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 2 

ABSTRACT 29 

Klebsiella pneumoniae (phylogroup Kp1), one of the most problematic pathogens associated 30 

with antibiotic resistance worldwide, is phylogenetically closely related to K. quasipneumoniae 31 

[subsp. quasipneumoniae (Kp2) and subsp. similipneumoniae (Kp4)], K. variicola (Kp3) and two 32 

unnamed phylogroups (Kp5 and Kp6). Together, Kp1 to Kp6 make-up the K. pneumoniae complex. 33 

Currently, the phylogroups can be reliably identified only by gene sequencing. Misidentification using 34 

standard methods is common and the clinical significance of K. pneumoniae complex members is 35 

therefore imprecisely defined. Here, we evaluated the potential of MALDI-TOF mass spectrometry to 36 

discriminate K. pneumoniae complex members. We report for the first time the existence of mass 37 

spectrometry biomarkers associated with the phylogroups, with a sensitivity and specificity ranging 38 

between 80-100% and 97-100%, respectively. Strains within phylogroups Kp1, Kp2, Kp4 and Kp5 39 

each shared two specific peaks not observed in other phylogroups. Kp3 strains shared a peak that was 40 

only observed otherwise in Kp5. Finally, Kp6 had a diagnostic peak shared only with Kp1. Kp3 and 41 

Kp6 could therefore be identified by exclusion criteria (lacking Kp5 and Kp1-specific peaks, 42 

respectively). Further, ranked Pearson correlation clustering of spectra grouped strains according to 43 

their phylogroup. These results call for incorporation of spectra of all K. pneumoniae complex 44 

members into reference MALDI-TOF spectra databases, in which they are currently lacking. This 45 

advance may allow for simple and precise identification of K. pneumoniae and closely related species, 46 

opening the way to a better understanding of their epidemiology, ecology and pathogenesis.   47 
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INTRODUCTION 48 

Klebsiella pneumoniae is an increasingly challenging human bacterial pathogen, causing 49 

hospital or community-acquired infections that are associated with high rates of antibiotic resistance 50 

(1, 2). Population diversity studies have shown that K. pneumoniae is in fact part of a complex of 51 

species, being phylogenetically closely related to K. quasipneumoniae (subsp. quasipneumoniae and 52 

subsp. similipneumoniae) and K. variicola (3–5). Before recent taxonomic updates (6, 7), K. 53 

pneumoniae and the other above taxa were designed as K. pneumoniae phylogroups Kp1, Kp2, Kp4 54 

and Kp3, respectively (8). Together with two novel phylogroups (Kp5 and Kp6) described recently 55 

(5), these taxa constitute the K. pneumoniae complex. Although K. pneumoniae is numerically the 56 

major cause of human infections among members of the complex, the involvement of the other 57 

members of the complex in human infections is gaining recognition (4, 8–12). However, the 58 

unsuitability of traditional clinical microbiology methods to distinguish species within the complex 59 

leads to high rates of misidentifications (most often as K. pneumoniae) that are masking the true 60 

clinical significance of each phylogroup and their potential epidemiological specificities (8, 9, 12, 13). 61 

In fact, the different members of the K. pneumoniae complex can be reliably identified only based on 62 

gene sequencing (e.g. blaLEN, blaOKP, blaSHV, rpoB, gyrA, parC) (4, 7, 14). Some PCR-based 63 

identification methods were developed but they are prone to errors or do not distinguish all 64 

phylogroups (8, 15–17). Clearly, there is a need for reliable, cost-effective and fast identification 65 

methods able to discriminate members of the K. pneumoniae complex. 66 

Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry 67 

(MS) has revolutionized routine identification of microorganisms, being a fast and cost-effective 68 

technique. It now represents a first line identification method in many clinical, environmental and food 69 

microbiology laboratories (18). In the case of the K. pneumoniae complex, MALDI-TOF MS 70 

identification remains largely unsatisfactory given the absence of well characterized, representative 71 

members of the complex in spectral databases. Currently, only K. pneumoniae and K. variicola are 72 

included in the Bruker database (https://www.bruker.com/fileadmin/user_upload/1-73 

Products/Separations_MassSpectrometry/MALDI_Biotyper/US_CA_System/MBT_list_of_organisms74 

_10_2017.pdf), and identification of even these two species is imprecise given the lack of reference 75 
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spectra of other phylogroups (13, 19). To address this important limitation of currently MALDI-TOF 76 

MS technology, we used a collection of well characterized reference strains from the six K. 77 

pneumoniae complex phylogroups and analyzed them by MALDI-TOF MS in order to define the 78 

potential of this method to identify species within the K. pneumoniae complex.  79 

 80 

MATERIAL AND MEHODS 81 

Bacterial strains. A set of 46 strains previously characterized by whole-genome sequencing 82 

or using core gene sequences (5, 7, 20, 21) were analyzed in this study (Table S1).  The strains 83 

belonged to the taxa K. pneumoniae (sensu stricto, i.e., Kp1; n=10), K. quasipneumoniae subsp. 84 

quasipneumoniae (Kp2, n=9), K. quasipneumoniae subsp. similipneumoniae (Kp4, n=7), K. variicola 85 

(Kp3, n=9), and to two taxonomically undefined lineages named Kp5 (n=6) and Kp6 (n=5). Strains 86 

had been stored in brain heart infusion broth containing 25% glycerol at -80°C and were sub-87 

cultivated before use in this study. 88 

Spectra acquisition. An overnight culture on Luria-Bertani agar (37°C, 18h) was used to 89 

prepare the samples with the ethanol/formic acid extraction procedure following the manufacturer 90 

recommendations (Bruker Daltonics, Bremen, Germany). Samples (1 μL) were spotted onto an MBT 91 

Biotarget 96 target plate, air dried and overlaid with 1 μL of a saturated α-cyano-4-hydroxycinnamic 92 

acid (HCCA) matrix solution in 50% of acetonitrile and 2.5% of trifluoroacetic acid. Mass spectra 93 

were acquired on a Microflex LT mass spectrometer (Bruker Daltonics, Bremen, Germany) using the 94 

default parameters (detection in linear positive mode, laser frequency of 60 Hz, ion source voltages of 95 

2.0 and 1.8 kV, lens voltage of 6 kV) within the mass range of 2,000-20,000 Da. For each strain, a 96 

total of 24 spectra from 8 independent spots were acquired (3 spectra per spot, instrumental 97 

replicates). External calibration of the mass spectra was performed using Bruker Bacterial Test 98 

Standard (BTS).   99 

Spectra analysis. The spectra were preprocessed by applying the “smoothing” and “baseline 100 

subtraction” procedures available in FlexAnalysis software (Bruker Daltonics, Bremen, Germany), 101 

exported as peak lists with m/z values and signal intensities for each peak in text format, and imported 102 

into a dedicated BioNumerics v7.6 (Applied Maths, Ghent, Belgium) database. Peak detection was 103 
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performed in BioNumerics using a signal to noise ratio of 20.  The instrumental replicates (24 spectra 104 

for each strain) were used to generate a mean spectrum for each strain using the following parameters: 105 

minimum similarity, 80%; minimum peak detection rate, 60%; constant tolerance, 1; and linear 106 

tolerance, 300 ppm. Finally, peak matching was performed to search all distinct peaks (called peak 107 

classes in BioNumerics) using as parameters: constant tolerance, 1.9; linear tolerance, 550 ppm; 108 

maximum horizontal shift, 1; peak detection rate, 10. The discriminating value of each resulting peak 109 

was evaluated by a Mann-Whitney test (22). To allocate proteins associated with peaks, the online tool 110 

TagIdent was used (http://web.expasy.org/tagident/). Additionally, a Neighbor Joining tree based on 111 

ranked Pearson coefficient was constructed using BioNumerics. 112 

 113 

RESULTS AND DISCUSSION 114 

Forty-six reference strains representing the six phylogroups currently known within the 115 

K. pneumoniae complex were analyzed by MALDI-TOF MS. Based on the MALDI Biotyper 116 

Compass database version 4.1.80 (Bruker Daltonics, Bremen, Germany), the 46 strains were identified 117 

either as K. pneumoniae (31 strains, all belonging to Kp1, Kp2, Kp4 and Kp6) or as K. variicola (15 118 

strains, all strains of Kp3 and Kp5). Identification scores ranged between 2.16-2.56 for K. pneumoniae 119 

and 1.89-2.55 for K variicola. Of note, in two cases a replicate was reported in one measure as K. 120 

pneumoniae and in other as K. variicola. These data highlight the need to update the database in order 121 

to refine confidence in K. pneumoniae/K. variicola identification and to enable identification of K. 122 

quasipneumoniae and novel phylogroups. Fig. 1 summarizes the peak positions found in each strain. 123 

Most (about 97%) of the peaks were concentrated in the region below 10,000 m/z and almost no peak 124 

was found above this value. The similarity among spectra within the K. pneumoniae complex was 125 

always above 87% (data not shown), with peaks at 4363, 5379, 6286, 6298, 7241 and 9473 m/z being 126 

found in all the members of the complex. Interestingly, ten specific biomarkers associated with 127 

specific members of the K. pneumoniae complex were identified. These peaks were located within the 128 

range 3835 - 9553 m/z. The specificity and sensitivity of their distribution among phylogroups ranged 129 

between 97-100% and 80-100%, respectively (Fig. 1 and Table 1). Kp1 (4152 and 8305 m/z), Kp2 130 

(4136 and 8271 m/z), Kp4 (7670 and 3835 m/z) and Kp5 (4777 and 9553 m/z) each presented two 131 
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specific peaks, which may allow their unambiguous identification. Kp3 strains shared a peak that was 132 

only observed otherwise in Kp5 (7768 m/z). Finally, Kp6 had a diagnostic peak (5278 m/z) shared 133 

only with Kp1. Kp3 and Kp6 could therefore be identified by exclusion criteria (lacking Kp5 and Kp1-134 

specific peaks, respectively) (Fig. 1 and Table 1). These data reveal the possibility to identify 135 

precisely an isolate of the Kp complex based on the specific combination of the above described 136 

peaks. To the best of our knowledge, this is the first time that mass spectrometry biomarkers that 137 

discriminate the phylogroups of the K. pneumoniae complex are described. Furthermore, cluster 138 

analysis grouped all strains according to their phylogroup (Fig. S1), also showing the potential of 139 

whole spectrum comparison for strain identification at the phylogroup level. 140 

About half of the peaks visualized in a bacterial spectrum in the mass range used in this work 141 

(2,000-20,000 Da) correspond to ribosomal proteins (18). Here, we were able to presumptively 142 

identify two of the specific peaks as ribosomal proteins (S22 and L31, respectively 5278 and 7768 143 

m/z), and one as a non-characterized protein specific for Kp4 [7670 m/z, locus tag SB30_RS24725 144 

(GenBank Accession number CBZR010000000)]. The specificity of the peaks was supported by the 145 

protein alignments obtained from whole-genome sequences (data not shown). The other seven peaks 146 

useful for identification could not be associated with a defined protein (Table 1).  147 

In conclusion, this work demonstrates the potential of MALDI-TOF MS to identify isolates of 148 

the K. pneumoniae complex at the phylogroup level. We urge that reference spectra of the various taxa 149 

of the K. pneumoniae complex be incorporated into reference MALDI-TOF spectra databases, so that 150 

the approach could be implemented in microbiology laboratories. Improved identification of 151 

K. pneumoniae and related taxa will advance our understanding of the epidemiology, ecology and 152 

links with pathogenesis of this increasingly important group of pathogens.  153 
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Table 1. MALDI-TOF mass spectrometry peak biomarkers useful to discriminate Klebsiella 241 

pneumoniae phylogroups. 242 

 243 

 244 

  245 

Present in Kp phylogroup(s): 

Peak Position 

(m/z)1
 Sensitivity  Specificity  Possible proteins

2
  

Kp1  4152.89  100% 97.3% - 

  8305.17 100% 100% - 

Kp2  4136.09 100% 100% - 

   8271.32 100% 100% - 

Kp3 and Kp5  7768.04 100% 100% Ribosomal protein L31 

Kp4 3835.01 100% 100% - 

 7670.21 100% 100% Uncharacterized protein 

specific for Kp4 

Kp5  4777.43 100% 100% - 

  9553.05 100% 100% - 

Kp1 and Kp6 5278.02 80% 100% Ribosomal protein S22 

1 Position in the spectra using a tolerance of ± 0.05%.  
2 As determined using TagIdent. 
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Figure 1. Peak positions (m/z) for each of the K. pneumoniae complex strains.  246 

Star denotes those peaks that are useful for discrimination among phylogroups, as detailed in Table 1. 247 

 248 
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Figure 1. Peak positions (m/z) of the K. pneumoniae complex isolates.
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