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Abstract

Motivation: Convolutional neural networks (CNNs) have been trememdously successful in many contexts,
particularly where training data is abundant and signal-to-noise ratios are large. However, when predicting
noisily observed biological phenotypes from DNA sequence, each training instance is only weakly
informative, and the amount of training data is often fundamentally limited, emphasizing the need for
methods that make optimal use of training data and any structure inherent in the model.
Results: Here we show how to combine equivariant networks, a general mathematical framework for
handling exact symmetries in CNNs, with Bayesian dropout, a version of MC dropout suggested by a
reinterpretation of dropout as a variational Bayesian approximation, to develop a model that exhibits exact
reverse-complement symmetry and is more resistant to overtraining. We find that this model has increased
power and generalizability, resulting in significantly better predictive accuracy compared to standard
CNN implementations and state-of-art deep-learning-based motif finders. We use our network to predict
recombination hotspots from sequence, and identify high-resolution binding motifs for the recombination-
initiation protein PRDM9, which were recently validated by high-resolution assays. The network achieves
a predictive accuracy comparable to that attainable by a direct assay of the H3K4me3 histone mark, a
proxy for PRDM9 binding.
Availability: https://github.com/luntergroup/EquivariantNetworks
Contact: richard.brown@well.ox.ac.uk, gerton.lunter@well.ox.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Deep Learning based models have been highly successful in many areas
where traditional modeling approaches appeared to have reached their
limits. This is true also for modeling biology from sequence, where Deep
Learning sequence models have been shown to outperform previous state
of the art techniques (Zhou and Troyanskaya, 2015; Alipanahi et al., 2015;
Kelley et al., 2016). These models have several attractive characteristics,
including their ability to learn without the need for manual feature curation
or model seeding, and the ability to learn complex nonlinear interactions.
This is balanced by the need for large amounts of training data, and
the tendency of these models to overtrain. In many situations this is
not problematic, but for applications in biology training data is often

fundamentally limited, either by the size of the genome, the limited genetic
diversity of a population, or the cost of assaying individuals or samples.
In this context it is particularly important to exploit the known structure
of the model as much as possible, and to try and avoid overtraining and
improve generalizability.

As an example of a biologically motivated problem with limited
training data, we consider the problem of predicting recombination
hotspots from sequence. In humans, the rate of meiotic recombination
varies greatly along the genome, with recombinations occurring primarily
in short regions colloquially known as recombination hotspots. The
mechanism for this localisation has been shown to be the action of the
zinc finger protein PRDM9 (Baudat et al., 2013). After being expressed in
meiotic prophase, PRDM9 binds DNA in a sequence-specific manner, and

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted June 20, 2018. ; https://doi.org/10.1101/351254doi: bioRxiv preprint 

https://doi.org/10.1101/351254
http://creativecommons.org/licenses/by-nc-nd/4.0/


“main” — 2018/6/19 — page 2 — #2

2 Sample et al.

catalyzes H3K4 and H3K36 trimethylation and double stranded breaks,
some of which are resolved as recombinations.

The canonical PRDM9 binding motif, CCTCCCTNNCCAC, was
identified by an enrichment analysis of sequences underlying hotspot
vs. those in regions not involved in recombination (Myers et al., 2008).
However, while significantly enriched, this motif is only weakly predictive
of recombination. For example, in our data it appears in around 2% of
hotspots and 0.3% of coldspots. This, coupled with the fact that there are
only around 20,000 hotspots, many of which are ill resolved (median length
approximately 2000 base pairs (bp)), makes prediction of recombination
hotspots challenging.

To build a model that optimizes predictive power given these
constraints, we combine two recently introduced ideas. One is that of
equivariant convolutional networks (Cohen and Welling, 2016) which we
use to build a network exhibiting the reverse-complement symmetry of
double-stranded DNA. Equivariance is a richer concept than invariance;
while a sequence and its reverse-complement are expected to exhibit
the same predisposition for recombination, the binding of proteins to
DNA is usually not reverse-complement symmetric, and protein-protein
interactions can be similarly directional. This is reflected by symmetries
on higher levels in the convolutional neural network (CNN) that mirror
the reverse-complement symmetry on the sequence level. Equivariance
is the mathematical concept that describes how the action of reverse-
complementing is reflected in the different layers of the model.

The second insight is that dropout, a commonly used regularization
technique for CNNs, can be interpreted as an approximation of a variational
Bayesian inference (Gal and Ghahramani, 2016), here referred to as
Bayesian dropout. This interpretation suggests particular modifications of
standard applications of dropout. In particular, this interpretation suggests
the use of Monte Carlo averaging of activations (MC dropout) rather than
weight averaging at the prediction stage. The implementation suggested
in the literature would break equivariance (Gal and Ghahramani, 2016).
We here show how to obtain an equivariant version of Bayesian dropout,
and how to use this to obtain a model exhibiting exact reverse-complement
symmetry while retaining the advantages of Bayesian dropout.

The remainder of the paper is organized as follows. In section 2 we
introduce equivariant networks, and show how to build equivariance into
standard CNN layers including convolutional layers, max-pooling and
dropout. We show how to make the Bayesian dropout scheme equivariant,
and we introduce a new max-pooling layer that acts over the action of
the reverse-complement (RC) symmetry group. In section 3 we show that
RC-equivariant networks and Bayesian dropout each and in combination
significantly increase predictive accuracy, both on simulated and real data,
whereas classical dropout hurts performance. We further show that our
network outperforms state-of-art motif finders, and is able to identify high-
resolution binding motifs. We finish with discussion and conclusions in
Section 4.

2 Methods

2.1 Equivariant networks

We use feedforward neural networks to generate a learnable mapping
directly from the input sequence to an output response variable, which
in this case is a class assignment. The network is composed of a sequence
of layers that define a directed acyclic computation graph, with each layer
acting in turn on the output of its ancestor. Explicitly, for a 2 dimensional
input tensor Xij , the network can be viewed as a function composition

F (X) = (Fn ◦ · · · ◦ F1)(X) = Fn(Fn−1(. . . F1(X) . . . )) (1)

with component functions Fi representing the actions of layer i; here ◦
denotes function composition. Note that component functions are defined
on their own tensor spaces, Fi : T (i−1) → T (i).

In our case, Xij represents a length-N DNA sequence from an
alphabet {A,C,G, T} which is usually one-hot encoded (Lanchantin
et al., 2016; Alipanahi et al., 2015; Zhou and Troyanskaya, 2015) so that
T (0) = R4×N . The DNA represented by the input sequences X exists
physically mostly in a double-stranded form, with one strand hydrogen
bonded to its reverse-complement. This means that the sequence seen by
the model could just as naturally be represented by its reverse complement,
and the network should arrive at identical outputs for these two sequences:

F (X) = F (RC(X)) (2)

where RC : T (0) → T (0) maps the encoding of a sequence to the
encoding of its reverse complement. One way to achieve this symmetry is
to require thatF1(RC(X)) = F1(X). However, this is highly restrictive;
the first layer often represents protein binding motifs, which are often not
RC symmetric. Intuitively, one wants the output of a layer to exhibit the
"equivalent" symmetry appropriate for the encoding of the next layer. The
mathematical translation of this is to require equivariance:

(Fi ◦RC)(X) = (RC ◦ Fi)(X) (3)

for all i and all X ∈ T (i−1). A graphical representation of this relation
is given in Figure 1. Note that the two operators RC in equation (3) are
different, as they act on different tensor spaces. In particular, in our case
RC acts as the identity on T (n) to ensure that the full model is invariant
under RC, and on T (0) the operator RC is determined by the chosen
encoding. The modeler has freedom in choosing RC on intermediate
layers, subject to the constraint (3), which also imposes constraints on
the Fi, the initialisation, training procedure, and any parameter ties used
during training. Note that this setup is not restricted to RC equivariance,
and is valid for any group with actions on tensor spaces, including mirror
symmetries, rotations and translations. In this general case the operators
RC in Figure 1 are replaced by group actions J(i)

g operating on T (i),
where g is a group element. We will not pursue that direction here, but see
Cohen and Welling (2016) for an exposition.

T (0) T (1) · · · T (n)

T (0) T (1) · · · T (n)

F1

RC RC

F2 Fn

RC

F1 F2 Fn

Fig. 1. Commutative diagram for a reverse complement equivariant network. Compositions
of functions along any path in the network depend only on the start and end point, and not
on the path taken.

2.2 Choice of one-hot basis

We define the vectors

A = [1, 0, 0, 0]′, C = [0, 1, 0, 0]′, G = [0, 0, 1, 0]′, T = [0, 0, 0, 1]′

where ′ denotes transposition, and encode a genomic sequence by the
concatenation of corresponding column vectors. For a sequence encoded
in this way,

RC(X)ij = X−i,−j (4)

with negative indices denoting offsetting from the opposite end of each
dimension by that amount.
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2.3 Convolutional layer

For sequence classification we use a 1D convolution layer, withnf filters of
length fl stored in a weight matrixWijk . The output of such an operation
on tensor Xij (ignoring bias terms for simplicity) is

C(X)ij = f

 4∑
m=1

fl−1∑
n=0

Xm,j+nWmni

 (5)

where f is the activation function. Note that we used "valid padding"
so the sequence dimension is reduced by fl − 1. Applying the reverse
complement operation to the input tensor of shape [4, N ] yields

C(RC(X))ij = f

 4∑
m=1

fl∑
n=1

X−m,−(j+n)Wmni

 (6)

= f

 4∑
m′=1

fl∑
n′=1

Xm′,[−j]+n′W−m′,−n′,i

 (7)

= f

 4∑
m′=1

fl∑
n′=1

Xm′,[−j]+n′Wm′,n′,−i

 (8)

= C(X)−i,−j := RC(C(X))ij (9)

where we used the substitutions m = −m′, n = −n′ = fl + 1 − n′,
and [−j] denotes the positive index N + 2− fl − j. At (8) we assumed
that W obeys the symmetry Wm,n,i = W−m,−n,−i. Therefore, the
convolutional layer satisfies (3) if this weight symmetry holds, and if we
define RC on the output layer as in (9). A schematic of this is shown in
figure 2A. We note that this specific symmetry was used in a convolutional
layer in Shrikumar et al. (2017) and was shown to improve inference.

2.4 Max-pool layer

Spatial Max Pooling along the position dimension of a tensor is used
in order to increase the receptive field at the expense of resolution. We
consider the special, commonly used, case where the stride length is the
same as pool width. For this case we have for a pool length pl,

MP (X)ij = max
k∈[1+(j−1) N

pl
,j N

pl
]
(Xik) (10)

As long as pl divides N this defines an equivariant mapping, with RC
defined on the next layer in the obvious way.

2.5 Reverse complement max pooling

We frequently found it useful to pool along the "filter axis" rather than
along the spatial direction. More precisely, we take maxima along orbits
under the group action, which in our case consist of two elements. After
RC max pooling we therefore have a new output

M(x)ij = max(Xi,j , X−i,−j) (11)

This process halves the size of the output tensor compared to the input.
The resulting compression is depicted in figure 2B. Equation (3) is again
satisfied, now withRC acting as the identity on the new layer. A network
that contains RC max pooling is therefore automatically symmetric under
reverse complementing. In general, more complex symmetry groups may
contain nontrivial subgroups, and any of those may be used to do partial
symmetric max pooling.

Fig. 2. Left: The 3 dimensional filter tensor has enforced symmetry by weight tying by
flipping the second half of the filter axis as shown. Right: An contrast to a conventional
max pooling along the spatial dimension, this approach permits pooling along filters.

2.6 Dropout layer

Dropout is a form of stochastic regularization for neural networks designed
to prevent over-fitting by adding noise to the output of a layer during
network training (Srivastava et al., 2014). This is commonly implemented
by dropping out nodes according to a Bernoulli-distributed random
variable, and can be implemented by taking the Hadamard product between
two identically shaped tensors. Define

εij
i.i.d.∼ Bern (p) , (12)

then dropout applied to a tensor X with dropout rate p is

Dε(X)ij = (ε ∗X)ij = εijXij (13)

with the tensor ε sampled on a batch-wise basis. We denote the Hadamard
product by ∗ rather than the more usual ◦ to avoid confusion with function
composition. Applying RC gives

Dε(RC(X))ij = X−i,−jεij = RC(Dε(X)) (14)

which holds if
εij = ε−i,−j (15)

and if RC acts in the same way on the output as on the input layer.

2.7 Bayesian Equivariant networks

Convolutional networks have been shown to work well on large datasets,
but it is known that they overfit quickly when relatively little training
data is available (Gal and Ghahramani, 2016). This is often the case
in the biological domain, calling for a principled approach to deal with
limited training data sets. Networks with dropout after every convolutional
layer and trained via backpropagation can be seen as approximating
Bayesian variational inference (Gal and Ghahramani, 2016), promising
good behaviour in data-poor settings. The interpretation also suggested to
use Bayesian dropout rather than traditional weight averaging for making
predictions, using dropout to approximate sampling from a posterior
weight distribution. In this interpretation, the corresponding prediction
is obtained by the average over a sample of instantiations of the network:

p(Y ∗|X∗,X,Y) ≈
1

K

K∑
k=1

F (Y ∗|X∗, εk) (16)

for unseen X∗ given previous training examples X = (X1, . . . , Xn)

and Y = (Y1, . . . , Yn) used to train F . The set of random variables
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ε = (ε1, . . . , εK) implement a random sample of the weights defining
the network F , and as long as these obey the correct symmetry, e.g. (15),
each term will be RC-symmetric and so will the sum. The resulting function
will be stochastic, but as long as ε is sampled and fixed beforehand, it will
nevertheless exhibit exact RC symmetry.

2.8 Choice of activation function

Rectified linear units (ReLUs), defind as ReLU(z) = max(0, z), are
activation functions applied at the terminus of every layer, providing the
requisite nonlinearity for stacked layers to have richer representational
power than a simple linear model. These activation functions have become
ubiquitous in deep learning, though usually for networks which are
composed of more layers than is typical in genomic problems, as they
reduce or resolve the vanishing gradient problem. ReLU elements have
the property that for a large number of units, the output will be identically
zero. Although sparsity can be advantageous, e.g. by making interpretation
easier, we found that it hampers convergence in all problems we have tried.
We found that using ELUs (Clevert et al., 2015) result in substantially better
convergence behaviour on our dataset (see Supplementary Fig. 1). We
observed qualitatively similar results using shifted ReLUs (SReLU(z) =

max(z,−1)) (data not shown).

2.9 Initialization of the output layer

We found that using a custom initialization of the output layer,
providing the classification scores before a final softmax transformation,
substantially improved convergence for the networks we considered
(Supplementary Fig. 2). We initialized the weight matrix of the final
layer with 1, and the two bias parameters (corresponding to the two nodes
representing class probability) with {1,−1}. A motivation for this choice
was the observation that on a number of problems the output layers weights
were always close to these values, so it appears that this initialization is
closer to the global optimum than traditional approaches such as Glorot
and Bengio (2010).

2.10 Network architecture

We performed a two separate hyperparameter searches, one for
the simulated data and one for the recombination dataset. For the
recombination dataset, we varied the number of convolutional layers (n ∈
{1, 2, . . . 5}), the filter length of the input layer (fl ∈ {10, 15, 20, 30}),
the filter lengths of each internal convolutional layer (f (i)l ∈ {4, 8, 12}),
the max pooling layer sizes after each convolutional layer (pl ∈
{4, 8, 12}) and the number of filters at at each convolutional layer (n(i)

f ∈
{8, 16, 32, 64}). In addition we optionally added an L2 regularization term
of varying strength (α ∈ {0, 0.0001, 0.0003, 0.001}). For the simulated
dataset we knew there were no interactions, and we knew the length of the
motifs of interest, so we used a single convolutional layer and optimized the
number of filters (nf ∈ {4, 6, 12}), along with the L2 penalty term. The
configuration of the final networks is provided in Supplementary Material
section A.

3 Results

3.1 Datasets

Simulated data was generated as follows. As a model for a regulatory
network involving two binding proteins, we sampled two PWMs (ATAF4
and ERF1) from JASPAR (Sandelin et al., 2004). We first randomly
sampled 40, 000 times a random {0, 1}-response with 50% probability
for each, representing a measured phenotype of interest. For each response
variable with value 1 we sampled a specific motif from each of the two
PWMs (reverse complementing them at random) and injected it into

a random background sequence with 40% probability. Otherwise we
injected the motifs with probability 20%. This procedure resulted in 40000
sequences of length 1000, with 20110 in category 1 and 19890 in category
0. Note that there is a substantial amount of noise in this dataset, making
for a challenging classification problem.

We also prepared a dataset of human recombination hot- and coldspots,
similar to Myers et al. (2008). We first applied a simple hidden Markov
model to segment the genome into regions classified as ’hot’ and ’not
hot’. For emission probabilities we used two exponential distributions
for p(observed rate|hot) and p(observed rate|not hot), and used Viterbi
training to set the parameters. The median recombination rate in regions
classified as ’hot’ was 10.5 cM/Mb. The length of hotspots, once annotated,
had a median value of 2448 bp, but with a heavy tail up to around 20 kbp.
For our purposes, we wanted to study localized recombination events, so
we discarded all hotspots longer than 4 kb. After discarding sequences
with unspecified bases, we then sampled a sequence of length 1kb from
the centre of the remaining hotspots, yielding a total of 17552 truncated
hotspots for classification.

To define a matched set of coldspot regions once hotspot regions were
identified, we applied a greedy search within 300 kb of each hotspot region
to identify a sequence within 10% GC content, and with a recombination
rate below 0.5 cM/Mb. GC matching ensures that GC content, which tends
to be higher in recombination hotspots due to GC-biased gene conversion,
cannot be used as a proxy for recombination strength, forcing the network
to focus on causal signals of DNA binding motifs. This pipeline yielded a
total of 17547 truncated coldspots, also of length 1000 bp.

3.2 ELU ans SReLU activations improve convergence

Across a wide range of learning and topology hyperparameters we
observed consistent difficulty with the ReLU activation function, with
networks often not converging to optimal accuracies, and sometimes not
converging at all, leaving no better than random guesses. We observed,
upon experimentation, that ELU and SReLU activation functions, gave
much improved results (see Supplementary Figure 1 for an illustration of
this effect with ELU activations).

3.3 Equivariant Bayesian networks improve classification
accuracy

We first identified two optimal non-equivariant networks by performing
a hyperparameter search across filter number and lengths, max pool
layers, regularization parameter and number of layers as described
above, independently for the simulation data and recombination data.
After optimization, we then considered reverse-complement equivariant
networks, and re-optimized the number of kernels and regularization
parameter for both data sets independently, keeping all other parameters
fixed. Orthogonally to this, we also added Bayesian dropout to the baseline
networks (removing L2 regularization if it improved validation accuracy)
and added equivariant Bayesian dropout to the equivariant networks,
yielding four independently optimized models.

Comparing the best-performing network in each of the 4 categories
we found that for both datasets the equivariant Bayesian networks
outperformed the best-in-class non-equivariant networks, achieving
significantly better test accuracy over a sample of 50 runs (Figure
3). We found that both equivariant non-Bayesian and Bayesian non-
equivariant networks were significantly more accurate than the best in class
convolutional network, and that the combination of Bayesian dropout and
equivariance was again significantly more accurate than either.

We also investigated how well the equivariant Bayesian network
performed for these two problems in comparison to classical data
augmentation, whereby the reverse complement of every sequence is added
to the dataset. Although data augmentation did improve the accuracy
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Fig. 3. For every network configuration, we trained to convergence a total of 50 times and
built distribution of the final test accuracy. Note the for both the simulation (top) and the
recombination data (bottom) we find a statistically significant improvement over the case
where this symmetry is not applied

over standard networks trained without data augmentation, we found that
the equivariant Bayesian networks significantly outperformed classical
network even when trained with an augmented dataset, for both problems
(Supplementary Fig. 4).

3.4 Conventional dropout considered harmful

To understand the contribution of Bayesian dropout on the performance of
the network, we compared the final equivariant topology for both datasets
with no dropout, Bayesian dropout and conventional dropout, recording the
mean accuracy over 50 trials. Compared to Bayesian dropout, an identical
network that used classic dropout procedure yielded substantially inferior
results (table 1), and performs worse than the baseline without dropout.
This behaviour was seen in both datasets.

Dataset Baseline Bayesian Drop Classic Drop

Sim 59.2± 0.1 60.4± 0.2 56.0± 0.2

Recomb. 64.4± 0.2 66.0± 0.2 56.4± 0.3

Table 1. Mean accuracies and errors for the symmetric networks with no
dropout, Bayesian dropout and conventional dropout

3.5 Equivariant Bayesian networks improve upon existing
motif finders

To assess our approach we compared our results with the state-of-art
neural-network-based motif finder DeepMotif (DeMo; Lanchantin et al.
(2016)) on the recombination dataset. We benchmarked our results against
the three network configurations offered by the package, CNN, RNN
and CNNRNN. All of these have substantially more complexity and
weights than the model we used, but failed to perform well on this task.
Indeed the CNN model (a convolutional neural network) often failed to
converge at all, a problem that we also observed when training our vanilla
convolutional networks on these datasets. The first training attempt that
converged to better than random predictions had AUROC 0.58. Both the
RNN and CNNRNN toplogies converged reliably, but achieved AUROCs
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Fig. 4. Classification accuracy (left) and (area under) receiver operator curves (right) for the
equivariant Bayesian network and the three models provided by the Deep Learning based
motif finder DeMo (Lanchantin et al., 2016). For comparison we also show the classification
accuracy of the canonical PRDM9 13mer motif, as well as the classification accuracy
obtainable by using the differential histone mark H3K4me3 under PRDM9 overexpression,
a direct proxy for PRDM9 binding (Altemose et al., 2017).

of 0.64, substantially less than the median AUROC of 0.71 achieved by
our equivariant network. We note that the CNNRNN model appeared to
overfit slightly and may have benefited from an early stopping regime in
the original code. Nonetheless, the peak validation accuracy was only
marginally improved, and not close to the accuracy of the Bayesian
equivariant model.

3.6 Discovery of novel PRDM9 binding motifs

Using the equivariant Bayesian network with the best classification
accuracy, we identified binding motifs by identifying a subset of input
sequences responsible for the activation of particular nodes at the first
layer, the subsequence driving the activation in each of those, and building
a Position Weight Matrix (PWM) from the aligned subsequences.

This process identified five motifs, three of which are versions of the
classical 13mer that was identified via enrichment analysis and exhaustive
search of motifs in Myers et al. (2008) (Fig. 5c-e). In addition we identified
two substantially longer (22 nt) and sparse motifs that were not previously
identified using this data set (Fig. 5a,b). Since our networks are only
approximately Bayesian, to confirm that these motifs were not artefacts
of overtraining, we confirmed their significance by frequentist tests of
significance for enrichment on hold-out data (Table 2). The enrichment
of the sparse motif is similar to that of the canonical 13mer originally
associated with PRDM9 binding, but its complexity and under-constrained
nature (only about 8 out of the 22 bases of the motif have substantial
information content) mean that it was not originally discoverable using a
traditional enrichment approach.

4 Discussion
Deep learning approaches have been shown to be very effective in building
sequence models on large scale data (Zhou and Troyanskaya, 2015; Kelley
et al., 2016; Quang and Xie, 2016). However, through simulated and
biological data we show here that models designed using traditional
building blocks for neural networks may struggle to converge consistently
and produce reliable results in cases where the signal in the data is weak,
and the amount of training data is limited. This problem was seen across a
large number of network architectures, as well as in methods specifically
designed to identify transcription factor binding sites from sequence data
(Lanchantin et al., 2016).
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Motif Total hot Total cold Test hot Test cold Odds ratio Corrected p value

CANNNNTNNTNNNNNNNCCCC 2045 1186 83 38 2.16 2.03× 10−8

CANNNNTNNTNNNNNNNCCCCC 652 251 29 8 3.63 1.4× 10−5

CANNNNTNNTNNNNNNNCCNCC 3919 2933 158 109 1.45 4.7× 10−6

CCNCCNTNNCCNC 5695 3418 436 265 1.64 3.92 ×10−29

CCTCCCTNNCCAC 400 77 57 14 4.07 5.34× 10−12

sub motif CCNCC 22370 22273 1431 1496 0.96 0.31

Table 2. Comparison of the novel motif with previously known PRDM9 binding site in both the training and test datasets. Total hot/cold, number of motifs in
the full hotspot/coldspot data set; test hot/cold, number of motifs among hold-out test data consisting of 1454 hotspots and 1530 coldspots; corrected p value,
Bonferroni-corrected p values for association (Fisher’s exact test)

Fig. 5. Top: We found the sequences corresponding to the maximum activation on each
filter, and from these built sequence logos. We found a number of motifs (category B)
corresponding to the classical PRDM9 binding motif that was discovered with an exhaustive
search of an analogous dataset. Additionally, we found 2 novel 22base motifs, that were
previously undiscovered on this dataset. It is notable that they bear a striking resemblance
to the recently discovered motif by Altemose et al. (2017).

To improve on this situation, we showed how to combine
equivariant neural networks (here, neural networks that exhibit exact
reverse-complement symmetry) with Bayesian dropout. While a naive
combination of these ideas would result in networks that are only in
expectation reverse-complement symmetric, we show that it is possible
to achieve exact RC symmetry. In addition, we find that by modifying the
activation functions, and the initialization of the output layer, we obtain a
further significant improvement in accuracy.

Equivariant networks can be implemented in several ways. We
chose to implement a standard (non-equivariant) network to and
enforce equivariance by requiring certain identities on the parameters.
Although this introduces some extra computation, this approach compares
favourably with data augmentation, an alternative approach to handling
symmetries where the training data is made symmetric, and symmetry
must be learned by the network. Data augmentation applied to RC
symmetry doubles the training time, and we show that although this
data augmentation improves results over baseline models, an equivariant
network achieves significantly better results at lower computational cost.

We found that Bayesian dropout also resulted in a substantial
improvement in the performance. This is striking, as dropout is normally
though of as a regularization technique that reduces the tendency of
overtraining often found in large model. By contrast, in our regime the final
models were small in comparison to the number of samples in the training
set, and we did not see much evidence of overfitting either with or without
using dropout: we did not see substantial continued decrease of training

loss after test loss stabilised, and we did not find that the model latched
on to spurious motifs that were not statistically significant on test data.
It appears that, in addition to addressing overtraining, Bayesian dropout
leads to superior learning and feature extraction. It would be interesting to
confirm this phenomenon in different settings.

We then applied this methodology to predict meotic recombination
hotpots directly from sequence. It was straightforward to interpret the
resulting model, and interrogation of the sequences that maximally
activated the input layer revealed the previously characterized 13 base
PRDM9 binding motif (Myers et al., 2008). Additionally, we discovered
a much sparser motif, with only about 8/22 bases showing substantial
information content. Like the classical motif, these new motifs were
statistically significant on hold-out data, indicating that they were truly
predictive features and not artifacts of an overtrained model. These
sparse motifs (category A in figure 5) bear strong resemblance to motifs
recently shown to be associated with PRDM9 binding Altemose et al.
(2017), lending further support to this conclusion. In fact, the observation,
presented in figure 4, that the model was able to achieve predictive accuracy
on a par with hotspots predicted using differential H3K4 trimethylation
as an input (also from Altemose et al. (2017)) is consistent with the
hypothesis that the neural network model represents a near-optimal model
for PRDM9 binding. The alternative explanation is that our model and the
the H3K4me3 assay are suboptimal to the same degree.

From a practical point of view, we noted that the motifs generated
from this network with Bayesian dropout were qualitatively different and
more numerous than the motifs identified with a classical convolutional
approach, and we see a degree of degeneracy among the motifs learned by
our network. It remains to be seen whether these different binding motifs
correspond to related but slightly different binding modalities, or whether
these motifs are a result of dropout training and provide a way for the
network to robustly identify motifs in the presence of weight noise. This
would be an interesting direction fur further research. Certainly, if indeed
these motifs do correspond to different binding modalities, each with
slightly different binding affinities, it would explain why these networks
are able to achieve the superior classification accuracies compared to
standard models.
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