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Abstract 16 

As biological imaging datasets increase in size, deep neural networks are considered vital 17 

tools for efficient image segmentation. While a number of different network architectures 18 

have been developed for segmenting even the most challenging biological images, 19 

community access is still limited by the difficulty of setting up complex computational 20 

environments and processing pipelines, and the availability of compute resources. Here, we 21 

address these bottlenecks, providing a ready-to-use image segmentation solution for any 22 

lab, with a pre-configured, publicly available, cloud-based deep convolutional neural 23 

network on Amazon Web Services (AWS). We provide simple instructions for training and 24 

applying CDeep3M for segmentation of large and complex 2D and 3D microscopy datasets of 25 

diverse biomedical imaging modalities.   26 
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Main  27 

Biomedical imaging prospers as technical advances provide not only enhanced temporal1 28 

and spatial resolution but also larger field of views2, and all at a steadily decreasing 29 

acquisition time. Altogether an abundant amount of potential information can be extracted 30 

from those very large and complex data volumes. In recent years, substantial progress has 31 

been made using machine learning algorithms for image segmentation3. Three-dimensional 32 

electron microscopy (EM) volumes, due to their extreme information content and increasing 33 

volume size2,4, are among the most challenging of segmentation problems and an area of 34 

intense interest for machine learning approaches. To this end, different architectures of 35 

deep neural networks5–8 show great promise towards one such challenge, the dense 36 

segmentation of neuronal processes spanning terabyte volumes of serial electron 37 

micrographs. However, generalized applicability of deep neural networks for biomedical 38 

image segmentation tasks is still limited and technical hurdles prevent the advances in speed 39 

and accuracy from reaching the mainstream of research applications. These limitations 40 

typically originate from the laborious steps required to recreate an environment that 41 

includes the numerous dependencies for each deep neural network. Further limitations arise 42 

from the scarcity of high-performance compute clusters and GPU nodes in individual 43 

laboratories, which are needed to process larger datasets within an acceptable timeframe. 44 

With the goals of improving reproducibility and to make deep learning algorithms available 45 

to the community, we built CDeep3M as a cloud based tool for image segmentation tasks, 46 

using the underlying architecture of a state-of-the-art deep learning convolutional neural 47 

network (CNN), DeepEM3D
6
, which was integrated in the Caffe deep learning framework

9
. 48 

While there is a growing number of deep-learning algorithms, we were attracted to the 49 

features offered by the CNN built in DeepEM3D6, as we recognized it to have advantages for 50 

our applications, where both cellular and subcellular features are of interest. Specifically, 51 

DeepEM3D is conceptually designed to be extremely broad in feature recognition with 18 52 

million trainable parameters and three models trained in parallel on one, three and five 53 

consecutive image frames giving excellent results for - but not limited to - membrane 54 

segmentation6.  55 

For CDeep3M, we modified all required components to make the CNN applicable for a wide 56 

range of segmentation tasks, permit processing of very large image volumes, and automate 57 

data processing. We also implemented a modular structure and created batch processing 58 
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pipelines, for ease of use and to minimize idle time on the cloud instance. Lastly, we 59 

implemented steps to facilitate launching the most recent release of CDeep3M on Amazon 60 

Web Services (AWS). To reflect the now broad applicability of our implementation to data of 61 

multiple microscopy modalities (e.g., X-ray microscopy (XRM), light microscopy (LM) and 62 

EM), we named this toolkit Deep3M. To give users easy access and to eliminate 63 

configuration issues and hardware requisites, we further release a cloud-based version as 64 

CDeep3M. The publicly available AMI (Amazon Machine Image) of CDeep3M can be readily 65 

used for training the deep neural network on 2D or 3D image segmentation tasks. Using an 66 

AWS account gives any user the immediate ability to spin up a machine with CDeep3M, 67 

upload their training images and labels to generate their own trained model, and 68 

subsequently segment their datasets. To make this useful for researchers with varying levels 69 

of expertise, we minimized the number of sequential steps in Deep3M (Fig. 1), while still 70 

allowing for flexible use of the code. 71 

Here we provide complete instructions for how to go from training images to performing 72 

segmentation using the deep neural network. Once the predicted segmentations are 73 

accomplished they can be post-processed either using an already available script (see 74 

supplemental material) or using standard image analysis and rendering tools (such as 75 

ImageJ, IMOD, Amira etc.) to group and count objects, mesh surfaces, or perform further 76 

analysis. We used CDeep3M for numerous image segmentation tasks in 2D and 3D, such as 77 

dense neurite segmentation, cellular organelle segmentation (nuclei, mitochondria, vesicles) 78 

or cell counting. We demonstrate the utility of this distribution of CDeep3M for LM, XRM, 79 

multi-tilt electron tomography (ET) and serial block face scanning electron microscopy 80 

(SBEM). Altogether this should facilitate the analysis of large scale imaging data and render 81 

CDeep3M a widely applicable tool for the biomedical community.  82 

 83 

Quick guide for using CDeep3M 84 

While pre- and post-processing steps are less computationally intense, we include the 85 

necessary scripts in the pipeline on the same cloud environment for two reasons: first, to 86 

provide all the steps required to run the entire processing pipeline without knowledge in 87 

programming or the necessity to install or buy software and second, to minimize the traffic 88 

to and from the cloud environment. Data augmentation during pre-processing (Steps 1 and 89 

3) increases the training data volume substantially (>16-100 fold).  Also, the segmented 90 
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results will be de-augmented in the post-processing (reducing it by a factor of up to a 100-91 

fold). Typically, transfer of data will be more time consuming and therefore expensive than 92 

the added compute time on the cloud (<1min per 1000x1000x100 voxel). Steps 2 and 4 are 93 

run sequentially for 1frame (fm), 3fm and 5fm for 3D datasets for improved accuracy, 94 

whereas for 2D image segmentation only 1fm is run. Intense use of GPU occurs during steps 95 

2 and 4 (training and prediction) requiring ~10GB of GPU memory at the current 96 

configuration.  97 

 98 

 99 

Figure 1: Image segmentation workflow with CDeep3M. Steps 1-2 are required to generate 100 

a new trained model based on training images and labels. For 3D models CDeep3M trains 101 

three different models (seeing 1 frame, seeing 3 frames and seeing 5 frames) that provide 102 

three predictions (Step 4), which are merged into a single ensemble model at the post-103 

processing step (Step 5). 104 

 105 

Data upload 106 

It is necessary to upload training images and labels for steps 1-2 and raw data images for 107 

steps 3-4. All images can be uploaded as folders containing sequential tif or png images or a 108 

tif stack. Each will automatically be converted to the h5 file format during data 109 

augmentation. Using the png file format is recommended to minimize the data transfer. 110 

Training data consist of images and binary labels that use 0 as background and either 1 or 111 

255 as positive label (see supplementary material for training data generation). A more 112 

detailed description of individual commands, together with additionally implemented 113 

scripts, is provided in the supplementary material. These scripts allow for more flexible use 114 

of the processing workflow, for example, to re-use previously trained models. 115 

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted June 21, 2018. . https://doi.org/10.1101/353425doi: bioRxiv preprint 

https://doi.org/10.1101/353425
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

Briefly, the cloud resource is accessed using the secure shell command (ssh). The secure 116 

copy (scp) command is used to copy training images, labels, and image volumes to the cloud 117 

(and to copy predictions back). CDeep3M learning and processing consists of 5 steps (see Fig. 118 

1): 119 

Step 1: Preprocessing / Data augmentation of training images and labels 120 

PreprocessTraining ~/train/images/ ~/train/labels/ ~/augm_train/ 121 

Step 2: Training Deep3M CNN (steps 2 and 4 run automatically for 1fm, 3fm and 5fm) 122 

runtraining.sh ~/augm_tr/ ~/train_out/ 123 

Step 3: Preprocessing / Data augmentation of images to segment 124 

PreprocessImageData ~/images/ ~/aug_images/ 125 

Step 4: Predict image segmentation (then performs data de-augmentation) 126 

runprediction.sh ~/train_out/ ~/aug_images/ ~/predict_out/ 127 

Step 5: Ensemble prediction 128 

EnsemblePredictions ~/predict_out/1fm ~/ predict_out/3fm ~/predict_out/5fm ./ensemble 129 

 130 

Examples 131 

When training CDeep3M for the segmentation of nuclei in XRM data of a hippocampal brain 132 

section, we established a cell density profile across the x-y-z directions of brain tissue 133 

prepared for EM (Fig. 2a). Training on fluorescence microscopy images of DAPI stained brain 134 

sections enabled us to distinguish neurons based on their chromatin pattern and distinguish 135 

one individual cell-type from other cells in the tissue (Fig. 2b). Multi-tilt electron tomography 136 

(ET) is a form of transmission EM used to achieve high-resolution 3D volumes of biological 137 

specimens. Here, we applied CDeep3M to high-pressure frozen brain tissue and were able to 138 

automatically annotate vesicles and membranes (Fig. 2c), which will aid the 3D 139 

segmentation of synapses and neuronal processes. We further used CDeep3M for the 140 

segmentation of intracellular constituents (nuclei, membranes and mitochondria) of the cell 141 

in a serial-block face scanning electron microscopy (SBEM) dataset (Fig. 2d). For our 142 

understanding of the role of intracellular organelles and alterations in diseases, parameters - 143 

such as the precise volume, the distribution, and fine details like contact points between 144 

organelles - will be of utmost importance. Therefore, we evaluated the performance 145 

(precision, recall and F1 value) of the underlying CNN based on predictions per pixel, which 146 

results in lower F1 values (compared to object detection) but is more representative to 147 

determine accurate segmentations and distribution of intracellular organelles. We found the 148 
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segmentation accuracy of CDeep3M equals the one of human expert annotators 149 

(Supplementary Fig. 1; CDeep3M: F1 value 0.9039, precision 0.9052, recall 0.9027; humans: 150 

0.8827, precision 0.8993, recall: 0.8766). 151 

Since training is time consuming and costly, both to generate manual ground truth labeling 152 

and to train a completely naïve CNN, the re-use and refinement of previously trained neural 153 

networks (transfer learning) is of eminent interest. Generating manual training data for 154 

membrane annotation in SBEM is particularly laborious. To test our ability to re-use a pre-155 

trained model for a new dataset, we performed a type of transfer learning, domain 156 

adaption10. We first trained a model on the recognition of membranes with a published 157 

training dataset of a serial section SEM volume11 (similar to 6) with a voxel size of 6x6x30 nm. 158 

We then applied the pre-trained model to SBEM data with staining differences and novel 159 

specific staining features (cellular nuclei) and with similar voxel size (5.9x5.9x40 nm). As 160 

expected applying the network without further refinement on the new dataset lead to 161 

unsatisfactory results (Fig. 2d (upper middle)). Adapting the histogram to better match the 162 

earlier dataset and applying Gaussian de-noising to increase similarity between the two 163 

image datasets was insufficient to remove the ambiguity of the prediction map introduced 164 

by new features (nucleus) and staining differences. However, we found that re-training the 165 

model with a short amount of training time (1/10th of the original training time) and 166 

substantially smaller data size (1/5th) was sufficient to remove artifacts in the image 167 

segmentation. Thus, we used only 20 training images and labels (1024*1024 pixel) instead of 168 

100 and were able to adapt the network with 2000 or fewer iterations to the new dataset 169 

(from 22000 to 24000 iterations for 5fm; Fig. 2d; 14454 to 15757 for 3fm; and 16000 to 170 

18000 for 1fm, Supplementary Fig. 2). To distinguish nuclear membranes from the cellular 171 

membranes, we performed separate training for the nucleus to distinguish the nuclei from 172 

the cell somata (Fig. 2d). We hope that using existing models to greatly reduce the effort 173 

required for training new models will encourage the community to share their trained 174 

models and training data after publication. This could decrease the expense for image 175 

segmentation by up to 90% (Fig. 3), making this an appealing approach even for smaller 176 

segmentation tasks or when other image processing strategies may still be possible. For 177 

users not deeply familiar with image segmentation operations, generating training data is 178 

straight-forward (see supplementary material) and can be minimized for similar datasets. 179 

 180 
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 181 

Figure 2: Multimodal image segmentation using CDeep3M. (a) Segmentation of nuclei in 182 

XRM volume of a 50µm brain slice containing the hippocampal CA1 area used for cell 183 

counting and establishing a cell density profile across x-y-z. (b) Segmentation of cell type 184 

specific DNA profile allows identification of Purkinje cells. Overlay of 3D surface mesh of 185 

nuclei on light microscopic image of DAPI-stained cerebellar brain section. Scale bar: 20µm. 186 

(c) Segmentation of vesicles and membranes on multi-tilt electron tomography of high-187 

pressure frozen brain section. Scale bar: 200nm. (d) Upper row: SBEM micrograph (left) 188 

Scale bar: 1µm, segmentation using pre-trained model before (middle) and after domain 189 

adaption (right). Lower row: segmentation of membranes, mitochondria and nuclei overlaid 190 

on SBEM data 191 

 192 

Discussion 193 

To date, the prospect of paying per hour for compute devices might at first be less appealing 194 

to members of the biomedical research community than the traditional one-time investment 195 

approach. However, the requisite high-performance computers come at a high entry price 196 
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level.  These resources are also outdated quickly and the maintenance of soft- and hardware 197 

will, from our own experience, make cloud computing a more cost and time effective option 198 

for most laboratories. We have further demonstrated ways to minimize costs for training 199 

and expect prices for compute time to drop rapidly as newer GPU technology is developed. 200 

Using cloud resources is scalable in times of high demand within the same laboratory and 201 

free of cost and maintenance when unused. Our cloud-based solution to provide a public 202 

AWS image is efficient for end-users, minimizing time spent for software / hardware 203 

configuration, and alleviates the burden on algorithm developers to support a community 204 

with a multitude of underlying systems and platforms. Furthermore, this will in the future 205 

give end-users immediate access to any new release. Here, we demonstrate a flexible design 206 

and ease of use that we expect will make the current release of Deep3M a useful tool for a 207 

wide range of applications in cell biology. 208 

 209 

Figure 3: Time and cost evaluation. Training expense can be reduced substantially (to 210 

1/10th) by performing domain adaption from a pre-trained model (see Fig. 2d upper row). 211 

The time for prediction scales linearly to the size of the imaging data. Time for prediction 212 

and training both decrease with newer GPUs (Tesla V100 vs. Tesla K80). Cost calculations are 213 

based on current rates at $0.9/h for K80 and $3.06/h for V100 instances. 214 

 215 

  216 
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Data and software availability 217 

CDeep3M source code and documentation are available for download on GitHub 218 

(https://github.com/CRBS/cdeep3m) and is free for non-profit use. Amazon AWS 219 

cloudformation templates are available with each release enabling easy deployment of 220 

CDeep3M for AWS cloud compute infrastructure. For the end user ~10 minutes after 221 

creating the CloudFormation stack, a p2x or p3x instance with a fully installed version of 222 

CDeep3M will be available to process data. Example data are available on GitHub and 223 

trained models are available on Amazon S3. Further data will be made available upon 224 

request. 225 
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