cross 

validation; Suppl. Note 2). 

Enrichment in carbohydrate degradation and energy metabolism capabilities is 
associated with bacterial growth and gut microbiome recovery  

To understand microbial functions and the mechanism behind microbiome recovery, we 

further analyzed the metagenomic datasets that were available as part of this study (CA 

and SG cohorts; Table 1). As resistance to antibiotics could facilitate recovery, as a first 

hypothesis, we looked at the resistomes of recoverers and non-recoverers to see if they 

could explain the taxonomic differences observed (Methods). We noted that among the 

RABs, while resistance genes from Bacteroides and Alistipes species were slightly 

enriched in the resistomes of recoverers vs non-recoverers (not significant; Suppl. Fig. 
3), genes from other RABs were not enriched in the resistomes, suggesting that other 

microbial functions may play a complementary role for facilitating recovery. We then 

compared gene families and pathways in the metagenomes of recoverers and non-

recoverers to more generally identify functional capacities associated with microbiome 

recovery (Methods; FDR adjusted p-value < 0.1 and LDA score > 1.25; Suppl. Data 
File 3), with the analysis being restricted to pre- and during stages of antibiotic 

treatment to enrich for functions playing a primary role in recovery. This comparison 

identified a core set of growth-associated pathways pertaining to the biosynthesis of 

amino acids, nucleotides, co-factors and cell wall constituents (Fig. 2). In addition, 

pathways involved in carbohydrate degradation and energy production were also 
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significantly over-represented in the gut microbiomes of recoverers. This association 

was also validated based on inferred pathway abundances in the English and Swedish 

cohorts (carbohydrate and butanaote metabolism, Mann-Whitney test p-value < 0.03 

and 0.02 respectively; Suppl. Fig. 4; Suppl. Data File 3).  

The CAZyme database of carbohydrate active enzyme families was used to further 

characterize the role of carbohydrate metabolism in microbiome recovery. Annotation of 

CAZyme families in RABs indicated that they contained a significantly higher number of 

CAZyme families compared to non-RABs (Mann-Whitney test p-value < 1e-11; Fig. 3A). 

Higher carbohydrate degrading capability thus seems to be a key shared functional 

property among the RABs30. This was also reflected at the community level where the 

microbiomes of recoverers was enriched in CAZyme families compared to non-

recoverers (Mann-Whitney test p-value < 0.002 and 0.04 for CA and SG respectively; 

Fig. 3B; Suppl. Data File 4). The higher carbohydrate metabolism capacities of RABs 

could enable better nutritional harvest and thus enhance microbial growth (consistent 

with enriched pathways in Fig. 2) and subsequent recovery of gut microbiota. 

To study this further from a mechanistic standpoint, we hypothesized that microbial 

community growth could be the intermediate phenotype that explains the association 

between carbohydrate active enzymes and microbiome recovery. An approach based 

on increased DNA around the origin of replication in replicating cells was used to infer 

bacterial growth rates from metagenomic data31 (Suppl. Data File 5). Using the median 

species-specific growth rate as a measure of community growth rate in a microbiome, 

we observed that recoverers exhibited higher community growth rate overall than non-

recoverers across all stages of antibiotic treatment (Mann-Whitney test p-value < 0.02 

and 0.003 for CA and SG cohorts, respectively; Fig. 3C). Additionally, we noted that the 

pre- and during treatment abundance of RABs had a significantly higher correlation with 

post-treatment community growth rate across individuals (Mann-Whitney test p-value < 

0.038, combining CA and SG cohorts; Fig. 3D). Finally, consistently in both the CA and 

SG cohorts, community growth rate at all time points was positively correlated with the 

number of CAZyme families (for SG, R=0.675; for CA, R=0.636; Fig. 3E). Taken 

together, this data links the greater carbohydrate degrading potential in recovery-
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associated bacteria with higher microbial community growth rate and subsequent 

enhanced recovery of the microbiome. 

Capability to degrade host and diet-derived carbohydrates links RABs to the 
recovery of the microbial food web 

Carbohydrate active enzymes can be varied in their function and it is possible that 

RABs use different combinations of functions to support microbiome recovery. To 

understand the role of RABs and their specific carbohydrate degradation capabilities, 

we took a set of 125 bacterial genomes that have been annotated for their CAZyme 

repertoire30 and clustered them based on their genome-wide profile of substrate-specific 

enzyme copy numbers (Suppl. Fig. S5). Based on this analysis, RABs were primarily 

observed to aggregate in 2 out of the 5 clusters obtained, with significant enrichment in 

cluster 1 containing genomes abundant in host (mucins) as well as diet-derived (plant 

and animal) carbohydrate degrading enzymes (Fisher’s exact test p-value < 0.038). The 

ability to degrade mucins is believed to play an important role in bacterial colonization of 

the intestine32. While some RABs fall in cluster 2 with genomes abundant in primarily 

diet-derived (plant and animal) carbohydrate degrading enzymes, only 1 RAB belongs 

to cluster 3 (Starch/Glycogen degradation) and no RABs were found in clusters 4 and 5 

(Fungal carbohydrate and Peptidoglycan degradation), indicating that only specific 

carbohydrate degrading processes play a role in microbiome recovery. 

Ecological interactions often play a key role in the recovery of an ecosystem19,20. To 

further study the inter-relationships between the various RABs, we sought to reconstruct 

a microbial ‘food-web’ that captures dependency relationships between bacteria in the 

gut microbiome. Association rule mining is a commonly used data mining technique to 

infer dependency relationships and we introduce its use here in the microbiome context. 

We analyzed a large database of microbiome profiles (782 samples; MEDUSA33; 

Methods) to identify directed binary relationships, where species A is needed for the 

presence of species B. The resulting network contains 192 bacterial species with 610 

non-redundant edges including interactions such as the known relationships between 

Bacteroides uniformis and other Bacteroides and group C. coccoides species34 (Suppl. 
Data File 6). 
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We further investigated whether, as with most natural ecosystems, the gut microbial 

community could be represented by a pyramidal web, where the presence of a large 

number of species could be influenced by a few primary colonizers. One of the goals in 

this analysis was to check whether a subset of the RABs acted as primary colonizers 

facilitating the growth and recovery of the other species constituting the microbiome. We 

organized the ‘food-web’ network in terms of taxa that primarily have outgoing edges 

and thus support the growth of other bacteria (primary colonizers), those that have both 

outgoing and incoming edges (secondary colonizers), and those that primarily have 

incoming edges and thus depend on others for their growth (tertiary colonizers; Fig. 
4A). Interestingly, RABs were present as primary and tertiary colonizers but not as 

secondary colonizers. In addition, the group of RABs that were primary colonizers were 

all from cluster 1 with mucin degrading capabilities, while cluster 2 RABs were restricted 

to being tertiary colonizers (plant and animal carbohydrate degrading). These 

observations are in agreement with our expectation that while some of the RABs may 

be essential to microbiome recovery and act as keystone species (primary colonizers), 

others may only play a supportive role or serve as indicator species for microbiome 

recovery (tertiary colonizers).  

Overall, the carbohydrate degradation profiles of RABs and their inter-relationships 

in the food-web suggest a model for how they interact in the context of microbiome 

recovery (Fig. 4B). RABs that belong to cluster 1 can degrade mucin in addition to diet-

derived carbohydrates, making them adept as primary host colonizers that can also 

break down complex carbohydrates for use as energy sources by other bacteria. This 

can facilitate the growth of non-host-colonizing, complex carbohydrate degraders in the 

gut, as well as other bacteria that rely on the simple sugars produced for their growth. 

Furthermore, production of SCFAs (particularly butyrate) by RABs and the recovering 

bacterial community can stimulate mucin production by colonocytes providing a positive 

feedback loop that can contribute to accelerated microbiome recovery35,36. 

Primary and tertiary colonizing RABs synergistically enhance microbiome 
recovery in vivo 
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Microbiome recovery is likely to be a multi-stage process involving several bacteria with 

different roles in different individuals. To begin to understand these interactions based 

on the RABs identified in this study, we conducted a proof-of-concept experiment in a 

mouse model to see if some of our human observations could also be qualitatively 

recapitulated in mice. Specifically, we gave mice antibiotics for 5 days, followed by oral 

gavage of different RABs (B. thetaiotamicron - Bt, B. adolescentis - Ba), negative 

controls (Bacillus spp. - Bsp, PBS) and combinations (B. thetaiotamicron and B. 

adolescentis - Bt+Ba, Bacillus spp. and B. adolescentis - Bsp+Ba; Methods). Stool 

samples were then collected every three days for up to 22 days and analyzed using 

shotgun metagenomic sequencing (Methods; Fig. 5A). In total, the study involved 6 

groups, with 2-6 cages per group (each cage with 2 mice) and 9 timepoints (243 

metagenomic libraries). 

Overall, all treatment groups exhibited a >3-log reduction in microbial biomass after 

antibiotic treatment as expected (Methods; Fig. 5B). However, starting from 1 day after 

gavage (day 7), and more noticeably 4 days after gavage (day 10), the Bt and Bt+Ba 

groups exhibited similarly enhanced recovery (>100×) of microbial biomass compared 

to other groups (Fig. 5B; Suppl. Fig. S6A). This is not explained by colonization of the 

gavaged species alone, as reads belonging to them were removed before doing this 

analysis. Interestingly, despite being a known probiotic, gavage with Ba alone did not 

promote enhanced recovery of biomass, while Bt+Ba supported more stable recovery 

compared to Bt alone (Fig. 5B; Suppl. Fig. S6B). While the Bt and Bt+Ba groups 

converge to their microbial biomass at pre-antibiotic levels by day 10, all other groups 

continue to have lower biomass at day 22. Similar trends were also seen in terms of 

microbial community profiles, with the Bt and Bt+Ba groups being more similar to the 

diversity of the pre-antibiotic microbiome at day 10 than in other groups (Suppl. Fig. 
S6B). However, the Bt+Ba group appears to be better in recovering a pre-antibiotic 

microbiome at day 22 compared to Bt alone, indicating that synergistic interactions 

between Bt and Ba may play a role here. 

The Bt and Bt+Ba groups also exhibited lower levels of Enterobacteriaceae 

compared to other groups from day 10 onwards (Fig. 5C), and similar patterns were 
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seen for other potential pathogens as well (e.g. Clostridium difficile, Chlamydia 

trachomatis and Staphylococcus aureus). These observations are suggestive of a form 

of colonization resistance that may be provided by the enhanced microbiome recovery 

in these two groups. Recapitulating the observations in human cohorts, we also 

observed enhanced relative abundance of enzymes for plant and animal cell wall 

degradation as well as mucin degradation in the groups exhibiting faster recovery (Fig. 
5D, E). As a control comparison, peptidoglycan degrading enzymes were not 

specifically enriched in the Bt and Bt+Ba groups, in agreement with our earlier 

observation that these functions are not defining characteristics for RABs (Fig. 5F, 
Suppl. Fig. S5). 

Discussion 

The bacterial species and functions identified in this study provide a first, data-driven 

view of how shared microbial factors contribute to gut microbiome recovery in diverse 

human cohorts around the world. Our findings emphasize the central role of enabling 

energy harvest from diet and the ability to colonize the host in the keystone species that 

underpin ecological recovery, while antibiotic resistance in general plays a less 

important role. As environmental factors strongly influence the gut microbiome22, the 

specific keystone species that are important for an individual could additionally vary with 

host and dietary factors. Uncovering these in larger cohorts should be feasible using 

similar analytical approaches as used here, and could help train antibiotic and 

environment-specific machine learning models to predict microbiome recovery. Such 

models would have clinical utility, especially for at-risk elderly or cancer patients, to 

guide targeted intervention and prevention strategies. 

 Consistent with our emerging understanding of how diet modulates the gut 

microbiome21,22, another perspective from which to see our results is the importance of 

feeding gut bacteria correctly (in addition to having the right species) to promote 

recovery. Many of the identified RABs are specialist carbohydrate fermenters (e.g. 

pectin) and a high fiber/low fat diet could aid in selecting and expanding them. For 

example, in a study on how gut microbiota differ in twins discordant for obesity control 

metabolism, Ridaura et al identified 4 RABs (B. uniformis, B. thetaiotaomicron, Alistipes 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2018. ; https://doi.org/10.1101/350470doi: bioRxiv preprint 

https://doi.org/10.1101/350470
http://creativecommons.org/licenses/by-nc-nd/4.0/


putredinis and Parabacteriodes merdae) as being transplantable features of a “lean 

microbiome”, but transplantation was dependent on a high fiber diet37. Similarly, pectin 

supplementation can promote species from the Bacteroidetes phylum with associated 

improvement in gut barrier function38, as well as more stable fecal microbiota 

transplantation39. Finally, different oligosaccharides can promote the growth of several 

butyrate producing RABs40,41 (Table 1), contributing to microbiome recovery by 

reducing host inflammation and increasing mucin production36. 

In general, ecological theory has suggested that ecosystem recovery is a complex, 

multi-step process that is determined by interactions between many species19,20. Similar 

properties are likely to hold for the human gut microbiome with multiple RABs and the 

synergistic interactions between them playing a role to promote microbial cross-feeding, 

enable biomass recovery, modulate host inflammation, prevent pathogen colonization 

and eventually regain taxonomic and functional diversity. While results from our mouse 

model have provided initial hints, further exploring combinatorial interactions between 

RABs is likely more feasible using in vitro co-culture42 or in silico metabolic models43,44. 

Metabolic modeling could, in particular, help explore the contributions of different 

carbohydrate degradation genes and processes to microbiome recovery44, especially for 

many anaerobic bacteria that are hard to culture or genetically modify45. Such 

investigations could also be informative in understanding the contributions of core and 

accessory genomes within a species and whether strain-level differences could cause 

variability in microbiome recovery across individuals. 

Conceptually, the microbial ‘food-web’ as data-mined in this study is a powerful 

resource for organizing our understanding of how microbes interact and assemble in the 

human gut. By using a large database of human gut microbiome profiles, we can 

determine microbial assemblages that are feasible and the dependency relationships 

that they suggest. These can then help interpret longitudinal studies of recovery and 

infer the succession of species that play a role. While our current work suggests that 

introduction of primary colonizers such as B. thetaiotamicron may be a necessary and 

sufficient way to reduce dysbiosis in comparison to existing probiotics such B. 

adolescentis, synergistic combinations could provide other benefits such as colonization 
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resistance against opportunistic pathogens. Further studies of cross-feeding interactions 

in the ‘food-web’ may also help identify prebiotics that could serve as supplements to 

accelerate the process of gut microbiome recovery. In general, understanding 

microbiome recovery post antibiotic treatment sets the stage for a more general 

understanding of how microbiome dysbiosis in other diseases could be reverted back to 

a healthy state using individual-specific pre- and probiotic formulations. 
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METHODS 

Study Populations 

(a) Singapore: The Singaporean cohort ('SG'; manuscript in preparation) is a natural 

history cohort consisting of individuals admitted to Tan Tock Seng Hospital (TTSH) in 

Singapore and prescribed antibiotics for 1-2 weeks (Table 1). Stool samples were 

collected as soon as possible after admission (pre-/early: <3 days into treatment), 

during and up to 3 months after antibiotic usage. The study was approved by the 

Institutional Review Board at TTSH (DSRB 2013/00769).  

(b) Canada: Shotgun metagenomic datasets for a Canadian cohort12 (‘CA’) were 

obtained from the European Nucleotide Archive database (Study Accession Number: 

PRJEB8094; Table 1). The study analyzed fecal samples from healthy individuals who 

were administered antibiotics (three timepoints: pre-antibiotic day 0, during treatment 

day 7 and post treatment day 90). 

(c) England and Sweden: 16S rRNA sequencing datasets for an English and a Swedish 

cohort8 (‘EN’, ‘SW’) were obtained from the NCBI short read archive (Project ID: 

SRP057504; Table 1). In both cohorts, healthy volunteers were given antibiotics and 

fecal samples analyzed for day 0 (pre-antibiotic), day 7 (during treatment) and for one 

and two month follow-ups (post treatment).  

For the CA, EN and SW cohorts, all antibiotic treated subjects with data from the 3 

treatment stages were further analyzed to identify recovery associated bacterial taxa 

and functions.  

DNA extraction and sequencing for SG cohort 

Extraction of DNA from stool samples was carried out using PowerSoil DNA Isolation Kit 

(MoBio Laboratories, California, USA) with minor modifications to the manufacturer’s 

protocol (volume of solutions C2, C3 and C4 were doubled and centrifugation time was 

extended to twice the original duration). Purified DNA was eluted in 80µl of Solution C6. 

DNA libraries were prepared by using 20ng of extracted DNA re-suspended in a volume 
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of 50µl and subjected to shearing using Adaptive Focused AcousticsTM (Covaris, 

Massachusetts, USA) with the following parameters; Duty Factor: 30%, Peak Incident 

Power (PIP): 450, 200 cycles per burst, Treatment Time: 240s. Sheared DNA was 

cleaned up with 1.5× Agencourt AMPure XP beads (A63882, Beckman Coulter, 

California, USA). End-repair, A-addition and adapter ligation was carried out using the 

Gene Read DNA Library I Core Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s protocol. Custom barcode adapters (Suppl. Table 1) were used in place 

of GeneRead Adapter I Set for adapter ligation. DNA libraries were cleaned up twice 

using 1.5× Agencourt AMPure XP beads (A63882, Beckman Coulter, California, USA) 

before enrichment of libraries using the protocol adapted from Multiplexing Sample 

Preparation Oligonucleotide kit (Illumina, California, USA). Enrichment PCR was carried 

out with PE 1.0 and custom index-primers (Suppl. Table 1) for 14 cycles. Libraries were 

quantified using Agilent Bioanalyzer and prepared with Agilent DNA1000 Kit (Agilent 

Technologies, California, USA), pooled in equimolar concentrations. Sequencing of the 

samples was performed using the Illumina HiSeq 2500 (Illumina, California, USA) 

sequencing instrument to generate >80 million 2×101 bp reads on average. 

Taxonomic and functional profiling for all cohorts 

For metagenomic sequencing datasets (CA and SG cohorts) raw reads were quality 

filtered and trimmed using default options in famas (https://github.com/andreas-

wilm/famas). Reads that are potentially from human DNA were removed by mapping to 

the hg19 reference using BWA-MEM46 (default parameters; coverage >80% of read). 

The remaining reads were used for taxonomic profiling using MetaPhlAn with default 

parameters25,47 (Suppl. Data File 1). Functional profiles for the metagenomes were 

obtained using the HUMAnN2 program [14] (Suppl. Data File 3). 

For the 16S rRNA sequencing datasets (EN and SW cohorts) taxonomic 

classification was done by mapping reads to the SILVA database48 (v123), using 

BLASTn [7]. For each read, the species corresponding to the best hit (with identity > 

97% and query coverage > 95%) was obtained and was taken as the source species of 

the read. In the case of multiple hits, the source taxon was computed as the Lowest 

Common Ancestor of the hit species. Reads assigned to each taxon were aggregated to 
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obtain a relative abundance profile for each sample (Suppl. Data File 1). PICRUSt49 

was used to infer KEGG pathway abundances from the corresponding taxonomic 

profiles (Suppl. Data File 3). 

Identification of recovery associated bacterial taxa and functions  

Individuals were classified as ‘recoverers’ and ‘non-recoverers’ in each cohort to enable 

cohort-specific association analysis and identification of recovery associated bacterial 

taxa and functions. The median post-treatment Simpson diversity of the microbiome 

(species level) was used as the threshold for this classification in each cohort to provide 

balanced groups. Samples within a 10% window of the interquartile range from the 

median were marked as having indeterminate status and excluded from further 

analysis. A classification approach rather than regression analysis was used as the 

observed diversity values were not well distributed across the range of values. A two-

stage approach was used to combine results from all cohorts to sensitively identify 

recovery associated taxa and an across-cohort validation strategy was used to identify 

taxa that are significant in at least 2 out of 4 cohorts. In stage 1, a non-parametric test 

was used within each cohort (Mann-Whitney test) to filter candidate taxa (p-value > 

0.05). The remaining candidates were merged across cohorts to compute a combined 

p-value using Fisher’s method and filtered with a FDR adjusted p-value threshold of 0.1 

(Bonferroni-Hochberg method). Next, in stage 2, cohort-specific FDR adjusted p-values 

were re-computed for this subset of taxa and only taxa with consistent (in terms of 

direction of change) significant associations (FDR < 0.1) in at least 2 cohorts were 

retained. This analysis was done within each treatment stage (pre-, during and post- 

antibiotics) as well as jointly to increase sensitivity in identifying recovery associated 

taxa regardless of treatment stage.  

Functional profiles computed with HUMAnN2 were compared between 

recoverers and non-recoverers in the SG and CA cohorts using the linear discriminant 

analysis approach in LEfSe50 (version 1.1.0) to identify differentially abundant pathways. 

Microbial community growth rate analysis 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2018. ; https://doi.org/10.1101/350470doi: bioRxiv preprint 

https://doi.org/10.1101/350470
http://creativecommons.org/licenses/by-nc-nd/4.0/


An in silico approach, originally proposed by Korem et al31, was used to compute the 

skew of DNA copy number starting from around the origin of replication to the 

termination region (peak-to-trough ration or PTR), as an estimate of growth rates for 

individual species in the microbiome from shotgun metagenomic data (PTRC1.1: 

https://genie.weizmann.ac.il/software/bac_growth.html, default parameters). The 

median PTR value for species in a community was then used to represent community 

growth rate (CGR) for each sample (Suppl. Data File 5). 

Profiling of carbohydrate active enzymes (CAZymes) 

An in-house nucleotide gene database for CAZymes was created by downloading 

sequences from NCBI corresponding to Accession IDs for different CAZyme families 

annotated in dbCAN51 (http://csbl.bmb.uga.edu/dbCAN/). Metagenomic reads were 

mapped to this database for each sample with BWA-MEM46 (default parameters) to 

compute the fraction of reads mapping to the CAZyme gene per kbp per million reads in 

the metagenome (RPKM). Results were aggregated for each CAZyme family based on 

values for individual CAZyme genes belonging to a family.  

Analysis of antibiotic resistance genes within gut microbiomes 

Resistome profiling within a microbiome was performed similarly by mapping 

metagenomic reads using BWA-MEM (default parameters) to the ARG-ANNOT 

database52, and calculating the fraction of reads mapping to a resistance gene per kbp 

per million reads of the metagenome (RPKM). Kraken53 was used with default 

parameters to obtain the taxonomic classification of reads and thus obtain the relative 

representation of different taxonomic groups within the resistome. 

Clustering of species based on their carbohydrate degradation profiles 

The substrate-specificities of different Glycoside hydrolase (GH) and Polysaccharide 

lyase (PL) families was obtained from previous studies27,28. These included substrates 

such as plant cell wall carbohydrates, animal carbohydrates, peptidoglycans, fungal 

carbohydrates, sucrose/fructose, dextran, starch/glycogen and mucins. Copy number 

annotations for each GH and PL family in 125 bacterial species were obtained from a 

previous genome scale analysis of CAZymes in species belonging to the human gut 
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microbiome30. Copy numbers of GH/PL genes within each of the 8 substrate 

specificities were aggregated and normalized to obtain an overall carbohydrate 

degradation profile for each bacterial species. Degradation profiles were then clustered 

using hierarchical clustering (‘hclust’ function in R with Euclidean distance and complete 

linkage clustering) to group species based on their enzyme repertoire for different 

categories of carbohydrates. Association of the identified recovery associated bacteria 

to one or more of these clusters was then evaluated using Fisher’s exact test. 

Construction of microbial ‘food web’ using association rule mining 

To identify directed associations between bacterial species where the presence of one 

is important for the presence of another (but not vice versa), a data-mining technique 

called ‘association rule mining’54 was applied to a large public collection of gut 

microbiome profiles in the MEDUSA database33 (782 gut microbiome profiles from USA, 

China and Europe). To convert relative abundance profiles from MEDUSA into 

presence-absence profiles (1 if a species is present and 0 otherwise), relative 

abundances < min
%
𝑎'% + 0.01× max

%
𝑎'% − min

%
𝑎'% , i.e. within 1% of the minimum relative 

abundance values 𝑎'%  for species 𝑖  across subjects 𝑗 , were assumed to be due to 

technical noise. Binary association rules between species were then inferred using the 

apriori algorithm implemented in the R package ‘arules’ (using Confidence threshold of 

0.95 and Support threshold of 0.05). After removal of transitive edges and symmetric 

relationships, a total of 610 directed association edges remained across 192 species 

(Suppl. Data File 6). Association edges and corresponding nodes for species were 

plotted using the hierarchical layout of Cytoscape, where the hierarchical level of a 

species was based on the difference between the number of outgoing and incoming 

edges.  

Promoting microbiome recovery in a mouse model 

Ethics statement: Mouse experimental protocols were reviewed, approved and carried 

out in strict accordance to the recommendations by the Institutional Animal Care and 

Use Committee from the National University of Singapore. 
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Bacterial strains and culture conditions: Lyophilized probiotic strains (ATCC 29148 

Bacteroides thetaiotaomicron, DSM 20083 Bifidobacterium adolescentis) were revived 

in TSB media supplemented with 5% defibrinated sheep blood under anaerobic 

conditions at 37°C. Upon revival, B. thetaiotaomicron was subcultured and maintained 

in TYG media, whereas B. adolescentis and an environmental Bacillus isolate were 

subcultured and maintained in BHI media. 

Antibiotic administration and inoculation with test strains: Eight-week-old C57BL/6J 

male mice from a single breeding colony were gavaged individually with 2.5 mg 

ampicillin per day for 5 days under specific pathogen-free conditions. Upon cessation of 

antibiotic treatment, mice were allowed to recover for 24 hours, before 2-6 cages of 

mice (two mice per cage) were each orally inoculated with: A) 5 × 107 CFUs B. 

thetaiotaomicron, B) 5 × 107 CFUs Bacillus spp., C) 5 × 107 CFUs B. adolescentis, D) 5 

× 107 CFUs B. thetaiotaomicron + 5 × 107 CFUs B. adolescentis, E) 5 × 107 CFUs 

Bacillus spp. + 5 × 107 CFUs B. adolescentis, or F) phosphate-buffered saline (PBS). 

Strains were transported from anaerobic chamber to animal facility via anaerobic “balch-

type” culture tubes with aluminum seals (Chemglass Life Sciences, New Jersey, USA).  

Fecal sample collection and DNA extraction: Fecal pellets were freshly collected as a 

cage unit (two mice per cage) over multiple times points: before antibiotic treatment 

(Day 0), mid-point of antibiotic treatment (Day 3), end-point of antibiotic treatment (Day 

6), 1-day post-gavage (Day 7), 4-days post-gavage (Day 10), 7-days post-gavage (Day 

13), 10-days post-gavage (Day 16), 13-days post-gavage (Day 19) and 16-days post-

gavage (Day 22). Total bacterial DNA was extracted from fecal samples using the 

PowerSoil DNA isolation kit (MoBio Laboratories) according to the manufacturer’s 

instructions. 

Library preparation and deep sequencing: Community DNA extraction was carried out 

using PowerSoil DNA Isolation Kit (MoBio Laboratories, California, USA) according to 

the manufacturer’s protocol, without modifications. Library preparation and deep 

sequencing was performed as described for the human fecal samples obtained from the 

SG cohort (described earlier under the section ‘DNA extraction and sequencing for SG 
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cohort’) with the following modification: 50 ng of DNA was used as input for preparation 

of libraries.  

Taxonomic profiling: For obtaining the taxonomic profiles of the mouse gut 

metagenomes, reads were mapped to the NR database using DIAMOND55. The 

taxonomic classification of each sequence was then obtained by using the LCA-based 

approach in MEGAN56 (default parameters, minimum score of 50).  

Calculation of microbial biomass: Bacterial biomass (up to a constant factor) was 

estimated by taking all reads classified to bacterial taxa and normalizing by non-

microbial reads. Specifically, plant or host-derived reads were used, respectively, based 

on the assumption that the absolute amounts of their DNA would remain roughly 

constant in the analyzed mouse fecal samples. Similar trends were observed for both 

forms of normalization (default=plant normalized), normalization based abundances 

were found to correlate with qPCR estimates (plant normalized, r=0.73, p-value=10-4; 

host normalized, r=0.82, p-value=3.5×10-6), and the observed differences between Bt 

and Bt+Ba groups versus other groups were also validated using qPCR (day 10, fold-

change=94-170×). Note that sequencing based biomass estimates have the advantage 

that they allow us to subtract reads belonging to the gavaged species and are also not 

affected due to variations in 16S rRNA copy number across taxa. 

qPCR Analysis: Absolute quantification of the 16S rRNA gene was done by quantitative 

PCR (qPCR). A pair of universal 16S bacterial primers57 were used to amplify DNA 

extracted from the six different treatment groups on days 0, 3, 10 and 13 (Suppl. Table 
1). Reactions were prepared on a 384-well plate, in triplicates, using 5 µL of PowerUp 

SYBR Green Master Mix (Thermo Fisher Scientific, Massachusetts, USA), 0.5 µL of 

5µM primers and 1 µL of 10× diluted DNA, in a total volume of 10 µL for each reaction. 

The ViiA 7 Real-Time PCR System (Thermo Fisher Scientific, Massachusetts, USA) 

was used for qPCR with the following amplification parameters: 1 cycle of 95˚C for 2 

min, 40 cycles of 95˚C for 15 s, 60˚C for 15 s, and 72˚C for 1 min. A standard curve was 

created using serial dilution of synthesized double-stranded DNA oligomers (gBLOCK, 

Integrated DNA Technologies, Inc., Iowa, USA; Suppl. Table 1) to convert CT values to 
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copy numbers. Copy numbers from day 0 were used to scale bacterial abundances to 

the same starting baseline. 

Data Access 

Illumina sequencing data for this study (mouse models) has been deposited to the 

Sequence Read Archive under project ID SRP142225 (reviewer metadata link: ftp://ftp-

trace.ncbi.nlm.nih.gov/sra/review/SRP142225_20180423_152835_2726e05d1c01c63b

0742fdbb3d89c0bc). 
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FIGURE LEGENDS 

Figure 1: Microbial signatures associated with gut microbiome recovery. (A) 

Density plots showing the variation of Simpson diversities for recoverers and non-

recoverers from the SG and CA cohorts across the three different stages of treatment. 

While the recoverers have a classic ‘U’ shaped diversity profile, non-recoverers lose 

diversity during antibiotic treatment and maintain that level post treatment. (B) Principal 

Coordinates Analysis (PCoA) plot for the CA cohort showing the dysbiosis in the post 

treatment gut microbiome profiles of the non-recoverers as compared to recoverers and 

‘Control’ individuals (i.e. healthy volunteers who were not given any antibiotic 

treatment). (C) Boxplots showing the distribution of Jaccard Distances of post treatment 

gut microbiomes for recoverers and non-recoverers in relation to healthy controls in the 

‘CA’ cohort (median value). Both (B-C) show that in addition to having higher diversity, 

the post treatment gut microbiome of recoverers has significantly higher similarity to 

microbiomes from healthy controls compared to the non-recoverers. (D) Relative 

abundance boxplots across cohorts for the six main species that were identified as 

being associated with microbiome recovery, in at least three out of four cohorts (see 

Table 2 for full list). Note that ‘*’, ‘**’ and ‘’***’ denote cohort-specific FDR adjusted p-

values less than 0.1, 0.05 and 0.01 respectively. 

Figure 2: Gut microbiome functions involved in post-antibiotic recovery. 
Functional pathways enriched in the gut microbiomes of recoverers or non-recoverers 

(of the SG cohort) in the ‘Pre/Early’ and ‘During’ stages of antibiotic treatment. Note that 

a star (‘*’) indicates those pathways for which significant differences were also obtained 

in the CA cohort. Pathways were grouped into those important for energy production (in 

orange) and those involved in biosynthesis (in blue), highlighting the role of these two 

processes in microbiome recovery.  

Figure 3: Linking microbial functions with microbiome recovery. Subfigures 

provide evidence for a model of microbiome recovery based on RABs being enriched 

for carbohydrate degradation capabilities (CAZyme), which in turn promote faster 

community growth (CGR), and ultimately microbiome recovery (associations shown in 

each subfigure are highlighted in blue). (A) Empirical distributions for the number of 
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CAZyme families in RABs and non RABs showing that RABs are strongly enriched for 

CAZymes. (B) Bean plots showing the variation in the number of CAZyme families 

(empirical distributions) detected in the gut microbiomes of recoverers and non-

recoverers in the CA and SG cohorts. In both cohorts, recoverers have more CAZyme 

families represented in their metagenomes (lines indicate median values; Mann-

Whitney test). (C) Bean plots showing variation in the gut microbial community growth 

rate (empirical distributions) of recoverers and non-recoverers in the CA and SG 

cohorts. In both cohorts, recoverers have higher community growth rates (lines indicate 

median values; Mann-Whitney test). (D) Bean plot showing correlation of median 

abundances of RABs and non RABs in the pre- and during phase of antibiotic treatment 

to the post-treatment community growth rate of individuals in the SG and CA cohorts 

(empirical distributions). In general, the abundance of RABs is better correlated with 

post-treatment community growth rate (Mann-Whitney test). (E) Correlation between the 

number of CAZyme families detected and the overall community growth rate across all 

gut microbiomes constituting the CA and SG cohorts. In both cohorts, community 

growth rate are consistently correlated with CAZyme diversity. 

Figure 4: Role of RABs in recovery of the microbial food web.  (A) Graph showing 

network structure of microbial dependencies inferred using an association rule mining 

approach, where an edge from species A to species B indicates that A’s presence is 

required to have B in the community. Nodes are ordered from the bottom to the top 

such that species at the bottom have more outgoing edges than incoming edges 

(‘Primary colonizers’), while species at the top have more incoming edges than outgoing 

edges (‘Tertiary colonizers’). RABs (highlighted in different colors based on the genus 

they belong to) were observed either at the bottom or top of the graph. RABs at the 

bottom of the graph were exclusively from cluster 1 (degradation profile; Suppl. Fig. 
S5), defined by mucin degrading CAZymes. Clusters based on abundance profile over 

time (Suppl. Fig. S2) are indicated using numbers and do not seem to be biased in 

different regions of the graph. (B) Schematic representation of the gut showing a model 

for microbiome recovery based on these observations. RABs from cluster 1 (Suppl. Fig. 
S5) colonize the epithelial mucosa better because of their mucin degrading capabilities 

(step 1), and since they can also break down dietary plant and animal derived 
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carbohydrates (step 2), they act as primary colonizers that facilitate the growth of non-

primary colonizers (step 3). Some of these secondary and tertiary colonizers may be 

better adapted to degrading plant and animal carbohydrates. The overall activity of 

primary and non-primary colonizers results in producing simpler sugars (promoting the 

growth of more bacteria (step 4) and short chain fatty acids (SCFAs), which are then 

utilized by colonocytes for their growth leading to increased mucin production (step 5). 

This positive feedback loop promotes faster recovery of microbial biomass and 

community diversity to re-establish homeostasis in the gut. 

Figure 5: Promoting microbiome recovery in a mouse model using RABs. (A) 

Schematic depicting the design of a mouse model experiment to study the impact of 

RABs in promoting microbiome recovery. Mice were given antibiotics for 5 days, 

followed by a rest day and gavage of different RABs and controls. Shotgun 

metagenomics was then used to monitor microbiome changes every 3 days. (B) 

Microbial biomass (median ± 1 s.d.) in different groups of mice across time (excluding 

gavaged species). Stars in all subfigures (‘*’) indicate timepoints where the Bt and 

Bt+Ba groups were significantly different from other groups (Mann-Whitney test p-value 

< 0.05). (C) Relative abundance of Enterobacteriaceae (median ± 1 s.d.) in different 

groups of mice across time. (D, E, F) Reads per million (RPM) mapping to CAZymes 

associated with plant/animal cell wall, mucin and peptidoglycan degradation, 

respectively, across different experimental groups and timepoints. 
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TABLES 

Table 1: Details of the different cohorts used in this study. 

Cohort 
No. of 

Subjects/
Samples 

Sequencing Age Range Antibiotics Used 

Singapore 
(SG) 27/129 Shotgun 

Metagenomic 32-81 Primarily Co-Amoxiclav 
and Clarithromycin 

Canada 
(CA) 24/72 Shotgun 

Metagenomic 21-35 Cephalosporin 

England 
(EN) 37/219 16S rRNA 24-26 Amoxicillin 

Sweden 
(SW) 29/173 16S rRNA 22-30 Clindamycin/Ciprofloxacin 
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Table 2: List of recovery associated bacterial taxa (RABs). RABs are ordered by the 
number of cohorts in which they are significantly associated (bold p-values). 

Species 
Cohort-specific FDR adjusted p-value  

Comments 
Canada England Sweden S’pore 

Alistipes putredinis 0.046 0.083 0.044 <0.001 Associated with weight loss in 
obese individuals37 

Bacteroides uniformis 0.082 0.008 0.029 0.005 Negatively associated with 
obesity34 

Alistipes shahii 0.033 0.069 0.245 0.001 Known commensal58 

Bacteroides 
thetaiotaomicron 0.001 0.697 0.054 0.015 

Diverse carbohydrate 
degrading enzymes59; 
Prevents pathogen 
colonization60 

Bacteroides caccae 0.003 0.917 0.380 <0.001 
Carbohydrate degrading; 
Negatively associated with 
obesity37 

Parabacteroides 
distasonis 0.027 0.877 0.025 0.010 Carbohydrate degrading61  

Bifidobacterium 
adolescentis 0.012 0.054 0.662 0.001 Known probiotic62 

Bacteroides intestinalis 0.009 0.777 0.889 <0.001 
Carbohydrate degrading; 
Negatively associated with 
obesity63 

Bacteroides stercoris 0.012 0.370 0.051 0.321 Enriched in pectin 
fermenters64 

Bacteroides eggerthii 0.248 0.425 0.068 0.003 Enriched in pectin 
fermenters64 

Parabacteroides 
merdae 0.245 0.509 0.019 0.056 Negative association with 

obesity37 
Pseudoflavonifractor 
capillosus 0.013 0.054 0.245 0.467  

Roseburia inulinivorans 0.560 0.054 0.072 0.712 Produces butyrate65,66 
Subdoligranulum 
variabile 0.013 0.292 0.091 0.734 Produces butyrate66 

Faecalibacterium 
prausnitzii 0.012 0.013 0.301 0.359 Butyrate producing w/ anti-

inflammatory properties41 
Ruminococcus bromii 0.013 0.370 0.931 0.005  
Ruminococcus torques 0.125 0.010 0.677 0.062 Can degrade mucin27 

Bifidobacterium longum 0.066 0.697 0.415 0.086 Known probiotic67 and an 
inhibitor of rotavirus68 

Eubacterium siraeum 0.082 0.032 0.266 0.187 
Degrades wheat bran, 
contributing to beneficial 
effects of cereal fiber68 

Eubacterium eligens 0.661 0.083 0.054 0.270 Produces butyrate64 
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