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Transition path sampling techniques allowmolecular dynamics simulations of complex systems to focus
on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible
by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as impor-
tance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques
out of reach of the broad community. Here, we introduce an easy-to-use Python framework called Open-
PathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal e�ort and yet
is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided
in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use
transition path sampling methodologies are implemented, including standard transition path sampling (TPS)
between reactant and product states, transition interface sampling (TIS) and its replica exchange variant
(RETIS), as well as recent multistate andmultiset extensions of transition interface sampling (MSTIS, MISTIS).
In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic
path sampling components. In this paper, we give an overview of the design of this framework and illustrate
the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.
Keywords: transition path sampling (TPS); transition interface sampling (TIS); molecular dynamics simulation

(MD); rare events

I. INTRODUCTION

Biomolecular systems, such as proteins and nucleic acids,
can undergo complex conformational changes on long
timescales that are challenging for atomistic molecular simu-
lations to reach. For example, atomistic molecular dynamics
(MD)must employ timesteps on the scale of femtoseconds to
faithfully reproduce the fastest vibrationalmodes tomaintain
simulation stability and fidelity, while the kinetic timescales
(e.g. of protein folding or binding) can o�en range frommi-
croseconds to seconds or more. In protein-ligand binding,
mean residence times for bounddruglikemolecules are o�en
several hours, presenting an enormous challenge to studying
dissociation mechanisms or predicting unbinding rates by
straightforward MD [1–3]. In these and other situations, sim-
ulating a su�icient number of these rare events (folding/un-
foldingor binding/unbinding) toproduce a statisticallymean-
ingful description of the dominant mechanism or estimate
of rate constants is o�en so challenging as to be untenable
by straightforward means. Slow kinetic time scales primarily
arise from largekineticbarriersbetweenmetastable states [4–
7]. The observed dynamics is dominated by long waiting
times within metastable basins, punctuated by rare events
of interest occurring over a short time [8]. Straightforward
molecular simulation is highly ine�icient as most e�ort will
be wasted simulating uninteresting dynamics as the system
remains trapped within metastable states [9].
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One approach to overcoming the rare event problem is to
bias the potential energy surface or alter the probability den-
sity of sampled conformations to enhance the occurrence of
the rare event. A priori knowledge of a suitable reaction coor-
dinate allows the use of biasing potentials or higher e�ective
temperatures, reducing e�ective free energy barriers. Many
such enhanced samplingmethods have been developed (e.g.
see Refs. [10–20] ). Useful bias potentials capable of enhanc-
ing the frequency of rare events require (a set of) collective
variables that approximate the reaction coordinate; poor
choices will lead to poor sampling of the reactive pathways,
and hence poor estimates of the dynamical bottlenecks and
the related barrier heights and rates. Evenworse, somemeth-
ods are sensitive to the omission of slow degrees of freedom,
andmay lead to incorrect models of the reactive pathways.
In general, removing the e�ect of the bias potential to yield
correct dynamics is di�icult.

Path sampling techniques, in paticular transition path sam-
pling [9, 21–23], provide a solution to the rare event prob-
lemwithout requiring the same degree of knowledge of reac-
tive pathways. Instead of biasing the potential—which leads
to heavily perturbed dynamics—these techniques bias the
probability with which a given transition path is sampled,
without perturbing these paths themselves. This property
allows the unbiased equilibrium dynamics to be recovered.
For the simple case of a two-state system separated by a
single barrier, the straightforward MD simulation time to ob-
serve a number of transitions scales exponentially in the
barrier height. In contrast, transition path sampling only fo-
cuses on short parts of the MD trajectory that traverse the
barrier, providing exponential acceleration in the sampling of
rare events [9, 22]. Other methods based on trajectory sam-
pling include forward flux sampling (FFS) [24], adaptivemulti-
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level splitting [25], milestoning [26], the RESTARTmethodol-
ogy [27], SPRESS [28], NEUS [29],WeightedEnsemble [30, 31]
andmany others.
In addition to studying rare events directly, path sampling

methods can be combined with other approaches for de-
scribing statistical conformational dynamics. For example,
Markov state models (MSMs) have emerged as a popular
way to represent the long time statistical dynamics of com-
plex processes involving many distinct metastable confor-
mational states [32]. By discretizing conformation space and
describing stochastic transitions between regionswith a tran-
sition or rate matrix, MSMs can describe the long-time statis-
tical dynamics of complex systemswith bounded approxima-
tion error [32]. While standardMSM construction approaches
utilize large quantities of unbiased simulation data, path
sampling techniques can be utilized to rapidly construct or
improve MSM transition matrices by focusing on harvesting
trajectories for poorly sampled transitions [2, 33–37]. More
recently, techniques have emerged for combining both bi-
ased and unbiased dynamics to construct multi-ensemble
Markov Models (MEMMs) [38–41], enabling even richer combi-
nations of multiple e�icient sampling techniques for rapid
construction of statistical models of dynamics.
While transition path sampling techniques are very flex-

ible, the complexity of their implementation and lack of
a standard tool for applying them has slowed their adop-
tion. In particular, many path sampling techniques require
monitoring of dynamics to detect when stopping conditions
are reached, and the control of and integration with stan-
dard simulation packages has been a practical obstacle for
widespread use. As a solution to this, we have developed
a new framework calledOpenPathSampling (OPS) that en-
ables path sampling techniques to be employed in a flexible,
general manner. This framework is “batteries included”, with
a number of di�erent path sampling algorithms and worked
examples available that can help users to apply path sam-
pling techniques on their own system. Both low-dimensional
toy model systems and complex molecular systems are sup-
ported, with complex systems supported using interfaces to
external simulation codes. Currently, OPS supports the GPU-
acceleratedmolecular simulation code OpenMM [42, 43], al-
though support for other codes canbeadded. The framework
is flexible and extensible, allowing users to easily explore im-
plementation of newpath sampling algorithms in addition to
applying or extending existing algorithms or connecting new
simulation codes. Many other methods, such as FFS or mile-
stoning, could also be implemented within the framework of
OPS. For the sake of clarity, however, we will limit ourselves
here to the transitionpath samplingbasedmethods1. OPSdif-
fers in scope and versatility from the PyRETIS package[44], a

1 Note that in this work we o�en use ’transition path sampling’ and ’path
sampling’ interchangeably. The reason is that the concept of path sam-
pling is more inclusive, and also covers algorithms that do not imme-
diately aim to cross (single) barriers. However, it is understood that all
path sampling methods in this work fall into the larger ’transition path
sampling’ family of algorithms.

recently developed package to conduct advanced transition
path sampling simulations.
In this paper, we first give a brief overview of a variety of

path sampling techniques that are implemented in the OPS
framework (Section II); explain how the basic path sampling
concepts relate to OPS object classes (Section IV); review the
general workflow associated with setting up, running, and
analyzing a path sampling calculation (Section V); and then
provide a number of detailed examples that illustrate the
flexibility and simplicity of applying various path sampling
techniques using this framework (Section VI). In the process
of developing a framework capable of easily implementing a
multitude of path sampling techniques, we have significantly
generalized themanner in which path ensembles can be con-
structed and used within the path sampling mathematical
framework. While this expressive path ensemble specifica-
tion language is briefly introduced (Section III) and utilized
in the examples described here, this approach is described
in detail in a companion paper in this issue [45].

II. BACKGROUND

A. The concept of path ensembles

Here, we presume the reader is somewhat familiar with
the transition path sampling literature [9, 21–23, 46]. While
we give a brief overview of the main concepts in this section,
readers not familiar with this topic are encouraged to start
with a basic review such as Ref. [46].
The types of path sampling considered in this paper—and

implemented and supported by OpenPathSampling—deal
with equilibriumdynamics, obeyingmicroscopic reversibility,
so that the stationary distribution is the Boltzmann distribu-
tion. Moreover, ergodicity is assumed; that is, an infinitely-
long trajectory has a nonzero probability to visit every point
in phase space. This guarantees that (dynamical) averages
computed in the path ensemble, such as rate constants, are
identical to those of an infinitely long trajectory.
A path or trajectory consists of a sequence ofL+ 1 points

in configuration or phase space x ≡ {x0, x1, . . . , xL} gen-
erated by some dynamical model (such as Hamiltonian,
Langevin, Brownian, or even Monte Carlo dynamics), with
the initial configuration x0 drawn from an initial (equilib-
rium) distribution ρ(x0). The path ensemble is defined by the
probability distributionP [x] of such paths (with the lengthL
either fixed or varying), and can be sampled using a Markov
Chain Monte Carlo (MCMC) algorithm. Path sampling algo-
rithms consist of a few main ingredients: (1) a scheme for
initializing the sampler with an initial path; (2) one or more
schemes for proposing new trial paths from the current path;
(3) anacceptance criteria (e.g., basedonMetropolis-Hastings)
used to accept or reject the proposed trial path to generate a
new sample from the path probability density (ensemble) of
interest.
The idea of path sampling is to enhance the probability

sampling of certain paths, either by biasing the path prob-
ability or by constraining the path ensemble. Analogous to
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how standard Monte Carlo importance sampling techniques
can enhance sampling of rare configurations by multiplying
the probability density by a biasing factorwbias(x) based on
the instantaneous conformtion x,

ρbias(x) ∝ wbias(x)ρ(x), (1)

and subsequently using this bias to unbias the sampled en-
semble and recover equilibrium expectations, path sampling
techniques can enhance the sampling of rare trajectories
by multiplying by a biasing weight wbias[x], based on the
trajectory x,

Pbias[x] ∝ wbias[x]P[x]. (2)

Many types of path sampling, notably standard transition
path sampling (TPS) [9, 21], define constrained path ensem-
bles which select trajectories that begin in one region of con-
figuration space A and end in another region B. OPS supports
a simple but powerful way of defining path ensembles, de-
scribed briefly in Section V B and expanded upon in detail
in a companion paper [45]. Below, we give a brief overview
of common kinds of transition path sampling simulations
supported by OPS.

B. Transition path sampling

The transition path sampling (TPS) [9, 21]method attempts
to harvest trajectories connecting two specific regions of con-
figuration space, such as a reactant andproduct separated by
a single free energy barrier. The constrained path ensemble
for a fixed lengthL is thus

PAB [x] ∝ 1A(x0)1B(xL)P[x]. (3)

Here, x ≡ {x0, x1, . . . , xL} is a discrete-time trajectory of
snapshots, 1A(x0) and 1B(xL) are indicator function that
are unity if the trajectory starts with x0 ∈ A and ends with
xL ∈ B and zero otherwise, andP [x] is the equilibrium path
probability density. In a TPS simulation, new trial trajectories
are proposed from the current sampled trajectory by select-
ing a phase space point along the trajectory, applying a per-
turbation (usually of the momenta), and “shooting” forward
and backward by integrating the equations of motion until a
trajectory of the original length is generated. The trial trajec-
tory is then accepted or rejected with a Metropolis-Hastings
criterion. For the simplest case of drawing the shooting point
uniformly from the current trajectory, assigning a new veloc-
ity from the Maxwell-Boltzmann distribution, and imposing
the trajectory of fixed length to begin in stateA and end in
B, this acceptance criteria amounts to accepting the new
trajectory when it satisfies the defined ensemble of interest
by terminating in regionsA andB; the old path is otherwise
retained if the proposed trajectory is rejected. Depending
on the details of the shooting move, the exact acceptance
criteria will take on di�erent forms [9, 21–23, 46].
Transition path sampling is immensely powerful, as the dif-

ficult problem of describing reaction mechanisms is reduced
to themuch easier problem of defining stable statesA and

B. Reactive trajectories are e�iciently harvested because
the trial trajectory quickly decorrelates from the original tra-
jectory, yet is still likely to meet the same path ensemble
constraints, such as connecting the reactant and product
regions of configuration spaceA andB.
In order for the reactive trajectories connectingmetastable

setsA andB to be useful for computing transition rates and
physical interpretation ofmechanisms, the systemmust com-
mit to and remain in the metastable states for a long time af-
ter encountering them, i.e., transitions betweenA andB are
rare events on the molecular time scale. The statesA andB
are generally defined as configurational space regions within
the basin of attraction of the distinct metastable states. Tra-
jectories initiated fromconfigurations in these regions, called
core sets, should have a high probability (close to unity) to
remain in or quickly return to the core set rather than escape
to other states, even at the boundary of these sets [32, 47].
TPS can also be used with flexible-length trajectories that

are constrained to terminatewhen theyencounter thebound-
ary of core sets A and B. This can be encoded in the path en-
sembledefinitionbydemanding that frames 1 toL−1 are nei-
ther in A nor in B. This approach is more e�icient at sampling
reactive trajectories by avoiding sampling long dwell times
in each state at either end of the trajectory [48]. To maintain
detailed balance, the acceptance criterion then contains the
ratio of the previous and trial path length, i.e., the number
of frames fromwhich the shooting point is randomly chosen.
TPS can also easily be extended tomultiple states by allowing
more states in the path ensemble definition [34]. A variety of
other path proposal moves have been described to attempt
to increase acceptance probabilities in certain regimes, in-
cluding shi�ing moves [21], small velocity perturbations [21],
precision shooting [49], permutation shooting [50], aimless
shooting [50], and spring shooting [51].

C. Transition interface sampling (TIS)

While TPS yields information about the mechanism of the
rare events, important quantities such as the kinetic rate
constant requires an additional scaling factor that quantifies
how frequent transition paths are relative to non-transition
paths. Therefore, one has to relate the constrained TPS en-
semble with the unconstrained path ensemble, as given by
an infinitely long ergodic unbiased MD trajectory [9]. This
unconstrained total (or complete) path ensemble comprises
the set of path ensembles starting from each stable state,
consisting of all (properly weighted) paths that leave that
state and either return to it, or go on to any other stable state.
Even when restricting the path ensemble to start in a partic-
ular state A, straightforward path sampling of an otherwise
unconstrained ensemble is naturally very ine�icient, as the
important transitions to other states are exceedingly rare.
However one can construct the total path ensemble (for each
state) by a staging procedure. In such a procedure one can
constrain the paths to reach further and further out of the
state (while of course still starting in the stable state). This
constraining can be done using the transition interface sam-
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plingmethod (TIS) [52], an extension of TPS that is explained
below. Reweighting of the resulting paths yield then (an esti-
mate of) the total path ensemble [53].
Transition interface sampling (TIS) [52] provides a more

e�icient evaluation of the rates compared to the original
TPS rate constant calculation [54] by sampling each con-
strained interface ensemble. TIS defines a set of N non-
intersectinghypersurfaces (the ’interfaces’) around the stable
state, parametrized by a collective variable λ, and foliating,
in principle, the entire configuration space (or even phase
phase[52]). The rate constant fromA toB is expressed as

kAB = φ0APA(λB |λ0) = φ0A

N−1∏
i=0

PA(λi+1|λi), (4)

where φ0A denotes the flux out of A through λ0, and
PA(λB |λ0) is the crossing probability, the probability that
a trajectory originating fromA reaches interface λB before
returning to A, provided that the path already crosses λ0 at
least once. This probability is generally low, as the transition
is a rare event, but can be computed through the product of
all crossing probabilities for the individual interfaces, as indi-
cated in Eq. 4, with λN ≡ λB [52]. Interfaces should be opti-
mally placed such that each crossing probability in the prod-
uct is roughly PA(λi+1|λi) ≈ 0.2 [72]. The total number of
required interfaces is thusof theorderN ≈ | log5 P (λB |λA)|.
As an example, for a barrier of 30 kBT , this roughly translates
intoN = 30/ ln(5) ≈ 18 interfaces. The staging approach
thus avoids the problem of the exponentially low rate in a
way analogous to umbrella sampling [55].
Note that the product is not simply a product of Markovian

transition probabilities, as for each interface the entire trajec-
tory starting fromA is taken into account. Evaluation of the
crossing probabilities requires sampling the path ensemble
for each interface with the constraint that the path needs to
cross that interface. While trajectories could in principle be
stoppedwhen they reach the next interface, it turns out to be
beneficial to continue the trajectory integration until a stable
state (A orB) has been reached. This also allows the appli-
cation of the so-called reversalmove ofA-to-A trajectories,
where the time direction of the path is reversed, which can
be done with no additional cost, but assists in decorrelating
paths. The flux φ0A can be easily obtained using straightfor-
ward MD inside stateA [52, 56].
The reverse rate can be computed by repeating the TIS

simulation from state B: define a set of interfaces, sample the
interface ensembles, and compute the crossing probability
PB(λB |λA).
Similar to TPS, the TIS algorithm can be extended to mul-

tiple states [34]. To estimate kinetic rates betweenmultiple
states, each state I gets its own set of interfaces λiI , and the
rate constant from state I to state J is given by

kIJ = φ0IPI(λmI |λ0I)PI(λ0J |λmI), (5)

where φ0I is again the flux from I through λ0I . The sec-
ond factor is the crossing probability to an outermost in-
terface m, which is typically very small and expressed as
P (λmI |λ0I) =

∏m−1
i=0 PI(λ(i+1)I |λiI). The last factor in

Eq. 5 is the conditional probability that a trajectory crossing
the outermost interface also reaches state J . The location
of the outermost interfaces should be chosen such that the
probability to escape fromA is su�iciently large. Note that
while interfaces belonging to state I constitute a foliation of
non-overlapping hypersurfaces, they are completely inde-
pendent from the interfaces of stateJ , and in fact are allowed
to overlap [57, 58].
We introduce the concept of a transition network [59] that,

in its simplest form, represents the ensembles of paths con-
necting pairs of defined states. For each state in the transition
network (multiple state) TIS results in a set of interface path
ensembles and a straightforward MD ensemble of that stable
state, which can be combined to yield the total path ensem-
ble by reweighting. Repeating this for all states, and (again)
properly reweighting [53, 60, 61], leads to an accurate de-
scription of the kinetic ratematrix, the free energy landscape,
the mechanisms and reaction coordinates of all transitions
between themetastable states. This data can be further an-
alyzed using theory of Markovian stochastic processes, e.g.,
the Chapman-Kolgomorov equation [62] or transition path
theory [63].

D. Considerations in transition path sampling

The reader should be aware of a number of challenges they
may encounter in setting up transition path sampling based
simulations. While an exhaustive list is beyond the scope of
this paper, we list some important issues below. (See also
Ref. [64]).

1. Definition of the states

Transition path sampling requires knowledge of the stable
states. Usually the stable states are easier to characterize and
identify than the transition region. Analyzing straightforward
MD can provide information on how to describe the states
in terms of (several) collective variables. Such heuristic ap-
proaches has been used in previous applications [48, 65, 66].
In addition, tools such as clustering can be used to define
the states [58]. Ideally, one would like to use automatic state
recognition, and recently attempts have beenmade in that
direction [47]. In OPS we assume that the reader has an idea
about how to capture stable states by defining a range in (sev-
eral) collective variables. OPS provides the user with tools to
facilitate identification of these ranges, and hence definition
of the states. The choice of the stable state definitions still re-
quires careful attention, as an erroneous definition can easily
lead to improper or failed path sampling. For a detailed dis-
cussion on the stable state definitions, see Refs [22, 46, 64].

2. Intermediate metastable states

Even if the process of interest exhibits two-state kinetics,
suggesting only twohighly stable states are involved, it is pos-
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sible that the presence of one or more intermediate states
with lifetimes short on the overall time scale but long on
the molecular timescale will cause reactive trajectories con-
necting the stable states to be quite long. A solution to this
problem is to identify the intermediate state(s), define their
core sets, and to use multistate transition interface sampling
(MSTIS) [34, 57]. Alternatively, one can choose to simply sam-
ple long pathways [67], which can still be quite fast given
the speed of modern GPU-accelerated molecular simulation
engines like OpenMM [42, 43].

3. Ergodicity of path space

While the TPS and TIS algorithms are “exact” in the sense
that they should lead to the asymptotically unbiased esti-
mates of path averages in the limit of infinite sampling, they
su�er from the same problems that all Monte Carlo meth-
ods encounter, the problem of slowly mixing Markov chains,
which in severe casesmay result in broken ergodicity for prac-
tical computer times. As TIS samples path space by perturb-
ing an existing path to generate new proposals, decorrela-
tion from the initial path to generate many e�ectively un-
correlated paths is essential for producing useful unbiased
estimates. However, since there might be (possibly high)
barriers in path space orthogonal to the interfaces between
di�erent allowed reaction channels, this is far from guaran-
teed. One way of solving this problem is by using replica
exchange among path ensembles in transition interface sam-
pling (RETIS) [68, 69].

E. Replica exchange transition interface sampling (RETIS)

The RETIS algorithm simultaneously samples all TIS en-
sembles while allowing for swapping of paths between inter-
face ensembles when possible [68, 69]. A transition path that
follows one particular mechanism can then slowly morph
into a completely di�erent transition path by exchanging it
back and forth among all interfaces to stateB. Including an
exchange between pathways belonging to di�erent states
further enhances sampling convergence [69].
Further sampling improvement can be achieved by includ-

ing van Erp’sminus interface ensemble [68, 69]. The minus
interfacemove exchanges a trajectory in the first interface en-
semblewith a trajectory exploring the stable state (theminus
interface ensemble). This serves two aims: (1) to decorrelate
pathways in the first interface which tend to be short; and
(2) to provide a direct estimate for the flux out of the stable
state [68–70]. OPS includes an implementation of multiple
state RETIS, which we will refer to as MSTIS.
The default MSTIS approach employs a single set of inter-

faces for each state, based on one order parameter. Multiple
interface set TIS (MISTIS), also implemented in OPS, general-
izes this approach to includemultiple interface sets for states
or transitions [71]. Although TIS is much less sensitive to the
choice of order parameter than other enhanced sampling
methods [72], in practice, the e�iciency is a�ected by this

choice. Using di�erent order parameters to describe (sets of)
interfaces for di�erent transitions and/or states, with thehelp
of replica exchange,might alleviate such e�iciency problems.
A drawback of the (multiple state) RETIS approach is that

it requires one replica to be simulated for each interface; for
systems with multiple stable cores and associated interface
sets defined, this can quickly get out of hand quickly, as each
core might possessO(10) interfaces. This large number of
interface ensembles prevent e�icient implementation of the
method for systemsmore complex than toy models. A par-
allel implementation of all interfaces might seem a simple
solution, butwill be complicated by the fact that the duration
of the paths in the di�erent interface ensembles varies wildly.
Single replica TIS (SRTIS), based on themethod of expanded
ensembles [73], can alleviate this problem [61]. Instead of
exchanging paths between interface ensembles, only one
replica is sampled, and transitions between ensembles are
proposed. To avoid the replica remaining close to the stable
state interface ensemble, one needs a biasing function that
pushes the replica to higher interfaces. Selecting the (un-
known) crossing probability as the biasing function would
ensure equal sampling of all interfaces, which is close to op-
timal. While the crossing probabilities are initially unknown,
an iterative procedure can be used to adapt the bias during
the simulation, as each interface ensemble naturally gives
an estimate for the crossing probability [61, 74]. SRTIS can
easily be extended to include multiple states [61] or utilize
multiple independent walkers [58, 75].

III. NOVEL CONCEPTS IN OPS

OpenPathSampling contains many new approaches to im-
plementing transition path sampling simulations, but there
are two points that we would particularly like to draw atten-
tion to: (1) the use of volume-based interface definitions in
TIS and (2) the general treatment of path ensembles.

A. Volume-based interface definitions

In the original TIS algorithm andmost path sampling algo-
rithms based on TIS, interfaces are defined as hypersurfaces
in configuration space. To belong to the interface ensemble,
a path needs to cross this interface, meaning that at a certain
time it is at one side of the interface, while a timestep later
it is on the other side. We consider a novel interface defini-
tion in OPS which relies on hypervolumes in configuration or
phase space rather than hypersurfaces. We use the conven-
tion that the initial state is inside the hypervolume. In this
definition, a path belongs to an interface ensemble defined
by a hypervolume if it starts in the initial state, leaves the
hypervolume at some point along the path, and terminates
in any stable state. The advantage of using volumes instead
of surfaces is that set logic (e.g., a union or intersection) can
be applied to generate new volume definitions from existing
volumes. For amore extensive discussion see the companion
paper [45].
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Flexible-length TPS

Fixed-length TPS

TIS

Minus interface

(a)

(b)

(c)

(d)

FIG. 1. Common path ensembles in TPS and TIS with repre-
sentative trajectories. Shaded areas represent states, and dashed
lines represent interface boundaries.

B. General treatment of ensembles

One of the novel approaches in OPS is the generalization
of path ensembles. Previously, each path ensemble had to
be treated with specialized code. However, as the number
of path ensembles types has grown, the need to treat them
in a general fashion arose. In this paper, we make use of a
range of path ensembles, including the following, which are
illustrated in Fig. 1:

• Flexible length TPS ensemble (Fig. 1a): The standard
TPS ensemble is a path ensemble between two states.
Only the initial and final frames are inside the states.

• Fixed length TPS ensemble (Fig. 1b): As with the flexi-
ble length TPS ensemble, the initial and final frames
must be in the initial and final states. However, the
fixed length ensemble has a predefined length, and
also allows frames other than the first and final to be
in the state.

• TIS ensemble (Fig. 1c): The elementary path ensembles
in TIS have an interface associated with them. They
must begin in a given state, exit the interface hypervol-
ume, and end in any stable state.

• Minus (interface) ensemble (Fig. 1d): Paths in the minus
ensemble can be described in terms of three segments:
the first and last segments are similar to TIS ensemble
paths. They start in the state, exit the interface hyper-
volume, and return to state (where TIS ensemble paths
can go to another state, these segments cannot). These
two segments are connected by another segment that
never exits the interface. Note that this implementa-
tionof theminus interface ensemble is basedonRef. 71,
as opposed to the original minus interface ensemble
introduced in Ref. 68. The two versions di�er slightly

(with the original being subtrajectories of the version
used here), however both versions serve the same pur-
pose.

All of these common ensembles can be generalized for
more complicated reaction networks. The TPS ensembles
becomemultiple state TPS ensembles if they allow any state
to be the initial or final state, as long as the initial and final
states are di�erent. The TIS ensemble becomes a multiple
state TIS ensemble by allowing any state as the final state.
The minus ensemble becomes the multiple interface set mi-
nus ensemble by taking its interface as the union of inner-
most interfaces.
OPS allows complicated ensembles to be built from sim-

pler ones. It generalizes both the procedure for testing
whether a given trajectory satisfies the ensemble and the
procedure for generating new trajectories. Details of this im-
plementation, as well as novel approaches to analysis that
this implementation enables, will be discussed in the com-
panion paper [45].

IV. THE INGREDIENTS OF OPS

Before explaining the OpenPathSampling framework and
workflow in more detail, we first explain the frequently used
basic objects of OPS that are related to path sampling con-
cepts described in the previous sections. The objects in OPS
are divided in twomain categories: (1) Data objects that con-
tain the sampled paths and information about the sampling
process; and (2) Simulation objects that perform the sam-
pling. All objects generated in OPS, both data and simulation
objects, are stored in a single Storage file, and can be ac-
cessed from it. For example, theMCStepobjects savedduring
the simulation can be accessed with storage.steps once a
file is loaded into storage.

A. Data objects

The main data objects of OPS fit into a hierarchy as shown
in Fig. 2. The data structure can be divided intowhat is being

(MCStep)

active (SampleSet; collection of Sample)

trajectory (Trajectory [list of Snapshot])
ensemble (Ensemble)
replica (int)

change (MoveChange)
subchanges (list of MoveChange)
mover (PathMover)
trials (list of Sample)
accepted (bool)
details (Details)

FIG. 2. Hierarchical data structure of the MCStep data object.
The attribute names are shown, and the type is provided in paren-
theses.
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sampled (i.e., which trajectories fromwhich ensembles), and
how it is being sampled (i.e., the nature of the path moves
performed.) All of this is unified in the MCStep object, which
describes a step of the path sampling simulation, and which
has two important attributes: a SampleSet object called
active, which records the state of all replicas in the simula-
tion at the end of a given simulation step (the “what”); and
a MoveChange object called change, which describes what
happened during the simulation step (the “how”). Below we
describe these attributes in more detail.

1. Data structures for what is being sampled

• Snapshots, sometimes called “frames”or “timeslices,”
are at the core of any simulation technique. They de-
scribe the state of the physical system at a point in
time, and in molecular dynamics, typically consist of
coordinates, velocities, and periodic cell vectors. The
Snapshotobject inOPScanbeeasily extended to carry
additional data, such as wavefunction information or
variables from an extended phase space.

• A Trajectory, also called a “path,” is essentially a list
of Snapshots in temporal order. In addition, it pro-
vides several convenience methods, for example, to
identify which Snapshots are shared by two trajecto-
ries.

• The Sample object is a data structure that links a
Trajectory with the Ensemble object (described in
section IV B) fromwhich it was sampled, and an inte-
ger replica ID. The Sample is needed because meth-
ods such as TIS, and especially RETIS, sample multiple
ensembles simultaneously. Correct analysis requires
knowing the ensemble from which the Trajectory
was sampled.

• Sincemethods likeTIShave several activeSamplesdur-
ing a path simulation step, OPS collects them into one
SampleSet. TheSampleSet contains a list of Samples,
and also has convenience methods to access a sample
either by replica ID or by ensemble, using the same
syntax as a Python dict.

2. Data structures for how the sampling occurs

• The MoveChange contains a record of what happened
during the simulation step. Because the simulation
move itself generally consists of several nested de-
cisions (type of move, which ensemble to sample,
etc.), the MoveChange object can contain subchanges,
which record this entire sequence of decisions. In addi-
tion, it includes a pointer to its PathMover (described
in section IV B), a list of the trial Samples generated
during the step, and a boolean as to whether the trial
move was accepted.

CVs & Order 
Parameters

Dynamics

States & 
Interfaces

Reactions

Monte Carlo 
Move Types

Output file

Initial 
Conditions

Collective
Variable

Dynamics
Engine

Volume

Transition
Network

Move 
Scheme

Storage

Sample
Set

Transition Ensemble

Move 
Strategy

Path
Mover

Runnable 
Simulation

Path
Simulator

Concepts
user-created automatically-created

OPS Objects

FIG. 3. Schematic representation of the connection between
the path sampling concepts and their related OPS objects. The
concepts are listed in the le�most column, shaded green. The next
column shows the objects which must be created by a user to run a
simulation. The filled arrows indicate when one object is the input
to create another object. The objects in the right two columns are
automatically created. The open arrows point from an object to the
objects it automatically creates. In this way a TransitionNetwork
creates Transition object that creates in turn Ensemble objects.

• The MoveChange also contains a Details object,
which is essentially a dictionary to store additional
metadata about a move. This metadata will vary de-
pending on the type of move. For example, with a
shooting move, it would include the shooting point. In
principle, all the additional information that might be
of interest for analysis should be stored in the Details.

B. Simulation objects

The simulation objects actually perform the simulation,
and can be assembled in di�erent ways to perform many
types of simulations. In addition, simulation objects in OPS
can be stored. This facilitates restarts to continue a simula-
tion and enables re-use for other types of simulations, e.g.,
using the same state definitions for committor analysis as
well as path sampling. The PathSimulator class contains
all the information to run the simulation. The PathSampling
subclass of PathSimulator is used for path sampling sim-
ulations. Fig. 3 shows the relation between path sampling
concepts and the associated objects in OPS. Each of the com-
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ponents is described in more detail below.

• A DynamicsEngine performs the actual molecular dy-
namics: that is, it generates a trajectory from an initial
frame. OPS has built-in support for an internal toy dy-
namics engine (primarily intended for 2Dmodels) and
for OpenMM [76]. Support for Gromacs [77, 78] and
LAMMPS [79] will be added in future releases.

• A CollectiveVariable is a function of a Snapshot,
and in many cases is just a function of the coordi-
nates. It is also sometimes called the “order pa-
rameter,” “progress variable,” “reaction coordinate,”
or “feature.” In line with the rare event terminol-
ogy (e.g., [80, 81]) the neutral term CV (for Collec-
tive Variable) can both be used to define interfaces
and states (via Volumes), as well as to construct or-
der parameters. The CollectiveVariable in OPS
is a wrapper class around an arbitrary function. For
example, the CoordinateFunctionCV will wrap any
user-defined function that only depends on the snap-
shot’s coordinates. In addition, specific classes en-
able the use of functions from other packages, e.g, the
MDTrajFunctionCV provides a wrapper class for func-
tion fromtheMDTraj [82] analysis package. Otherwrap-
pers exist for MSMBuilder [83, 84] and PyEMMA [85].

• The Volume class in OPS represents a hypervolume in
phase space. This can be used to define a state, also
called a “core set.” In addition, interfaces are also de-
fined by volumes, rather than by hypersurfaces as in
the traditional TIS literature (see section III A). A vol-
ume is typically defined based on allowed ranges of
CVs; in OPS the CVDefinedVolume object creates such
a volume based on a minimum andmaximum value of
the CV.

• The Ensemble class in OPS defines the paths that are
allowed within a given path ensemble. It is more ac-
curately thought of as the indicator function for a re-
stricted path ensemble (c.f. Eq. 3). The indicator func-
tion alone reduces the set of all possible paths to the
trajectories with non-zero probablity in the path en-
semble, but with no distinction in their relative statisti-
cal probabilities. Sampling according to the correct sta-
tistical weights is the role of the PathMover, described
below.

In addition to the indicator function, Ensemble objects
contain twomethods, can_append and can_prepend,
which check whether a given trajectory could be ap-
pended or prepended into a trajectory in the ensemble.
This allows us to create a rich toolkit to create custom
ensembles. For instance, a path that connects states
A andB is defined as a trajectory that follows the se-
quence of events that it is first inA, then not in (A∪B),
and finally in B. In OPS, this sequence is describedwith
a SequentialEnsemble object, which provides a flex-
ible way to implement arbitrarily complex path ensem-
bles (see Ref. [45]).

Despite this powerful toolkit and the fundamental
role of the Ensemble, under most circumstances
the user does not need to instantiate Ensemble ob-
jects. Instead, they are automatically created by the
Transition and Network objects, described below.

• A Transition object contains all information for
studying a single-direction reaction connecting a spe-
cific initial state and a specific final state, such as
A→ B, and serves as an organizational structure for
systems with many states, where the number of possi-
ble transitions growsasN(N−1) forN states. For TPS,
this object consists just of one ensemble, while for TIS
it usually consists of several interface path ensembles,
as well as the minus ensemble (used in RETIS). Note
thatA→ B andB → A are two di�erent transitions,
each with their own sets of ensembles, thus requiring
two Transition objects. A single rate k would be as-
sociated with each Transition and kA→B 6= kB→A.

• A TransitionNetwork object (which we will fre-
quently refer to as simply the “network”) consists
of a set of Transitions. Since OPS is designed
to handle the systems with many states, the net-
work gathers all the transitions into one object. It
is a network in the graph theory sense: states are
nodes; reactions (transitions) are directed edges. Sub-
classes of TransitionNetwork, such as TPSNetwork
or MSTISNetwork, deal with specific approaches to
sample the network. All the ensembles to be sampled
are contained in the TransitionNetwork. Section V D
provides more details.

• PathMovers, or “movers,” performMonte Carlomoves
in path space, such as shooting, reversal, minus, or
replica exchange. They are organized into amove deci-
sion tree, which selects the specific move to use (the
move type and the ensemble). An example of a move
decision tree is given in Fig. 6. The Ensemble associ-
ated with a givenmover determines whether a trajec-
tory is in the path harvest for thatmover, but themover
itself can reject paths such that the correct statistics
for the path ensemble are obeyed (i.e., to preserve de-
tailed balance.) PathMovers are discussed in more
detail in section V E 1.

• The MoveScheme contains and builds the move
decision tree, which in turn contains all the
PathMovers available to a simulation. The
MoveScheme is created by associating several
MoveStrategy objects with it. Each MoveStrategy
builds several related PathMovers. For example, a
NearestNeighborReplicaExchangeStrategy will
create a ReplicaExchangeMover for each pair of
nearest-neighbor ensembles in each Transition
from the TransitionNetwork. Options for creating
the strategy can control which ensembles are used,
and whether this adds to or replaces existing strate-
gies. This provides the user a great deal of flexibility
when customizing the move decision tree using the
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numpy, scipy, pandas, netcdf

CVs Engines NetCDF+

Volumes & 
Ensembles Path Movers

Networks Schemes & 
Strategies

generic

specific
Storage

FIG. 4. The modules of OPS can be separated into di�erent
layersof abstraction. The layers canbe consideredasboth increas-
ing specificity of purpose (from bottom to top) as well as increasing
ease of use or ease of implementation of new subclasses. Under-
neath the OPSmodules the are external packages upon which OPS
is built. Above that are OPSmodules which have potential for use
outside the context of reaction dynamics and path sampling. Above
that the code becomesmore specific to path sampling, and to the
OpenPathSampling project. At the top layer, some of themore pow-
erful OPS libraries are abstracted into a more simple user interface.
The level of user that is likely to spend significant time working at
each level is indicated on the le�.

MoveScheme and MoveStrategy objects. For simplic-
ity, OPS provides a DefaultScheme with reasonable
defaults for TIS (one-way shooting, nearest-neighbor
replica exchange, path reversal, andminusmove), and
a OneWayShootingMoveScheme with a reasonable
default for TPS. The MoveScheme and MoveStrategy
objects will be discussed in more detail in section V E 2.

C. Layers of abstraction in OPS

OPS is structured as a set of Python modules, organized
according to major classes. As a library, users can interact
with di�erent levels of abstraction. Fig. 3 and the previous
sectionhavealready indicatedhowTransitionNetworkob-
jects act as a more user-friendly layer for Ensembles, and
how MoveScheme and MoveStrategy objects create a sim-
pler layer for working with PathMovers. But these lower-
level objects can also be accessed by users, as will be dis-
cussed in the companion paper [45].
Objects like Ensembles and PathMovers are specific to

path sampling and related topics. These are built on even
more generic objects, which might be useful beyond the
scope of path sampling. Many PathMovers use the generic
DynamicsEngine wrapper to run the molecular dynamics.
Volumes are defined in terms of CollectiveVariables,
which havemany uses beyond path sampling. The specific
OPS Storage class is based on more generic NetCDFPlus
subpackage, built for OPS. This is shown in Fig. 4, where
lower levels are more generic, while higher levels are more
specific to path sampling. Higher levels also tend to be more
user friendly.

V. OPSWORKFLOW

In this section we give an overview of the process for set-
ting up and running a path sampling simulation with Open-
PathSampling, including some general discussion on prac-
tical aspects of path sampling simulations. In general, ev-
ery path sampling simulation can be split into the following
steps:

1. Setting up the molecular dynamics engine

2. Defining states and interfaces

3. Setting up the transition network andmove scheme

4. Obtaining initial pathways

5. Equilibration and running the simulation

6. Analyzing the results

In practice, the human e�ort in path sampling using OPS
will focus on defining the states and interfaces, obtaining
trajectories for initial conditions, and analyzing the simula-
tion results. OPS aims to facilitate those steps and automate
what it can, suchas settingup theTransitionNetworks and
MoveSchemes, and running the simulation. In addition, OPS
providesmany tools for the analysis of the simulation results.
In the first setup steps (1-3), the user chooses the dynam-

ics of interest and decides on the DynamicsEngine, the
CollectiveVariables, defines the Volumes for the states
and interfaces, as well as the topology of the reaction net-
work, and decides on the sampling MoveScheme. Fig 3 ren-
ders these steps from the top down. Selecting relevant col-
lective variables and using them to define state volumes is of
critical importance, but is also dependent on the system be-
ing studied. We assume that a user is already familiar enough
with the system tomake reasonable choices for these.
The specific definition of the transition network is handled

in OPS by a TransitionNetwork object, which automates
the creation of Transitions and Ensembles for common
variants of TPS (including multiple state) and TIS (including
multiple state and multiple interface set variants). These
objects take as input the Volume based states and interfaces
definitions.
The MoveScheme is created based on the

TransitionNetwork and a DynamicsEngine. It can
be customized by adding additional MoveStrategy objects,
but OPS provides default schemes for convenience. The
MoveScheme and its accompanying MoveStrategy objects
create all the PathMovers. Each PathMover knows onwhich
ensemble(s) it acts, and are organized into a total move
decision tree.
The final initialization step is to create an initialSampleSet

by loading valid preexisting initial trajectories into each of
the ensembles. See Appendix A for several approaches to
obtain initial conditions.
The simulation is performed by a PathSimulator ob-

ject. Path sampling simulations use a subclass called
PathSampling. Other subclasses of the PathSimulator
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include CommittorSimulation for calculating committors
and DirectSimulation for calculating rates and fluxes via
direct MD. All PathSimulator objects take a Storage ob-
ject as input, to determine where to save data. In addi-
tion, PathSampling takes the MoveScheme and the initial
SampleSet as input.
Analysis is done independently from the sampling and re-

quires only the Storage and TransitionNetwork for the
computing observables, and additionally the MoveScheme
for the sampling statistics. Everything that is needed
for analysis is stored in the output file, including the
TransitionNetwork and MoveScheme.
In the next subsections we discuss these six steps in more

detail.

A. Step 1: Setting up themolecular dynamics

Of course, before embarking on a path sampling simula-
tion, one must decide on the system to simulate, and the
nature of the underlying dynamics (i.e., the thermodynamic
ensemble represented, the integrator used for the dynamics,
the force field to define interactions, etc.) OPS is designed to
wrap aroundother engines to take advantage of the flexibility
already built into other so�ware. Currently, OPS supports
OpenMM [76] as well as its own internal dynamics engine
intendedmostly for 2D toy models.
The basic Engine takes general OPS specific options defin-

ing, e.g., handling of failing simulations, maximal trajectory
length, etc, as well as dimensions used in snapshots that
the engine generates (e.g., number of atoms). Each specific
engine also carries information necessary for it to setup a
simulation. In case of OpenMM this includes a description
of the Integrator, the System object (force field, etc.), the
systems Topology and some OpenMM specific options (e.g.,
hardware platform and numerical precision).

B. Step 2: Defining states and interfaces

The ensembles used in path sampling methods require
definitionsof (meta)stable states and, in the caseof transition
interface sampling, interfaces connecting these states. OPS
implements both states and interfaces in terms of Volume
objects.
The main types of volume objects are the

CVDefinedVolume, and its periodic version,
PeriodicCVDefinedVolume. Each of these defines a vol-
ume in phase space based on some CollectiveVariable.
This could include such quantities as atom-atom dis-
tances, dihedral angles, RMSD from a given reference
frame, number of contacts, etc. The user must first de-
fine a CollectiveVariable object, either as a wrapper
around functions from other so�ware packages (some
examples below use MDTrajFunctionCV, which wraps
MDTraj analysis function), or around a user-written function
(other examples will show the use of the more general
CoordinateFunctionCV).

Using the CollectiveVariablewe have a clear sepera-
tion between the full simulation data and what we consider
relevant for state definitions and later analysis. This sepera-
tion allows us to later run analysis without the need to load
a single frame, and to store a reduced set without the actual
coordinates.
To define a volume, the user must also specify minimum

and maximum values for the CV. The volumes can then
be created with, e.g., CVDefinedVolume(cv, minimum,
maximum), which defines a frame as being inside the vol-
ume if minimum ≤ cv(frame) < maximum. Volumes can
be combined using the same set operation as Python sets:
&(intersection), | (union), - (relative complement), ˆ (sym-
metric di�erence), and ˜ (complement). Volume combina-
tions of the same collective variable are automatically sim-
plified when they can be recognized [e.g., (0 ≤ x < 5)&(3 ≤
x < 8) becomes 3 ≤ x < 5]. The ability to arbitrarily com-
bine volumes allows one to define arbitrary states, e.g., “this
hydrogen bond is formed and this dihedral is near a certain
value.” This provides OPS with powerful flexibility.

C. Step 3: Setting up the transition network andmove
scheme

The transition network (path ensembles) and the move
scheme (Monte Carlo moves) can be thought of aswhat to
sample, and how to sample, respectively.
For complex TIS simulations, the number of path en-

sembles to be sampled can grow into the hundreds.
TransitionNetwork objects e�iciently create those ensem-
bles according to standard ways of organizing, and facilitate
later analysis. The examples in Sec. VI will demonstrate the
four main kinds of network objects: TPSNetwork for flexible-
length TPS, FixedLengthTPSNetwork for fixed-length TPS,
MSTISNetwork for multiple-state TIS, and MISTISNetwork
for TIS andmultiple interface set TIS.
TheMoveScheme creates andorganizes thepossibleMonte

Carlo moves, as appropriate for a given transition net-
work. As with the transition networks, the MoveScheme
object also facilitates later analysis. The examples in sec-
tion VI will go over the simplest default move schemes
(OneWayShootingMoveScheme for TPS; DefaultScheme for
TIS). However, themove scheme is very customizable, as will
be elaborated on in the companion paper [45].
As both the TransitionNetwork and MoveScheme are

crucial in OPS, we devote extra attention to these objects
below.

D. Step 3a: Transition networks

The TransitionNetwork object contains all the path
ensembles to be sampled for the reaction network of in-
terest. To simplify analysis, most ensembles are grouped
into Transition objects, which describe a single transi-
tion within the network. There are also special ensembles
(e.g., ensembles associated with multiple state interfaces
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Network and Initialization Transitions Sampling
Transitions

Sampling
Ensembles

TPSNetwork:
A, B 1 1 1
[A, B], [B, C] 3 1 1
[A, B, ..., N], [A, B, ..., N] N(N − 1) 1 1

MSTISNetwork:
[(A, mA), (B, mB)] 2 2 mA +mB

[(A, mA), (B, mB), ..., (N, mN)] N(N − 1) N
∑

I mI

MISTISNetwork:
[(A, mAB, B)] 1 1 mAB

[(A, mAB, B) (A, mAC, C), ..., (A, mAN, N)] N − 1 N − 1
∑

J 6=AmAJ

[(A, mAB, B), ..., (A, mAN, N), ...
..., (N, mNA, A)] N(N − 1) N(N − 1)

∑
I

∑
J 6=I mIJ

TABLE I.Predefinednetwork types and thenumberof (physical) transitions, sampling transitions, and sampling ensembles aris-
ing from di�erent initialization parameters. Volumes are represented with capital letters (e.g., A or B) and interface sets are represented
as mA for the interfaces leaving A in MSTIS, or mAB for interfaces leaving A toward B in MISTIS. The number of interfaces in an interface set is
given bymA ormAB , respectively. The total number of states is assumed to beN (with the final state represented by N).

or with minus interfaces) which may not be specific to a
single transition, and are only associated with the network
as a whole. In general, the user only needs to create the
TransitionNetwork object, which will automatically cre-
ate the relevant Transitions and Ensembles. The simplest
transition network contains a single transition, the one-way
A → B. A bidirectional networkA ↔ B is thus character-
ized by two transitions, each associated with its own set of
ensembles.
Each network involves two groupings of transitions: the

sampling transitions and the physical transitions. MSTIS
shows a clear example of the distinction between these:
while sampling, the transitions studied are A → (B ∪
C), B → (A ∪ C), and C → (A ∪ B). However, in
analysis we obtain the rates for all the individual physi-
cal transitions A → B, A → C, B → A, B → C,
C → A, and C → B. For a network with N states,
up to N(N − 1) unique physical transitions are possible.
The sampling transitions are found in a list, accessed as
network.sampling_transitions, and the physical transi-
tions are in a dict, with state pairs (initial, final) as
keys, and the associated Transition object as value.
The Transition and the TransitionNetwork objects

depend on the type of simulation that is intended, just as the
Ensemble does. Table I shows how di�erent input parame-
ters create di�erent numbers of physical and sampling tran-
sitions for the built-in network objects in OPS. The network
for a TPS simulation is made with either the TPSNetwork or
FixedLengthTPSNetwork objects. The TPSNetwork is ini-
tialized with a list of initial states and a list of final states;
all pairs of (non-self) transitions are generated internally. A
TPSNetwork has only one sampling TPSTransition, which
has only one ensemble. However, for analysis the network
includes ensembles for every possible physical transition. If
A is the only initial state and B is the only final state, then
A→ B is the only physical transition. Whenmultiple initial
and final states are given, then all the non-self physical transi-

tions are allowed: in the second line of Table I, that would be
A→ B,A→ C, andB → C. When allN states are given as
both initial and final states, allN(N − 1) non-self transitions
are included. The FixedLengthTPSNetwork is exactly like
the TPSNetwork, except that its initialization also requires
the length of the path (in snapshots).
Within standard TPS approaches, there is a one-to-one

correspondence of (sampling) ensemble to network. That
makes these networks relatively simple. The situation be-
comes more complicated with TIS. In TIS, each transition
involves a set of interface ensembles. In addition, there are
the minus ensembles, which (in MISTIS) can be associated
with more than one transition, and there are the multiple
state outer ensembles (in MSTIS and MISTIS), which are also
associated with more than one transition.
The MSTISNetwork and MISTISNetwork are initialized

with specific data about the transitions. In MSTIS, this in-
cludes the initial states and the interface sets associatedwith
them, provided as a list of tuples. The MSTISNetwork cre-
ates sampling ensembles that allow paths that end in any
state, and always samples all transitions between all states.
As shown in Table I, it therefore always hasN(N − 1) physi-
cal transitions andN sampling transitions forN input states.
The number of ensembles depends on the number of ensem-
bles per interface set, but scales linearly with the number of
states.
In addition to the initial states and the interface sets,

MISTISNetwork also requires the ending state for each tran-
sition, provided as a third item in each tuple. The number of
physical transitions for the MISTISNetwork is always equal
to the number of sampling transitions, and the number of
ensembles grows with the number of sampling transitions.
This means that, in the worst case of sampling all possible
transitions, the number of ensembles scales quadratically
with the number of states. However, MISTIS has the advan-
tage that it allows one to select only specific transitions of
interest, or to use di�erent interface sets for transitions be-
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ginning in the same initial state, allowing each transition to
be sampledmore e�iciently.
Both of these TIS networks automatically create appro-

priate minus interface ensembles, and they can optionally
take an MSOuterTISInterface for the multiple state (MS)
outer interface ensemble. The MS-outer ensemble is the
union of several TIS ensembles starting from di�erent initial
states [34, 71]. Whereas a TIS ensemble only allows trajec-
tories that begin in a single given initial state, the MS-outer
ensemble allows trajectories that begin in any of multiple ini-
tial states. This ensemble, combined with replica exchange,
facilitates decorrelation of trajectories.
MSTIS and MISTIS are two di�erent ways to create ensem-

bles to study a reaction network. The MSTIS approach is
more e�icientwhenall transitions from the same state arede-
scribed by the same order parameter. The MISTIS approach
allowsmore flexibility in sampling, by allowing di�erent tran-
sitions from an initial state to use di�erent order parameters
or selection of specific transitions of interest.
The simplest network, A → B, can be studied using

the MISTISNetwork object. The bidirectional A ↔ B net-
work can be studied using either a MISTISNetwork or a
MSTISNetwork: the ensembles which are created would be
indistinguishable.
These networks are not exhaustive, and other possibilities

might be implemented by users. For example, it might be
interesting to sample transitions from one state to all other
states in an MSTIS simulation. This cannot be done with the
built-in MSTISNetwork, but it would be relatively straight-
forward to create another subclass of TransitionNetwork
that allows this.

E. Step 3b: The Monte Carlo Move Scheme

1. Path movers

In OPS, each PathMover instance is connected to specific
ensembles. For example, there is a separate shooting mover
for each ensemble, and a separate replica exchangemover
for each pair of ensembles that are allowed to swap in replica
exchange. The movemethod of the PathMover object actu-
ally performs the Monte Carlomove. It takes a SampleSet as
input, and returns aMoveChange, which thePathSimulator
applies to the original SampleSet in order to create the up-
dated SampleSet.
OPS includes a rich toolkit so that developers of newmeth-

ods can create custommethods. Those toolkits are discussed
in detail in the companion paper [45]. Here, wewill introduce
some of the built-in path movers.

• Shooting movers: OPS has support for both one-
way (stochastic) shooting [48, 65] as well as the two-
way shooting algorithm. These are implemented as
OneWayShootingMover and TwoWayShootingMover.
In addition to a specific ensemble, the shootingmovers
require a ShootingPointSelector to choose the
shooting point. Themost commonly used selector is

FIG. 5. Example of a transition network used in theMSTIS ala-
nine dipeptide examples (See Section VI)Multiple states A-D are
defined according to the dihedral anglesψ and φ. THe core sets for
A-D are defined as being within 10 degrees of the core center (indi-
cated by black dot). Each state has its own set of interfaces using
the geometric distance inψ − φ space to the core center, indicated
by shadede circles. The MSTISNetwork object creates for each state
the collection of path ensembles for each interface, plus the minus
interface. In addition there is a multiple state union interface for
the outermost interfaces. The plus marks the location of the initial
conformation used in the example.

the UniformSelector, which selects any point except
the endpoints of the trajectory (which are in the de-
fined states) with equal probability. Other possibilities
could also be implemented, such as using a Gaussian
distribution [23] or a distribution constrained to the in-
terface [69]. TheTwoWayShootingMover also requires
a SnapshotModifier to change the snapshot in some
way (e.g., modifying the velocities). Several possibili-
ties exist, including either changing the direction of the
velocity for some atoms, or completely randomizing
velocities according to the Boltzmann distribution.

• Path reversal mover: Another standard mover is the
PathReversalmover, which takes the current path in
the ensemble and tries to reverse its timedirection. For
a path that leaves and returns to the same stable state
this move is always accepted. As stated in Sec. II C, this
move helps to decorrelate the sampled trajectories.

• Replica Exchange mover: A ReplicaExchangeMover
involves two ensembles (see Fig. 6). When a move is
attempted, the mover takes the paths associated with
these ensembles in the current sample set, and tries to
exchange them. This trialmovewill be accepted if both
paths are valid paths in their respective ensembles.

• Minus mover: The MinusMover is a more complicated
PathMover. In essence, it combines replica exchange
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with extension of the trajectory. OPS has a toolkit to
simplify the creation of more complicated moves from
simpler ones, which is be discussed in more detail in
the companion paper. The MinusMover uses both the
minus interface ensemble and the innermost normal
TIS ensemble. It extends the trajectory from the inner-
most ensemble until it again recrosses the interface
and returns to the stable state, resulting in a trajectory
with two subtrajectories that satisfy the innermost TIS
ensemble. This trajectory satisfies the minus ensem-
ble. The trajectory that hadpreviously been associated
with the minus ensemble also has two subtrajectories
that satisfy the innermost TIS ensemble, and one of
them is selected. A�er the move, the newly extended
trajectory is associated with the minus ensemble, and
the selected subtrajectory is associated with the inner-
most TIS ensemble.

2. The MoveScheme and MoveStrategy

The MoveScheme creates and contains the move decision
tree, which is essentially the protocol for the simulation.
Fig. 6 shows a graphical representation of the decision tree
created by a simple MoveScheme. The decision tree contains
the di�erent choices of move type (e.g. shooting, reversal,
replica exchange) and assigns specified weights to them. At
the leaves of the tree are path movers. Each path mover acts
on a certain ensemble (shown on the right of Fig. 6).
The MoveScheme object organizes the path movers in sev-

eralmover groups, held in a dictionary called movers, with
strings as keys and a list of PathMovers are values. Each
group corresponds to a related set ofmovers (which are used
on di�erent ensembles). For example, the default shooting
movers are in the group ’shooting’ and the default replica
exchangemovers are in the group ’repex’.
The most common MoveScheme objects

are the DefaultScheme (for TIS) and the
OneWayShootingMoveScheme (for TPS). All move
schemes require a network; DefaultScheme and
OneWayShootingMoveScheme also require an engine.
The move decision tree can also be generated by hand, and
then given as input to a LockedMoveScheme, although some
additional information (such as the choice_probability,
a dictionary mapping each path mover to its relative
probability of being selected) must be manually added
to a LockedMoveScheme for some analysis to work. Fur-
thermore, a LockedMoveScheme cannot by modified using
MoveStrategy objects.
In general, the easiest way to customize the

move scheme is to start with a DefaultScheme or a
OneWayShootingMoveScheme, and then append strategies
that give the desired behavior. The whole scheme is built
by applying the MoveStrategy objects in sequence. Each
subclass of MoveStrategy has a priority level associated
with it, and the strategies are built in an order sorted first
by that priority level, and second by the order in which
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FIG. 6. Schematic representation of the decision tree as con-
structed by the MoveScheme object. Shown is an example for
RETIS. The MoveScheme points to the root of this tree (le�). The
branches are the di�erent move levels. First level is the decision
about what type of move: shooting, replica, reversal. Next level
is the decision about what ensemble needs to be moved. For
the shooting, the next level is about which direction the shot is.
For other moves the choice is slightly di�erent. The right part
of the picture show which ensembles are a�ected. Each vertical
line denotes an ensemble. At the root of the tree each ensemble
can be chosen. Going down the tree, the ensembles a�ected re-
duce in number. The letters are arbitrary labels for each ensem-
ble. The grey box around each letter show the input (red) and the
output (blue). This sort of schematic can be generated using the
paths.visualize.MoveTreeBuilder object.

they were appended to the scheme (so later additions can
override earlier versions). Several aspects of the way a
MoveStrategy contributes to the move decision tree can be
set in its initialization: which ensembles the strategy applies
to, which mover group the strategy is for, and whether
to replace the e�ects of previous strategies. Additionally,
mover-specific parameters (such as shooting point selector
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for shooting moves) are passed along to the movers that are
constructed by the strategy.
This allows one to, for example, add a shooting move of

a di�erent type (e.g., two-way instead of one-way, or using
a di�erent shooting point selection algorithm) for a specific
ensemble — either overriding the original mover or adding a
second “group” of shooting movers (with a di�erent name,
e.g., ’shooting2’ so as not to conflict with the existing
’shooting’). One might do this so that there are two kinds
of shooting moves: one which causes large decorrelations in
path space (but might have lower acceptance) and one that
has a better acceptance probability.

F. Step 4: Obtaining initial conditions

The initial conditions for a path sampling simulation con-
sist of a SampleSetwith at least one Sample for any possible
initial move. As discussed above, each Sample consists of a
trajectory, the ensemble for that trajectory, and a replica ID.
Preparing the initial sample set thus breaks down into two
parts: (1) creating the initial trajectories; (2) assigning them
to appropriate ensembles and giving them individual replica
IDs.
The first part, obtaining initial trajectory from the path

ensemble, is in general non-trivial since the events we are
interested in are rare, and the best approach is likely to be
system specific. We discuss several possible approaches in
detail in Appendix A.
The second part ismuch easier. Oncewe have trajectories,

scheme.initial_conditions_from_trajectories will
take those trajectories and create appropriate initial condi-
tions for the move scheme called scheme. This method at-
tempts to create a sample for every ensemble required by the
move scheme by checking if the given trajectories (or subtra-
jectories of them) or their time-reversed versions satisfy the
ensemble. Internally, this uses the ability of the Ensemble
object to test whether a trajectory (or subtrajectory thereof)
satisfies the ensemble.
For some ensembles, such as the mi-

nus interface ensemble, the method
extend_sample_from_trajectories has been im-
plemented, which runs dynamics to create a trajectory that
satisfies the ensemble, starting from input subtrajectories.
Last, the move scheme method MoveScheme.

assert_initial_conditions can be used to check if a
given set of initial conditions contains all Samples needed
to run the simulation, and raises an AssertionError if not.

G. Step 5: Equilibration and running the simulation

As with other simulation techniques, such as molecular
dynamics and configurational Monte Carlo, the equilibra-
tion process for path sampling is o�en just a shorter ver-
sion of the production run. Both equilibration and produc-
tion require creating a PathSimulator object, which cre-
ate the runnable simulation. The examples here focus on

PathSampling, but other subclasses of PathSimulator in-
clude CommittorSimulation and DirectSimulation (for
rates and fluxes). The PathSampling simulator is initialized
with a storage file, a move scheme, and initial conditions. It
has a runmethod which takes the number of MC trial steps
to run. All the simulation and storage to disk is done auto-
matically.

H. Step 6: Analyzing the results

OPS has many built-in analysis tools, and users could cre-
ate a wide variety of custom analyses: the companion paper
includes several examples [45]. However, nearly all analysis
of path sampling falls into two categories: either the analysis
provides information about the ensemble that is sampled
(o�en tied to observables such as the rate) or the analysis
provides information about the sampling process itself. Both
analysis types are extremely important — poor behavior of
the sampling process would indicate low confidence in the
calculated observable. And, of course, combining insights
from both can yield understanding of the physical process
under study. The basic use of OPS analysis tools to calculate
rates from MSTIS and MISTIS simulations and mechanistic
information (path densities) from TPS simulations, as well as
properties of the sampling process such as the replica history
tree (a generalization of the “TPSmove tree” in existing liter-
ature), measures of mover acceptance ratios, andmeasures
of the replica exchange network and its e�iciency, will be
illustrated in the following examples.

VI. ILLUSTRATIVE EXAMPLES

In this section, we give and discuss several examples.
These examples are meant to show the user how to set up,
run, and analyze several basic applications of TPS,MSTIS, and
MISTIS. In the examples, the following set of initial imports is
assumed:

import openpathsampling as paths
import openpathsampling.engines.openmm as omm
import openpathsampling.engines.toys as toys
import openpathsampling.visualization as vis

import numpy as np
import matplotlib.pyplot as plt
import mdtraj as md

These imports load the requiredmodules, notably theOPS
modules, but alsomodules suchasMDTraj [82], OpenMM[76],
the toy dynamics, and the Python plottingmodules. We note
that theexplicit codegiven in this section is for illustrativepur-
poses only, and refers to the 1.0 release. Up-to-date versions
of the examples are available as interactive Jupyter note-
books on the website http://openpathsampling.org.
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A. TPS on alanine dipeptide

This example illustrates details about setting up transition
path sampling calculations, both with fixed and flexible path
length ensembles. This example and the next consider ala-
nine dipeptide (AD) in explicit TIP3P [86] water, using the
AMBER96 [87] force field to enable comparison to some pre-
vious work [88, 89]. This model has been widely used as a
biomolecular test system for rare events methods. We use a
VVVR-Langevin integrator at 300K[90], with a 2 fs timestep
and a collision rate of 1 ps−1. The long ranged interactions
were treatedwith PMEwith a cuto� of 1 nm. The ADmolecule
was solvated with 543 water molecular in a cubic box, and
equilibratedat constant pressureof 1 atmusing aMonteCarlo
barostat. A�erwards the box sizewas set to the average value
of 25.58 Å as obtained in the NPT run. All subsequent simu-
lations were done in the NVT ensemble.
While the example is based on the explicit solvent calcu-

lations by Bolhuis, Dellago, and Chandler [91], we di�er in
several details, including our choice of force field and the
details of our ensembles: Ref. 91 used a shorter fixed-length
TPS ensemble, whereas we use both a flexible-length TPS
ensemble and an 8 ps fixed-length TPS ensemble.

1. Setting up the molecular dynamics

We use OpenMM to set up an MD engine for the AD
system. The OpenMM-based OPS engine is essentially a
wrapper for the OpenMM Simulation object. As with the
OpenMM Simulation, it requires an OpenMM System, and
an OpenMM Integrator. The interactive OpenMM simula-
tion builder tool [http://builder.openmm.org/] allows
us construct an appropriate System and Integrator. In ad-
dition, the OpenMM Simulation takes a properties dictio-
nary, which wemust define.
To build the OPS engine, we also need to fill an options

dictionary with some OPS-specific and OpenMM-specific en-
tries. All OPS engines should define nsteps_per_frame,
the number of time steps per saved trajectory frame, and
n_frames_max, an absolutemaximum trajectory length. For
the alanine dipeptide examples, we save every 20 fs (10 steps)
and abort the trajectory if it reaches 40 ps:

options = {'n_steps_per_frame': 10,
'n_frames_max': 2000}

A�er creating the the OpenMM system, the OpenMM in-
tegrator, the OpenMM properties dictionary, and the OPS
options dictionary, all of these can be combined to create on
OpenMM-based OPS engine:

engine = omm.Engine(snapshot.topology, system, integrator,
properties, options).named("AD_engine")

where the snapshot is loaded from the PDB with
omm.snapshot_from_pdb("file.pdb"). This com-
mand also associates a name with the engine, which make it
easier to reload from storage for re-use.

2. Defining states and interfaces

The collective variables of interest for alanine dipeptide
are the backbone φ and ψ dihedrals. To create a collective
variable for these angles, we use our wrapper around MD-
Traj’s compute_dihedrals function:

psi = paths.MDTrajFunctionCV("psi", md.compute_dihedrals,
snapshot.topology, indices=[[6, 8, 14, 16]])

The φ angle is defined similarly, consisting of the atoms with
indices 4, 6, 8, and 14.
MDTraj reports dihedral angles in radians. The

MDTrajFunctionCV wrapper can wrap any function
that uses MDTraj; we use the simplest example here for
illustrative purposes. It would be straightforward to write
a Python function that converts this to degrees, and to use
that in place of md.compute_dihedrals; the AD MSTIS
example in section VI B uses a more complicated approach
to wrapping CVs.
In this example, we define two states,C7eq and αR, simi-

larly to Ref. [91]. Since we are using a di�erent force field, we
use slightly di�erent values for the ψ angles. Our stateC7eq

is defined (in degrees) by 180 ≤ φ < 0 and 100 ≤ ψ < 200
(wrapped periodically), whereas αR is given by 180 ≤ φ < 0
and−100 ≤ ψ < 0. To convert between degrees and radi-
ans, we define deg = np.pi/180. The code to defineC7eq

is,

C_7eq = (paths.PeriodicCVDefinedVolume(phi,
lambda_min=-180*deg, lambda_max=0*deg,
period_min=-180*deg, period_max=180*deg

) & paths.PeriodicCVDefinedVolume(psi,
lambda_min=100*deg, lambda_max=200*deg,
period_min=-180*deg, period_max=180*deg

)).named("C_7eq")

and state αR can be coded accordingly.
For nonperiodic CVs, the equivalent form is

CVDefinedVolume, and it does not include the period_min
and period_max arguments. The periodic version allows
theC7eq state to wrap across the periodic boundary in the
ψ variable: We define the state from 100 degrees to 200
degrees, even though the function reports values between
−180 degrees and 180 degrees. We would get the exact
same behavior by setting lambda_max to−160 degrees. For
a TPS simulation, we only need to define the states — there
are no interfaces to define.

3. Setting up the transition network andmove scheme

The transition network creates and contains all the ensem-
bles to be sampled. In this case, there is only one ensemble.
Later examples will deal with sets of ensembles. The fixed
and flexible path length examples diverge here: the fixed
path length TPS simulation uses a fixed path length network
with path length 400 frames (8 ps), created with

network = paths.FixedLengthTPSNetwork(C_7eq,
alpha_R, length=400)
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For the flexible path length, which is better in practice, we
use:

network = paths.TPSNetwork(C_7eq, alpha_R)

This one line of code selects between the two approaches.
Multiple state TPS can be set up similarly. For instance, amul-
tiple state TPSwith states A, B, and C (allowing all transitions)
can be created by

paths.TPSNetwork.from_states_all_to_all([A, B, C])

Next, we set up themove scheme. For the TPS simulations,
we only need a shooting move. This move scheme is created
with

scheme = paths.OneWayShootingMoveScheme(network,
selector=paths.UniformSelector(), engine=engine)

The selector defines how to choose the shooting
points, e.g., UniformSelector selects the points
uniformly. Another option would be to use the
GaussianBiasSelector(lambda, alpha, l_0), which
takes the collective variable lambda and biases the shooting
point selection according to e−α(λ−l0)

2

, where l0 is the
position of the maximum, and α determines the width of the
distribution [? ].

4. Obtaining initial conditions

We obtained an initial trajectory by running at high tem-
perature (T = 500 K) until both states had been visited. Ap-
pendix A provides details on this and other possiblemethods
to obtain initial trajectories.
We generate the trajectory for fixed length TPS by taking

the appropriate trajectory for flexible length TPS, adding
frames to either side, and using the fixed-length ensemble’s
ensemble.split to select a segment of the appropriate
length and satisfying the requirements.
To assign this first trajectory to the ensemble

we will be sampling, we use the move scheme’s
scheme.initial_conditions_from_trajectories
method.

5. Equilibration and running the simulation

All OPS simulationdetails and simulation results are stored
in a single NetCDF storage file. The storage requires a
template snapshot to determine sizes of arrays to save per
snapshot. Before running the simulations, we need to create
a file to store our results in. A new file named tps_AD.nc can
be created with

storage = Storage("tps_AD.nc", mode="w",
template=template)

The PathSampling simulator object is created with

sim = paths.PathSampling(
storage=storage,
move_scheme=scheme,
sample_set=initial_conditions)

We can run the OPS simulation using

sim.run(n_steps)

with n_steps trial moves. We use 10,000 steps for the TPS
examples.
In all molecular simulation approaches initial conditions

are unlikely to be representative for the equilibrium distri-
bution (e.g., one could start with the solvent molecules on a
grid, or with a high temperature snapshot), and equilibration
is usually required before one can take averages of observ-
ables. Likewise, we need to equilibrate the path sampling
before we can take statistics, when the initial trajectories
are not from the real dynamics (e.g., generated with meta-
dynamics or high-temperature simulation). As with MD and
MC approaches, the equilibration phase can be just a short
version of the production run.

6. Analyzing the results

Analysis of a simulation is usually done separately from
running the simulation. The first step is to open the storage
file with the simulation results.

storage = paths.Storage("tps_AD.nc", mode="r")

will open a file for reading.
The tables of stored data objects are attributes of the

storage. To see the number of items stored, the stan-
dard Python len function can be used. For example,
len(storage.steps) gives the number of Monte Carlo
steps run (plus 1 for the initial conditions).
The move scheme serves as the starting point for

much of the analysis. Since there is only one in stor-
age, we obtain the correct move scheme with scheme =
storage.schemes[0]. The command

scheme.move_summary(storage.steps)

returns a quick overview of the moves performed and infor-
mationon the acceptance ratios. Since our TPSmove scheme
contained only one PathMover, all performed moves were
shooting moves. In this example, we find a 56% acceptance
ratio for flexible length TPS, and a 50% acceptance rate for
fixed length TPS.
As discussed in Sec. IV, every Monte Carlo step in the stor-

age consists of twomain parts: the SampleSet of active sam-
ples, given by step.active, and the PathMoveChangewith
details about the move, given by step.change. Typically,
analysis begins with a loop over steps, and then extracts
the relevant information. The first step (step 0) corresponds
to the initial conditions. For example, a list of all the path
lengths (in frames) can be obtained with

path_lengths = [
len(s.active[0].trajectory) for s in storage.steps]

which loops over each MC step in storage.steps, and
takes the length of the trajectory associated with replica
ID 0 in the active sample set. For TPS, this is the only
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replica, so this gives us the length of every accepted tra-
jectory, weighted correctly for the ensemble. From here,
we can use standard Python libraries to analyze the list, ob-
taining, for example, the maximum (max(path_lengths)),
the mean (np.mean(path_lengths)), the standard devi-
ation (np.std(path_lengths)), or to plot a histogram
(plt.hist(path_lengths)). In this specific example, we
are o�en interested not in the exact number of frames,
but in the time associated with that number of frames.
This can be accessed by multiplying the path length by
engine.snapshot_timestep, which gives the time be-
tween saved snapshots. In the case of the OpenMM engine,
this result even includes correct units, and we find that the
average path length for the flexible path length simulation is
1.6 ps, with a maximum path length of 10.1 ps.
Oneof the tools for checking thebehavior of path sampling

simulations, particularly of one-way flexible length path sam-
pling, is the visualization known as the “path tree.” This has
several uses, including checking for path decorrelation and
that there is su�icient alternation between accepted forward
shots and accepted backward shots [92]. In OPS, we generate
this object with

replica_history = vis.ReplicaEvolution(replica=0)
path_tree = vis.PathTree(steps, replica_history)

which works with any list of steps, although the visualiza-
tions get unwieldy for large numbers of steps. The generator
describes how to generate the list of samples to be displayed
from steps. In TPS, there is only one replica (replica=0),
but trees can also be used to track the move history of a
specific replica in TIS, where there are multiple replicas.
This PathTree object only consists of the data and

data structures to create and analyze the visualization.
The actual image can be generated (in SVG format) using
path_tree.svg() for visualization in a Jupyter notebook,
or written to file. The resulting image, shown in Fig. 7, shows
the original trajectory in grey, the forward shots in red, and
the backward shots in blue. However, these colors are cus-
tomizable using CSS options that can bemodified by the user.
The top uses an additional CSS-based customization to show
the individual snapshots. Additional information is shown to
the le� of the tree. At the far le�, a number indicates the MC
trial step index. Next to that, a vertical bar contains horizon-
tal lines to indicate groups of correlated paths (paths which
share at least on configuration in common).
The list of first-decorrelated paths (the first mem-

ber of each such group) can be obtained with
replica_history.decorrelated_trajectories. This
number is a good estimate of the number of uncorrelated
samples drawn from an ensemble. For the flexible path
length simulation, we have 893 decorrelated trajectories,
decorrelating on average every 11.2MC steps. For the fixed
path length simulation, there are only 409 decorrelated
trajectories, decorrelating every 24.4 MC steps. Note that
this set itself has no special relevance, but rather gives an
indication of the sampling e�iciency.
Besides analyzing the sampling statistics, we can, of

course, perform normal MD trajectory analysis on trajecto-
ries generated by OPS. For example, suppose we wanted the
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FIG. 7. Path sampling history tree for alanine dipeptide TPS
simulations from Sec. VI A Top: The path tree for first 25 trial MC
moves using flexible path length TPS. Here the initial path is repre-
sented by a grey horizontal line of a length equal to the path length.
Going downward, the sequential MC shooting moves are indicated.
The dashed vertical line indicates the shooting point. Red and blue
horizontal lines indicate forward and backward shots, respectively.
Note that these are partial paths, replacing the old path from the
shooting point forward (or backwards). The remainder of the path
is retained from the previous paths. To the le� is indicated the MC
step (trial) index. Only accepted paths are shown. The bar to the le�
indicate complete decorrelation of the previous decorrelated path.
Bottom, the path tree for fixed path length TPS. Note that the width
is scaled di�erently; paths in the bottom tree are much longer than
the top tree.

active trajectory a�er the 10th MC step. We can obtain this
with

trajectory = storage.steps[10].active[0].trajectory

where, again, TPS only has one replica, with replica ID 0. We
can directly analyze this trajectory with the tools in OPS. For
example, taking phi(trajectory) will give us the list of
values of φ for each frame in the trajectory. Any other OPS
collective variable will work similarly, whether it was used in
sampling or not.
The path density gives the number of paths in the ensem-

ble that visit a particular region in the projected collective
variable space. The appropriate histogram requires defining
the (inclusive) lower bound of a bin, and the width of the bin
in each collective variable. In OPS, we can calculate the path
density with

path_density = paths.PathDensityHistogram(cvs=[phi,psi],
left_bin_edges=[-180.0*deg,-180.0*deg],
bin_widths=(2.0*deg,2.0*deg))

utilizing a bin width of 2 degrees.
In principle, an OPS path density can be in any number of

collective variables. However, in practice, path densities are
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FIG. 8. Path density histogram for flexible path TPS of the
C7eq → αR transition in alanine dipeptide from Sec. VI A The
path density is a 2D histogram of the number of paths that traverse
a (discrete)ψ−φ value [66]. On top of the path density we plot two
individual trajectories, one for each of the two observed channels.
Note that the le� channel betweenC7eq and αR around φ ≈ 135 is
muchmore frequently sampled.

almost always shown as 2D projections. Fig. 8 gives the path
density for the flexible path length ensemble in the (φ, ψ)
plane, along with two representative trajectories.
If onewould rather use other tools, it is possible to convert

an OPS trajectory generated by OpenMM to an MDTraj [82]
trajectory with

mdtraj_trajectory = trajectory.to_mdtraj()

From there, we can analyze the trajectory with MDTraj or
export it to any of the file formats supported by MDTraj, to be
read in by other analysis programs. In addition, MDTraj can
be used as a gateway to other libraries, such as NGLView [93].
The step.change starts from the root of the move deci-

sion tree, and therefore also contains informationaboutwhat
kind of move was decided. This is very simple in TPS, but
can bemuchmore complicated for the move schemes used
in TIS. The details that are probably of greatest interest can
be accessed with step.change.canonical. The nature of
a given step.change.canonical depends on the type of
Monte Carlo move. However, as discussed in Sec. IV and
shown in Fig. 2, all changes have a few properties: a Boolean
as to whether the trial was accepted, a link to the actual
mover that created the change, and a list of attempted sam-
ples in trials.
Sometimes wemight want to study the rejected trajecto-

ries, for example, to determine whether they continued to
themaximumpossible time in flexible length TPS. This could
indicate a metastable state that was not considered. The list
of rejected samples (which contain the trajectories, as well
as the associated ensembles) can be created with

rejected_samples = sum([
step.change.canonical.trials
for step in storage.steps
if not step.change.accepted], [])

Since eachstep.change.canonical.trials is a list, we
use Python’s sum function to add (extend) the lists with

each other. For more complicated move schemes, wemight
want to add a restriction such as step.change.mover ==
desired_moverwith an and in the if statement. The code
above results in a list of Sample objects. The trajectories can
be extracted with

rejected_trajectories = [
sample.trajectory for sample in rejected_samples]

These rejected trajectories can be analyzed in the same way
as above.

B. Multiple state replica exchange TIS on alanine dipeptide

1. Setting up the molecular dynamics

In this example we use the same system as in the previous
example, with the same MD engine. In the online Jupyter
notebook —which contains additional detail not presented
here — we set up the engines from scratch. However, as OPS
saves all the details of the engine, we can reload a usable
engine from the output file of the previous example. In fact,
we can even use that file to reload the collective variables
that we defined:

previous_file = paths.Storage("tps_AD.nc", 'r')
engine = previous_file.engines['AD_engine']
psi = previous_file.cvs['psi']
phi = previous_file.cvs['phi']

2. Defining states and interfaces

In contrast to the above example we take the MSTIS state
definitions for alanine dipeptide from [57] tomake the results
comparable with that work. The states are defined by a cir-
cular region around a center in φ− ψ space, while interfaces
are defined by circular regions with increasing diameter λ.
For instance, for state A we can define:

state_centers_A = [-150, 150]
interface_lambda_levels_A = [20, 45, 65, 80]

For convenience, Python dict objects can be used to con-
tain the centers and interface levels for all states (e.g.,
state_centers["A"]), although in this examplewewill use
separate objects for each.
In MSTIS, each state is associated with an order param-

eter (CV). In simple cases like this one, a single functional
can be used for all the order parameters. In OPS, this
can be accomplished by creating a single Python function
which takes a Snapshot as its first argument, and param-
eters for the functional as the remaining arguments. This
was also done implicitly in the previous example, where
the md.compute_dihedrals Python function is actually a
functional with indices as parameters. In this case, we
need to explicitly create a Python function with the signa-
ture circle_degree(snapshot, center, cv_1, cv_2),
where snapshot is an OPS Snapshot, center is a two-
member list like state_centers_A, and cv_1 and cv_2, are
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OPS collective variable objects (in all cases, we will use our
phi and psi variables).
In this example, we could redefine the phi and psi vari-

ables inside the function, but using them as parameters has
an additional advantage: they will only be calculated once,
and then the valueswill be cached inmemory (andoptionally
saved to disk). This is extremely useful for expensive CVs that
are likely to be reused as part of other CVs.
Once the functional has been defined, we can wrap it in an

OPS FunctionCV for each state. For stateA:
cv_A = paths.FunctionCV(

name='opA', f=circle_degree,
center=state_centers_A, cv_1=psi, cv_2=phi)

We can now use this CV to define the volume associated with
the state:

state_A = paths.CVDefinedVolume(cv_A,
lambda_min=0, lambda_max=10).named("A")

All of this is analogous to the TPS example; however, TIS also
requires defining interfaces. These can be created with:

iface_A = paths.VolumeInterfaceSet(cv_A,
minvals=0.0, maxvals=interface_lambda_levels_A)

In many cases, the innermost interface volume is identical
to the state. For those examples, one could first create the
interfaces, and then select the innermost using

state_A = iface_A[0]

The state definition used here are illustrated in Fig. 5. In
this example we restrict the states to {A,B,C,D}. The tran-
sitions to the E and F states are extremely rare, and requires
additional restricted path sampling [57].

3. Setting up the transition network

MSTIS can make use of the optional multistate outer in-
terface, in which all state-to-state paths are allowed, as long
as they cross the outer interface MSOuterInterface. This
special interface allows switching paths from one associated
state to another when reversing a transtion path. Note that
in all other interface ensembles/replicas such reversal trials
are rejected by construction. We create this multi-state outer
interface with

ms_outers = paths.MSOuterTISInterface.from_lambdas({
iface_A: max(iface_A.lambdas), ... })

where the lambdas are the interface levels as defined above,
and the dots indicate a short hand for all other state volumes
and interfaces.
We now construct the Network that contains the structure

of states and interfaces
mstis = paths.MSTISNetwork([

(state_A, iface_A), ..., ms_outers=ms_outers)])

We finally construct the DefaultSchemewith
scheme = paths.DefaultScheme(mstis,engine)

This scheme includesminusmoves,moves for themulti-state
outer interface ensemble, as well as the standard shooting,
path reversal and nearest neighbor replica exchange moves.

FIG. 9. Comparisonbetween initial samplea�ergenerationat
high temperature and room temperature equilibration for ala-
nine dipeptide in the psi-phi plane from Sec. VI B. The trajecto-
ries are plotted as connect dots, where each dot represents a snap-
shot. The stable state and interface definitions for A,B,C,D are plot-
ted in the background. Note that a�er cooling to room temperature
the trajectories are sampling a more narrow path samples, as ex-
pected.

4. Obtaining initial conditions

Initial conditions for theMSTIS simulation can be obtained
with an approach similar to the one used in the TPS example
in Sec. VI A. The initial conditions must include a trajectory
that satisfies each (interface) ensemble. However, the same
trajectory can be reused for multiple ensembles, and an in-
terface that transitions from a given state to another must
exit all interfaces associatedwith the initial state. A trajectory
that visits all states has (when considering both the trajectory
and its time-reversed version) at least one subtrajectory that
represents a transition out of every state.
As the with TPS example, we therefore use

the approach described in Appendix A, using
a temperature of T = 1000 K. Again, the
scheme.initial_conditions_from_trajectories
method is used to identify the specific subtrajectories and
associate themwith the correct ensembles.
When the initial paths for the minus ensembles are

not directly found we use the innermost TIS ensem-
ble trajectories and extend them until they match the
required (minus) ensemble (or fail in doing so) using
the .extend_sample_from_trajectories method
and associating them with the correct ensembles using
scheme.initial_conditions_from_trajectories.

5. Equilibrating and running the simulation

As in the TPS examples, the path replicas first need to be
equilibrated since the initial trajectories are not from the real
dynamics (e.g., generatedwithmetadynamics, high tempera-
ture, etc.) and/or because the initial trajectories are not likely
representatives of the path ensemble (e.g., if state-to-state
transition trajectories are used for all interfaces).
As with straightforward MD simulations, running equili-

bration can be the same process as running the total simula-
tion. However, in path samplingwe could equilibratewithout

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/351494doi: bioRxiv preprint 

https://doi.org/10.1101/351494
http://creativecommons.org/licenses/by/4.0/


20

20 30 40 50 60 70 80 90 100

λ

0.0

0.2

0.4

0.6

0.8

1.0
P
(λ

)
A

B

C

D

20 30 40 50 60 70 80 90 100

λ

5

4

3

2

1

0

ln
P
(λ

)

A

B

C

D

0 20 40 60 80 100 120

λ

5

4

3

2

1

0

ln
P
(λ

)

FIG. 10. TIS Crossing probabilities for alanine dipeptide, from section VI B. Le�: Total crossing probability as function of the order
parameter (CV) λ for each individual state (A-D). Center: Natural logarithm of the total crossing probability per state. Right: Per interface
crossing probabilities for state A. The master curve (black) is obtained by reweighting [60, 69].

replica exchange moves or path reversal moves, for instance.
In the example below, we create a new ‘MoveScheme‘ that
only includes shooting movers, to achieve equilibration of
the interface ensemble replicas,

equil_scheme = paths.OneWayShootingMoveScheme(
mstis, engine=engine)

and run this scheme for 500 steps the way we run any other
scheme, using the PathSampling object.

equilibration = paths.PathSampling(
storage=storage,
sample_set=total_sample_set,
move_scheme=equil_scheme)

equilibration.run(500)
equilibrated_sset = equilibration.sample_set

Figure 9 shows the set of initial and final samples. Note
that the large coverage of phase space at high temperature
narrows a�er cooling down, as expected.
Fianlly, we run the simulation for 100,000 steps using the

PathSampling object as in previous example, with the default
scheme as defined above, a Storage object, and the initial
conditions from the equilibration.

mstis_calc = PathSampling(
storage=Storage("ala_mstis_production.nc", "w"),
sample_set=equilibrated_sset,
move_scheme=scheme)

mstis_cals.run(100000)

6. Analyzing the results

To do analysis on the path simulation results we first have
to load the production file for analysis:

storage = paths.AnalysisStorage(
"ala_mstis_production.nc")

Then we can run analysis on this storage. One of the main
objectives for doing multiple state replica exchange TIS is to
compute the rate constantmatrix. To obtain the rate constant
matrix, we run

mstis.rate_matrix(storage.steps, force=True)

which gives as an output the full rate constant matrix kIJ ,
obtained from a computation of the fluxes φ0I , the cross-
ing probabilities PI(λmI |λ0I) and the conditional transition
matrix PI(λ0J |λmI) (see Eq. 5).

A B C D

A 0 0.06512 0.003514 0.0009725

B 0.07606 0 0.001202 0.001107

C 0.05311 0.01103 0 0.1202

D 0.01102 0.005624 0.06909 0

TABLE II. Rate constantmatrix for alaninedipeptide. The av-
erage rate constantmatrix for the four-stateMarkovmodel based on
several independent runs. Rows denote leaving, columns arriving
states. Subscript denotes error in the last 2 digits.

φ0I [ps−1] PI(λmI |λ0I) φmI [ps−1]

A 1.56 0.06609 0.10313

B 1.85 0.05909 0.11017

C 1.67 0.19313 0.32321

D 2.29 0.07109 0.16220

TABLE III. Fluxes and outer interface crossing probabilities
for TIS simulation of alanine dipeptide. Flux at the first interface
(second column), the crossing probability from the first to the outer-
most interface (third column) and the flux at the outermost interface
(last column).

A B C D

A 0.3506 0.6106 0.03208 0.009012

B 0.7203 0.2603 0.01102 0.01108

C 0.1702 0.03307 0.4003 0.4001

D 0.06605 0.03413 0.4203 0.4804

TABLE IV. Conditional transition probability matrix be-
tween alanine dipeptide states. These probabilities follow di-
rectly from the path sampling in the multistate outer ensemble.
Rows denote leaving, columns arriving states.

An example of such a rate constant matrix computation
is shown in Table II which agrees well with the results in
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Ref. [57]. For comparison, the computed fluxesφ0I and cross-
ingprobabilitiesPI(λmI |λ0I)arepresented inTable III,while
Table IV reports the conditional state-to-state transition ma-
trixPI(λ0J |λmI), which represents the probabilities to reach
a state provided that the trajectories have passed the outer-
most interface of a state.
OPS also includes other analysis tools such as the crossing

probabilities and the sampling statistics. Both are important
for purposes of check the validity of the simulations results.
The crossing probability graphs in Fig. 10 can be helpful in
interpreting the rate matrix. The sampling statistics provides
the Monte Carlo acceptance ratio for the di�erent movers. Of
course, each trajectory in the ensemble can accessed and
scrutinized individually, as in previous sections.

C. Example: MISTIS on a three-state 2Dmodel system

This example deals with a three-state 2D model system,
which we also refer to as a toy model. OPS includes simple
code to simulate the dynamics of small toy models like the
one considered here. This is intended for use for either edu-
cational purposes or for rapid prototyping of newmethod-
ologies. Since the overall path sampling code is independent
of the underlying engine, many types of newmethods could
be developed and tested on the toy models and would be
immediately usable for more complicated systems, simply
by changing the engine.

1. Setting up the molecular dynamics

We create a simple 2Dmodel with a potential consisting
of a sum of Gaussian wells:

V (x, y) = x6 + y6 −
2∑
i=0

e−12((x−xi)
2+(y−yi)2) (6)

with (x0, y0) = (−0.5, 0.5), (x1, y1) = (−0.5,−0.5), and
(x2, y2) = (0.5,−0.5) using

pes = (toys.OuterWalls([1.0,1.0], [0.0,0.0]) +
toys.Gaussian(-1.0, [12.0,12.0], [-0.5, 0.5]) +
toys.Gaussian(-1.0, [12.0,12.0], [-0.5,-0.5]) +
toys.Gaussian(-1.0, [12.0,12.0], [ 0.5,-0.5]))

This results in a potential energy surface with three sta-
ble states, caused by the Gaussian wells at (−0.5,−0.5),
(0.5,−0.5), and (−0.5, 0.5). We call those states A, B, and
C, respectively. This potential interface surface, along with
the state and interface definitions described below, is illus-
trated in Fig. 11.
To integrate the equations of motion, we use the BAOAB

Langevin integrator of Leimkuhler and Matthews [94], which
we initialize with

integrator = toys.LangevinBAOABIntegrator(
dt=0.02, temperature=0.1, gamma=2.5)
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FIG. 11. Potential energy surface, states, and interfaces for
the 2D toymodel. States are light blue, boundaries of normal inter-
faces are red, and the boundary of themultiple state outer interface
is dark blue. For clarity when showingmultiple interface sets, the
interface bondaries are only drawn part of the way. They continue
in an infinite straight line.

The toy engine employs units where kB = 1. The “topol-
ogy” for the toy engine stores the number of spatial degrees
of freedom, as well as a mass for each degree of freedom
and the potential energy surface. We also create an options
dictionary for the engine.

topology = toys.Topology(
n_spatial=2, masses=[1.0,1.0], pes=pes)

options = {'integ': integ, 'n_frames_max': 5000,
'n_steps_per_frame': 1}

We then instantiate an engine with toy_engine =
toys.Engine(options, topology).

2. Defining states and interfaces

In this calculation, wewill set upmultiple interface set tran-
sition interface sampling (MISTIS)[71]. This involves defining
di�erent interface sets for each transition. To simplify, and to
highlight some of the flexibility of MISTIS, we will only focus
on theA→ B,B → A, andA→ C transitions.
First, we define simple collective variables. We use the

Cartesian x and y directions for both our state definitions
and for our interfaces. We define these as standard Python
functions, for example

def yval(snapshot):
return snapshot.xyz[0][1]

and xval is similar, but returns the [0][0] element,
where the first index refers to the atom number and the
second to the spatial dimension. We wrap functions
these in OPS collective variables with, for example, cvX
= FunctionCV("x", xval). We’ll define a volume called
x_lower for x < −0.35 with CVDefinedVolume(cvX,
float("-inf"), -0.35). Similarly we define x_upper for
x ≥ 0.35, and use the same bounds for y with y_lower and
y_upper. With these, we define our states as
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stateA = (x_lower & y_lower).named("A")
stateB = (x_upper & y_lower).named("B")
stateC = (x_lower & y_upper).named("C")

For our TIS analysis, the order parameter must increase with
the interface. So for theB → A transition we create another
collective variable, cvNegX, based on a function that returns
-snapshot[0][0]. For all of these, we will set interfaces at
−0.35, −0.3, −0.27, −0.24, −0.2, and −0.1. The A → C
transition has an additional interface at 0.0 TheA→ B and
B → A transitions will share a multiple state outer interface
at 0.0. Note that, for the B → A transition, the interface
associated with cvNegX = −0.35 is actually at x = 0.35,
since cvNegX returns−x. These interfaces are created by, for
example:

interfacesAB = paths.VolumeInterfaceSet(
cvX, float('-inf'),
[-0.35, -0.3, -0.27, -0.24, -0.2, -0.1])

with similar lines forinterfacesACandinterfacesBA. The
multiple state outer interface, which connects the A → B
andB → A transitions, can be created at x = 0.0with

ms_outer = paths.MSOuterTISInterface.from_lambdas(
{iface: 0.0 for iface in

[interfacesAB, interfacesBA]})

3. Setting up the transition network andmove scheme

Like the MSTISNetwork, the syntax for setting up a
MISTISNetwork requires a list of tuples. However, since
MISTIS requires a final state as well an initial state, it also
requires that the final state be included as an extra piece of
information in that tuple. So we set up our desired MISTIS
network with

network = paths.MISTISNetwork([
(stateA, interfacesAB, stateB),
(stateA, interfacesAC, stateC),
(stateB, interfacesBA, stateA)],

ms_outers=ms_outer,
strict_sampling=True)

The strict_sampling argument means that anA→ C
path will be rejected if sampling theA→ B transition. Note
thatA is the initial state for transitions to two states, whereas
B is the initial state for transitions to one state, andC is not
an initial state at all. The flexibility todefine arbitrary reaction
networks is an important aspect of the MISTIS approach.
The move scheme is set up in exactly the same way as for

MSTIS: scheme = DefaultScheme(network, engine).
One could also use a single replica move scheme with a
MISTIS network, just as was done in the MSTIS example.

4. Obtaining initial conditions

Here, we will use the bootstrapping approach to obtain ini-
tial trajectories. This approach is most e�ective with simple

systems like this, where the collective variables we have cho-
sen as order parameters are good representations of the ac-
tual reaction coordinate. The bootstrapping runs separately
on each transitionA → B,A → C, andB → A. Given an
initial snapshot snapA in stateA, the initial samples for the
A→ B transition can be obtained with

init_AB = paths.FullBootstrapping(
transition=network.transitions[(stateA, stateB)],
snapshot=snapA,
engine=toy_engine,
forbidden_states=[stateC],
extra_ensembles=network.ms_outers).run()

This will create a trajectory for each of the normal inter-
face ensembles, as well as the multiple state outer inter-
face ensembles. The other transitions can be prepared simi-
larly, although they can omit the extra_ensembles option,
since there is only onemultiple state outer ensemble to fill.
Whereas snapshots for the OpenMM engine used in the pre-
vious examples came from PDBs or other files, for the toy
engine, the initial snapshot can bemanually created:

snapA = toys.Snapshot(
coordinates=np.array([[-0.5, -0.5]]),
velocities=np.array([[0.0, 0.0]]),
engine=engine)

The individual sample sets created by the
FullBootstrapping approach can be combined into
one using

all_trajectories = [
s.trajectory for s in
list(init_AB) + list(init_AC) + list(init_BC)]

From here, the setup follows that of the MSTIS example:
the trajectories can be assigned to ensembles using
scheme.initial_conditions_from_trajectories,
and the minus ensembles, of which there
is one for each state, can be filled using
minus.extend_sample_from_trajectories.

5. Running the simulation and analyzing the results

The path sampling follows exactly as with the previous ex-
amples. The PathSampling object is created with a storage
file, the move scheme, and the initial conditions. We use the
.run(n_steps)method to run the simulation.
One di�erence with the MSTIS approach is that trajecto-

ries from the multiple set minus interface cannot be used
to calculate the flux. To obtain the flux, we do a separate
calculation, which we call DirectSimulation, and which
runs a molecular dynamics trajectory and calculates the flux
and the rates from the direct MD.
Setting up the DirectSimulation requires the same

toy_engine object. The set of all states if given by

states = set(network.initial_states + network.final_states)

To determine the flux out of a given state and through a given
interface, it needs the pairs of (state, interface) for each tran-
sition. We can create this with
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A B C

A — 1.9814 1.9517

B 2.0016 — —

A B C

A — 1.9443 2.2065

B 2.1037 — —

TABLE V. Rates constants for the the toy model, multiplied
by 104. Subscripts indicate error in the last two digits. Le�: Rate
constant calculated froma very long directmolecular dynamics sim-
ulation. Right: Rate constant calculated using MISTIS. By symmetry,
all three rate constants in each table should be nearly the same.

flux_pairs = [
(t.stateA, t.interfaces[0])
for t in network.transitions.values()]

The simulation is then created with

sim = paths.DirectSimulation(
storage=None, engine=engine, states=states,
flux_pairs=flux_pairs, initial_snapshot=snap)

where we choose not to store the output, and where we
can use any snapshot as our initial snapshot. The method
sim.run(n_steps) runs the simulation for the given num-
ber of MD steps. Note that, although the direct simulation
here is for the MISTIS network, it would work equally well for
any other network. However, the flux calculation based on
the minus interface is more convenient for the MSTIS case.
Once the direct simulation has been run, we can obtain

the flux from it using sim.fluxes. This returns a Python
dictionary with the (state, interface) pairs as keys and
the calculated flux as value. Prior to the rate matrix cal-
culation, we can set the fluxes for the network by using
network.set_fluxes(sim.fluxes).
Aside from setting the flux, the analysis for the MISTIS net-

work is exactly as it is for other path sampling methods. The
rate matrix for this model is presented in Table V. Note that
the rate matrix only includes the specific transitions we se-
lected for study by MISTIS; others are not listed. The MISTIS
rates represent the average of 10 runs of 105 MC steps each,
with the standard deviation as the reported error. To demon-
strate correctness, we compare these rates to those from
a direct MD simulation (also performed using OPS), with a
length of 8× 108 frames. The cumulative MD time for the 10
MISTIS simulations was less than 1.8 × 107 frames. Errors
for the direct MD rate were determined by splitting the total
simulation into 10 sequential blocks and calculating the stan-
dard deviation of the rate in each block. Rates and error bars
from the twomethods compare favorably, even though the
MD simulation took more than 40 times more CPU time.

VII. CONCLUSION

In this paper we have presented a new easy-to-use Python
framework for performing transition path sampling simu-
lations of (bio)molecular systems. The OpenPathSampling
framework is extensible and allows for the exploration of
new path sampling algorithms by building on a variety of
basic operations. As the framework provides a simple ab-
straction layer to isolate path sampling from the underly-

ing molecular simulation engine, newmolecular simulation
packages can easily be added. Besides being able to exe-
cute existing complex path sampling simulations schemes,
tools are provided to facilitate the implementation of new
path sampling schemes built on basic path sampling com-
ponents. In addtion, tools for analaysis of e.g., rate con-
stants, are also provided. Modules that provide additional
functionality are continuously added to be used by the com-
munity (see, e.g., the repositories at https://gitlab.e-
cam2020.eu/Classical-MD_openpathsampling).
In summary, the OpenPathSampling package can assist in

making the tranistion path sampling approach easier to use
for the (bio)molecular simulation community.
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Appendix A: Obtaining an initial trajectory

Just as configurational Monte Carlo requires a valid initial
configuration for input, path sampling Monte Carlo requires
a valid initial trajectory for input. And just as with configura-
tional Monte Carlo, an unrealistic initial state can equilibrate
into a realistic state, but more realistic starting conditions
are preferred. Unrealistic starting conditions can take longer
to equilibrate, and can get trapped in unrealistic metastable
basins. In the case of path sampling, this can mean sam-
pling a transition with a much higher energy barrier than is
realistic.
Obtaining a good first trajectory is thus of paramount

importance. However, there is no single best method
to do so. Here we review a few options, and explain
how OPS can facilitate first trajectory generation. In
all of these, the key OPS functions that simplify the
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process are the Ensemble.split function, which can iden-
tify subtrajectories that satisfy the desired ensemble, and the
MoveScheme.initial_conditions_from_trajectories
function, which attempts to create initial conditions for
the desired move scheme bsaed on given trajectories. The
fundamental trade-o� for these approaches is between how
“realistic” the initial trajectory is, and how computationally
expensive it is to obtain the first trajectory.

1. Long-time MD

While a transition from an unbiased MD trajectory will pro-
vide a realistic initial trajectory, these are di�icult to obtain
for rare events. Nevertheless, distributed computing projects
like Folding@Home [95] and special-purpose computers for
MD such as Anton [96], might yield trajectories that include
a transition. The Ensemble.split function can then select
subtrajectories that satisfy a desired ensemble.
In these trajectories frames are o�en saved very infre-

quently, leading to transitions with only one or two (or even
zero) frames in the “no-man’s land” between the states. Path
sampling requires at least a few to a few tens of frames.
A CommittorSimulation using the desired states as end-
points and any frames between the two states as input could
generate an initial trajectoriy by joining two path segments
ending in di�erent states, provided the committor for at least
one of the intermediate frames is reasonable.

2. High temperature MD

In the alanine dipeptide example, we use MD at high tem-
perature to increase the probability of getting a transition.
This method could cause problems in larger systems, by al-
lowing transitions that are not accessible at the relevant low
temperature. However, it works well on simple systems such
as AD, and is very easy to set up.
First, we create an engine with a higher temperature. For

the AD example, we use OPS’s OpenMM engine. For the 2-
state system, we used a high temperature of 500K. For the
4-state system,weusedahigh temperatureof1000K in order
to easily reach the higher-lying states.
To ensure that we visit all states, we generate a trajectory

using the ensemble

ensemble = paths.join_ensembles(
[paths.AllOutXEnsemble(state) for state in states])

which creates the unionof AllOutXEnsembles for each state.
Runningwith this ensemble as the continue conditionmeans
that the trajectory will stop with the first trajectory that does

not satisfy it, i.e. the first trajectory with at least one frame in
each state. For MSTIS, this guarantees that a subtrajectory
(or its reversed version) will exist for every path ensemble.
We obtain the relevant trajectories by using the

ensemble.splitmethod with the outermost ensemble for
each sampling transition (See also Ref. [45]).

trajectories = [t.ensembles[-1].split(long_trajectory)
for t in network.sampling_transitions]

These trajectories can then be given to the
MoveScheme.initial_conditions_from_trajectories
method.
Relaxing the high temperature initial trajectories down to

ambient conditions might be di�icult, requiring many shoot-
ing attempts before a valid room temperature path is created.
Again, a CommittorSimulation can alleviate this problem,
by joining a forward andbackward committor segments from
a snapshot with a finite committor value.

3. Bootstrapping/Ratcheting

In the toymodel example inSec. VI C 4,weusea“bootstrap-
ping” approach, which is specifically useful for TIS. In this ap-
proach, we initialize a trajectory in a stable state, e.g. A, and
performMD until the first interface is crossed, which allows
the first interface ensemble to be populated,. Subsequently,
TIS is performed until the second interface is crossed, allow-
ing the second interface to be populated, etc etc. In this way
one can ratchet one self up the barrier and populate each TIS
interface. All this is taken care of by theFullBootstrapping
method. Note that this path ensemble needs to be equili-
brated subsequently.

4. Using biased trajectories

The use of unbiased dynamics is not necessary, as the goal
is to obtain an initial trajectory that is just “reasonably close”
to the unbiased dynamics. Subsequent path sampling will
then equilibrate the trajectories with the unbiased dynamics.
Recent work [51] has employedmetadynamics [15] to ob-

tain an initial trajectory. Althoughmetadynamics biases the
underlying dynamics, the first transition in a metadynam-
ics simulation will not have addedmuch bias to the barrier
region. Therefore, further path sampling can equilibrate a
first metadynamics trajectories into the unbiased dynamics
path ensemble. This initial metadynamics trajectory could
be generated with PLUMED [80], and then read into OPS.
The same basic approach could be employed for other

approaches to generate a non-physical initial transition tra-
jectory, including steered MD [97], nudged elastic band [98],
or the string method[99].
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