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Abstract
RNAseq technology provides an unprecedented power in the assesment of the transcription abundance, which
benifits various downstream biological studies, such as gene-correlation network inference and eQTL discovery.
However, raw gene expression values have to be normalized for nuisance biological variation and technical
covariates, and different normalization strategies can lead to dramatically different results in the downstream study.
Here we present a simple three-parameter transformation, DataRemix, which can greatly improve the biological
utility of gene expression datasets without any specific knowledge on the dataset. As we optimize the
transformation with respect to the downstream biological objective, this parametric framework reweighs the
contribution of each hidden factor and make the biological signals visible. We demonstrate that DataRemix can
outperform complicatd normalization methods which make explicit use of dataset specific technical factors. Also we
show that DataRemix can be efficiently optimized via Thompson Sampling approach, which makes it feasible for
computationally expensive objectives such as eQTL analysis. Finally we reanalyze the Depression Gene Networks
(DGN) dataset, and we highlight new trans-eQTL networks which were not reported in the initial study.

Genome-wide gene expression studies have become1

a staple of large scale systems biology and clinical2

projects. However, while gene expression is the most3

mature high-throughput technology, technical chal-4

lenges remain. Raw gene expression values must be5

normalized for any technical and nuisance biological6

variation and the normalization strategy can have dra-7

matic effects on the results of downstream analysis.8

This is especially true in cases where the sought-9

after gene expression effects are likely to be small10

in magnitude, such as expression quantitative trail11

loci (eQTLs). Increasingly sophisticated normalization12

methods have been proposed and many are computa-13

tional intensive and/or can have multiple free param-14

eters that must be optimized (Leek & Storey 2007;15

Stegle et al.. 2010; Listgarten et al.. 2010; Kang et al..16

2008; Mostafavi et al.. 2013). Moreover, it is not un-17

common for one dataset to yield multiple normalized18

versions that maximize performance in a particular19

setting (such as the discovery of cis- and trans-eQTLs20

Battle et al.. 2014), highlighting the complexity of the21

normalization problem.22

Singular value decomposition (SVD) is one of the23

most widely used gene expression analysis tools (Al-24

ter et al.. 2000, 2003) that can also be used for data25

normalization. Using the SVD we can simply remove26

the first few principle components that are presumed27

to represent technical factors such as batch-effects or28

other nuisance variation. In some cases this dramati-29

cally improves downstream performance, for example30
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in the case of eQTL analysis (Mostafavi et al.. 2013). 31

The drawback of this method is that the exact number 32

of components to remove must be determined empir- 33

ically and some meaningful biological signals may be 34

lost in the process. 35

More sophisticated approaches attempt to partition 36

data structure into useful and nuisance variation and 37

remove only the latter (Leek & Storey 2007; Stegle 38

et al.. 2010; Listgarten et al.. 2010; Kang et al.. 2008; 39

Mostafavi et al.. 2013). These can improve on the naive 40

SVD-based normalization but require additional input 41

such as technical covariates, or the study design. The 42

success of these methods ultimately depends on the 43

availability and quality of such meta data and some 44

methods still rely on parameter optimization to max- 45

imize performance. These widely used normalization 46

approaches all have a common theme that the rely in 47

part on the intrinsic data structure. One key property 48

that contributes to the success of these approaches 49

is that for many biological questions of interest nui- 50

sance variation (of technical or biological origin) is 51

larger in magnitude than useful variation. Our pro- 52

posed method, DataRemix, explicitly formalizes this 53

view of the data normalization problem. 54

In this work we demonstrate that biological util- 55

ity of gene expression datasets can be dramatically 56

improved with a simple three-parameter transforma- 57

tion, DataRemix. Our method does not require any 58

dataset specific knowledge but rather optimizes the 59

transformation with respect to some independent ob- 60

jective of data quality, such as the quality of the gene- 61

correlation network or the number of trans-eQTL dis- 62

coveries. Because our method requires only the gene 63

expression data and biological validity objective, it can 64
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be applied to any publicly available dataset. We focus65

our study on gene expression data for which methods66

for quantifying biological validity are well established,67

but our approach can be readily applied to any high-68

throughput molecular data for which similar quality69

metrics can be defined. We show that this strategy can70

outperform methods that make explicit use of dataset71

specific factors, and can further improve datasets that72

have been extensively normalized via an optimized, pa-73

rameter rich model. We also show how the optimal74

parameters of DataRemix can be found efficiently by75

Thompson Sampling with a dual learning setup, mak-76

ing the approach feasible for computationally expen-77

sive objectives such as eQTL analysis.78

Result79

The DataRemix framework80

We formulate DataRemix as a simple parametrized
version of SVD which can be directly optimized to
improve the biological utility of gene expression data.
SVD decomposition can be thought of as a solution to
the low-rank matrix approximations problem defined
as:

min
Uk,Σk,Vk

∥∥X − UkΣkV Tk
∥∥2
F

(1)

where U and V are unitary matrices. Given a gene-by-
sample matrix X and its SVD decomposition UΣV T
the product of k-truncated matricies UkΣkV Tk gives
the rank-k approximation of X. We introduce addition
parameters p and µ to define a new reconstruction:

DataRemix{k,p,µ}(X) = UkΣpkV
T
k +µ(X−UkΣkV Tk )

(2)

Here, k is the number of principle components of SVD81

and p ∈ [−1, 1] is a real number which alters the scaling82

of each eigenvalue. For p = 1, this approach reduces83

to the original SVD-based reconstruction . For p = 084

the transformation gives the frequently used whiten-85

ing operation (Friedman 1987). As depicted in Figure86

1, generally, different choices of p reweigh the con-87

tribution of each variance component, possibly mak-88

ing some low-variance biological signals visible while89

down-weighting technical and other systematic noise.90

The parameter µ is a non-negative weight that adds91

the residual back to the reconstruction in order to92

make the transformation lossless.93

Raw data DataRemix, p=0.5 DataRemix, p=−0.1
Useful
variation

Nuisance
variation

Figure 1: Visual representation of DataRemix transformation. We
simulate a 2-dimensional dataset where the nuisance variation con-
tributes more variance than useful variation. Different power param-
eters p reweigh the contributions of the two variance axes, making
the useful variation more “visible”.

94

Intuitively, we expect this approach to succeed be- 95

cause sophisticated normalization methods that use 96

both data structure and some external variables, such 97

as technical covariates, can be thought of as implicit 98

regularizations on the naive SVD-based normalization 99

(which simply removes the first k components), and 100

this method simply makes this explicit. 101

Parameter Optimization 102

The parameters λ = (k, p, µ) need to be optimized 103

with respect to a particular biological objective. Grid 104

search and random search (Bergstra & Bengio 2012) 105

are among the most popular strategies, but these 106

methods have low efficiency. Most of the search steps 107

are wasted and the optimally of parameters is highly 108

constrained by the step size and available computing 109

power. In order to utilize the search history and keep 110

a good balance between exploration and exploitation, 111

we can formulate parameter search as a dual learning 112

task. 113

We define a general performance measure y = 114

L(λ,D), with λ representing the parameter tuple 115

(k, p, µ), D as the data, L as the evaluating process 116

and y as the biological objective. Ideally we can figure 117

out the optimal point argmaxλ L easily by gradient 118

descent based method, but usually L is derivative-free 119

and it is time intensive. Thus we introduce a surrogate 120

model f(λ) which can directly predict L(λ,D) only 121

given λ and there are two expects on f : argmaxλ f 122

should be easy to solve and f should have enough 123

capacity. 124

With these two properties, we can sequentially
update f with (λt, yt) and propose to evaluate L
at λt+1 = argmaxλ f in the next step. By gradu-
ally updating f with newly evaluated samples (λ, y),
argmaxλ f approaches the true underlying optimal
argmaxλ L as f can gradually fit to the underlying
mapping function L. This provides a more efficient
approach to explore the parameter space by exploit-
ing the search history. In this work, we model f as
a sample from a Gaussian Process with mean 0 and
kernel k(λ, λ′), where λ = (k, p, µ)T . It is well known
that the form of the kernel has considerable effect on
performance. After experimentation we settled on the
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exponential kernel as the most suited for our applica-
tion. The exponential kernel is defined as bellow (note
the difference from the squared-exponential or RBF
kernel).

k(λ, λ′) = exp
(
−
‖λ− λ′‖2

2

)
(3)

We observe yt = f(λt)+ εt, where εt ∼ N(0, σ2). For125

Bayesian optimization, one approach for picking the126

next point to sample is to utilize acquisition functions127

(Snoek et al.. 2012) which are defined such that high128

acquisitions correspond to potentially improved per-129

formance. An alternative approach is the Thompson130

Sampling approach (Basu & Ghosh 2017; Agrawal &131

Goyal 2013; Hernández-Lobato et al.. 2014). After we132

update the the posterior distribution P (f |λ1:t, y1:t), we133

draw one sample f from this posterior distribution as134

the optimization target to infer λt+1. Theoretically it135

is guaranteed that λt converges to the optimal point136

gradually. With this theoretical guarantee, we focus on137

Thompson Sampling approach to optimize parameters138

for DataRemix.139

Estimation of Hyper-Parameters140

Firsrt we rely on the maximum likelihood estimation141

(MLE) to infer the variance of noise σ2 (Rasmussen142

2004). Given the marginal likelihood defined by (4), it143

is easy to use any gradient descent method to deter-144

mine the optimal σ2
145

log p(~y|~λ) =− 1
2~y

T (K + σ2I)−1~y − 1
2 log

∣∣K + σ2I
∣∣

− t

2 log 2π

(4)

where ~y = y1:t = (y1, . . . , yt)T ,~λ = λ1:t = (λ1, . . . , λt)T146

and Kij = k(λi, λj).147

Sampling from the Posterior Distribution148

Since Gaussian Process can be viewed as Bayesian149

linear regression with infinitely many basis functions150

φ0(λ), φ1(λ), . . . given a certain kernel (Rasmussen151

2004), in order to construct an analytic formulation152

for the sample f , first we need to construct a certain153

set of basis functions Φ(λ) = (φ0(λ), φ1(λ), . . .), which154

is also defined as feature map of the given kernel. Then155

we can write the kernel k(λ, λ′) as the inner product156

Φ(λ)TΦ(λ′).157

Mercer’s theorem guarantees that we can express the
kernels in terms of eigenvalues and eigenfunctions, but
unfortunately there is no analytic solution given the

exponential kernel we used. Instead we make use of the
random Fourier features to construct an approximate
feature map (Rahimi & Recht 2008). First we compute
the Fourier transform p of the kernel (see Supplemental
Note for derivation).

p(~ω) = 1
(2π)3

∫
exp(−i~ωT ~∆) exp(−

∥∥∥~∆∥∥∥
2

2 )d~∆

(5)

= 8
π2(4 ‖~ω‖22 + 1)2

where ~ω = (ω1, ω2, ω3)T and ~∆ = λ − λ′. Then we
draw mt iid samples ω1, . . . , ωmt

∈ R3 by rejection
sampling with p(ω) as the probability distribution.
Also we draw mt iid samples b1, . . . , bmt ∈ R from
the uniform distribution on [0, 2π]. Then the feature
map is defined by the following equation.

Φ(λ) =
√

2
mt

[cos(ωT1 λ+b1), . . . , cos(ωTmt
λ+bmt

)]T (6)

where the dimension mt can be chosen to achieve the 158

desired level of accuracy with respect to the difference 159

between true kernel values k(λ, λ′) and the approxi- 160

mation Φ(λ)TΦ(λ′). 161

Thompson Sampling 162

Any sample f from the Gaussian Process can be de-
fined by f(λ) = Φ(λ)T θ, where θ ∼ N(0, I) and Φ(λ)T
is defined by (6). In order to draw a posterior sample
f , we just need to draw a random sample θ from the
posterior distribution P (θ|~λ, ~y).

P (θ|~λ, ~y) ∝ P (~y|~λ, θ)P (θ) (7)

∝ N(A−1Φ(~λ)~y, σ2A−1)

whereA = Φ(~λ)Φ(~λ)T+σ2I and Φ(~λ) = (Φ(λ1) · · ·Φ(λt)).163

(see Supplemental Note for more details). The overall 164

algorithm is summarized as the following pseudo code. 165
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Algorithm 1 Thompson Sampling for Searching λ
Extra Parameters
tmax: the maximum number of iteration steps
ξ: a pre-defined probability which ensures the search doesn’t
stuck in the local optimum

1. Get a short sequence D1 = (λ, y) as seeds by random search.
2. Draw mt iid samples ω1, . . . , ωmt ∈ R3 and mt iid samples
b1, . . . , bmt ∈ R according to (5)
3. Iterate from t = 1 until λ converges or it reaches tmax

(1) At step t, estimate the hyper-parameter σ2 given Dt
according to (4)

(2) Draw a sample f given Dt according to (7) with feature
map determined by (6)

(3) λt+1 =
{

argmaxλf(λ) w.p. 1− ξ
random search w.p. ξ

(4) Evaluate yt+1 given λt+1
(5) Dt+1 = Dt

⋃
(λt+1, yt+1)

Quality of the correlation network derived from the166

GTex gene expression study.167

The GTex datasets (Lonsdale et al.. 2013) is comprised168

of human samples from diverse tissues, many of which169

were obtained post-mortem and there are many techni-170

cal factors which have considerable effects on the gene171

expression measurements. On the other hand this rich172

dataset provides an unprecedented multi-tissue map of173

gene regulatory networks and has been extensively an-174

alyzed in this context. It is natural to assume that a175

dataset that is better at recovering known pathways is176

likely to yield more credible novel predictions. Thus,177

we use DataRemix to optimize the known pathway re-178

covery task as a function of the correlation network179

computed on a Remixed dataset.180

●
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Figure 2: A The improvement in performance of DataRemix trans-
form of the pathway prediction task visualized as a function of k and
p parameters (µ is fixed at 0.01). Performance is measured as the
mean AUC across all pathways in the “canonical” mSigDB dataset
and the red contours indicate improvement over the performance on
untransformed data. B Per-pathway performance improvement for
the optimal DataRemix transformation.

181

Specifically we start with a quantile normalized TPM182

data that has not been corrected for technical factors183

or tissue of origin. We formally define the objective as184

the average AUC across “canonical” mSigDB pathways185

(which include KEGG, Reactome and PID) (Subra-186

manian et al.. 2005) using guilt-by-association. Specif-187

ically, the genes are ranked by their average Pearson188

correlation to other genes in the pathway (excluding 189

the gene when the gene itself is a pathway member). 190

Figure 2A depicts the results of grid search for the 191

parameters k, p (with µ fixed at 0.01) and the contour 192

plot shows a clear region of increased performance. Us- 193

ing the optimal transformation found by grid search, 194

we plot per-pathway AUC improvement in Figure 2B 195

and find that the AUC is substantially increased for 196

almost every pathway. 197

eQTL discovery in the DGN dataset. 198

We also consider the task of discovering cis- and 199

trans-eQTLs on the Depression Gene Networks (DGN) 200

dataset (Battle et al.. 2014). In the original analysis 201

this dataset was normalized using the Hidden Covari- 202

ates with Prior (HCP) (Mostafavi et al.. 2013) with 203

four free parameters that were separately optimized 204

for cis- and trans-eQTLs. The rationale behind seper- 205

ate cis and trans optimized normalization can be un- 206

derstood in terms of which variance components repre- 207

sent useful vs. nuisance variation in the two contexts. 208

Specifically, cis-eQTLs represent direct effects of ge- 209

netic variation on the expression of a single gene. On 210

the other hand, trans-eQTLs represent network level, 211

indirect effects that are mediated by a regulator. Thus, 212

trans-eQTLs are reflected in systematic variation in 213

the data which becomes a nuisance factor when only 214

direct effects are of interest. It thus follows that the 215

data should be more aggressively normalized for cis- 216

eQTL discovery. The original analysis of this dataset 217

optimized the HCP parameters separately for the cis 218

and trans tasks yielding two different datasets that we 219

refer to as Dcis−optim and Dtrans−optim. 220

The HCP model takes various technical covariates as 221

input, and of the covariates used in the original study 222

20 cannot be inferred from the gene-level counts. In 223

order to investigate how much improvement can be 224

achieved via DataRemix in the absence of access to 225

these covariates we also consider a “naively” normal- 226

ized dataset, quantile normalization of log-transformed 227

counts, or DQN . 228

cis-eQTLs. 229

In this task we focus on optimizing the discovery of 230

cis-eQTLs. We define cis-eQTLs as a SNP-gene inter- 231

action where the SNP locates within 50kb of the gene’s 232

transcription start site. The interaction is quantified 233

with Spearman rank correlation and deemed signifi- 234

cant at 10% FDR (Benjamini-Hochberg correction for 235

the total number of tests). 236

We perform our analysis in a cross-validation frame- 237

work, whereby we can optimize DataRemix parame- 238

ters (using grid search or Thompson Sampling) using 239

SNPs on the odd chromosomes only and then evaluate 240
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the parameters on the held-out even chromosome set.241

We visualize the effect of varying the k and p param-242

eters on the performance of the DataRemix transform243

in Figure 3. Red regions indicate improvement over the244

number of cis-eQTLs discovered with the Dcis−optim245

dataset. We find that both versions of the dataset can246

be improved via the DataRemix transform to a simi-247

lar degree. We also find that on this task the optimal p248

parameter is negative and the result is relatively insen-249

sitive to the choice of k. The last observation can be250

interpreted when we consider the interaction between251

p and µ (the multiplier for the residual part including252

k+1 through max(k) components). If we wish to bring253

forward small-variance components, as is the case with254

cis-eQTL discovery, we would like the diagonal values255

of µΣk+1:rank of X, representing the contribution of the256

later components, to be in the same range or larger257

than max(Σp1:k) which is the largest contribution of258

the high variance components. This can be achieved259

by picking different values of k.260

−7500 −5000 −2500 0
Improvement over baseline

●

−1.0

−0.5

0.0

0.5

1.0

200 400 600

k

p

Starting with Optimal Covariate NormalizationA

●

−1.0

−0.5

0.0

0.5

1.0

200 400 600

k

p

Starting with Quantile NormalizationB

Figure 3: Contour plot representing the effects of the k and p pa-
rameters on the performance of DataRemix on cis-eQTL discov-
ery on 50,000 randomly selected SNPs on odd chromosomes (train-
ing set). Red contours represent parameter combinations that in-
crease the number cis-eQTLs beyond what can be achieved using
the Dcis−optim dataset. Panel A shows the results starting with
Dcis−optim while DQN is used for panel B. Improvement can be
achieved starting with either datasets. We note that the optimal p
parameter is negative (though slightly different) for both datasets.

261

The final results for both the train and test set262

are depicted in Figure 4. We find that the optimal263

parameters are indeed generalizable as we achieve a264

similar level of improvement on the train and test265

datasets. Importantly, we find that while the quantile-266

normalized dataset DQN performs considerably worse267

that Dcis−optim the two datasets achieve comparable268

performance after applying DataRemix. Moreover, the269

final performance of the Remixed DQN dataset is an270

improvement of the baseline Dcis−optim demonstrat-271

ing the near optimal normalization is possible with-272

out access to technical covariates. We do note, on this273

task, the final performance of the Remixed Dcis−optim274

is slightly better than that of DQN and thus it is still275

advisable to include such covariates in the normaliza-276

tion pipeline if they are available.277
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Figure 4: Final results from DataRemix parameter search using a
cross-validation framework. Optimal parameters are determined us-
ing the odd chromosome SNPs only and then tested on the even
chromosome SNPs. We find that the DataRemix transform does
not overfit the objective as the degree of improvement is similar
across the test and train SNP sets (note: the starting value of the
baseline (DataRemix=”None”) datasets differ between the test and
train SNP set). Moreover, we find that Thompson Sampling is able
to match grid search results using only only 100 evaluations.

278

trans-eQTLs. 279

In our third task, we optimize the discovery of trans- 280

eQTLs in the same DGN dataset. Ideally, trans-eQTLs 281

represent network-level effects and thus give some in- 282

sight about the regulatory structure of gene expres- 283

sion. However, in practice trans-eQTLs are simply de- 284

fined as SNP-gene associations where the SNP and the 285

gene are located on different chromosomes. While this 286

is a useful heuristic definition, but it doesn’t guarantee 287

that the association is mediated at the network level. 288

One possible source of bias is mis-mapped RNAseq 289

reads which contaminate the quantification of the ap- 290

parently trans-associated gene with reads from a ho- 291

mologous locus that has cis association. Even in the 292

absence of technical artifacts, direct interchromsomal 293

interactions have been observed (see Williams et al.. 294

2010 for a comprehensive review). In order to focus 295

on potential indirect effects, we apply an additional 296

filter to trans-eQTL discovery. Specifically we require 297

SNPs involved in a trans effect to be associated with 298

more than one gene at a FDR of 20% (Benjamini- 299

Hochberg correction for the total number of test (ap- 300

proximately 8 × 109). We term these SNPs trans- 301

SNPs+. In comparison with same chromosome cis- 302

eQTLs, inter-chromosome trans-eQTLs are rare and 303

trans-SNPs+ (as defined above) are more rare still. In 304

fact, using the odd chromosome SNPs subsampled at 305

20%, we find only 88 such SNPs using Dtrans−optim 306

dataset and this is the default value we wish to im- 307

prove. 308

As is the case with cis-eQTLs, we investigate the 309

k, p performance surface of the DataRemix transform 310

at the grid-search optimal µ = 0.01. Given that the rel- 311

evant variance components that would maximize the 312

trans-eQTL objective are different, it is not surprising 313

that we find that the performance surface differs as 314

well. In particular, we find that the optimum value of 315

p is positive but close to 0 and thus the first k variance 316

components are weighted equally with a weight close 317
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to 1. Consequently, at µ = 0.01 and p ≈ 0 the contri-318

bution of the first k components is considerably larger319

than that of the remaining ones and we find that the320

performance is more sensitive to the exact value of k.321
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Figure 5: Contour plot representing the effects of the k and p pa-
rameters on the performance of DataRemix on trans-eQTL discov-
ery on 50,000 randomly selected SNPs on odd chromosomes (train-
ing set). Red contours represent parameter combinations that in-
crease the number of trans-eQTLs beyond what can be achieved
using the Dtrans−optim dataset. Panel A shows the results starting
with Dtrans−optim while DQN is used for panel B. Improvement
can be achieved starting with either datasets. We note that the per-
formance is more sensitive to the choice of k.

322

Despite the difference in the performance landscape,323

we find that the DataRemix transform behaves sim-324

ilarly on this objective. Specifically, either starting325

dataset can be improved to similar final performance,326

though the optimal parameters are slightly different.327

As is the case with the cis-eQTL objective, the cross-328

validation procedure gives consistent results and no329

overfitting is observed for either grid search or Thomp-330

son Sampling (Figure 6).331
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Figure 6: Final values for the eQTL statistics obtained from two
versions of datasets. Here we make a comparison between quantile
normalized DQN and HCP normalized Dtrans−optim with parame-
ters optimized for trans-eQTL discovery. We find DataRemix is able
to improve upon either of starting datasets and the improvement on
both the train and test dataset are comparable which indicates that
overfitting is not a problem

332

Since trans-eQTLs are likely to reflect pathway level333

effects, we expect that a dataset that is optimally334

transformed for trans-eQTL discovery should also pro-335

duce better correlation networks. We thus investi-336

gate if optimal DataRemix transform is transferable337

between tasks by checking if Remixed dataset opti-338

mized with respect to trans-eQTL discovery also im-339

proves the network quality criterion. Similar to our340

analysis of the GTex datasets, we use the correlation341

network to perform guilt-by-association pathway pre-342

dictions and evaluate the results over 1,330 MSigDB343

canonical pathways. Figure 7 shows scatter plots of 344

per-pathway AUPR (area under precision-recall curve) 345

for several comparisons with respect to the baseline 346

Dtrans−optim dataset. In the first panel we contrast the 347

performance toDQN and we observe thatDtrans−optim 348

brings a considerable improvement over the quantile 349

normalized dataset. In the second panel we contrast 350

Dtrans−optim with the Remixed version of DQN (opti- 351

mized for trans-eQTL discovery with Thompson Sam- 352

pling). We find that the pattern becomes opposite and 353

the Remixed DQN dataset performs consistently bet- 354

ter thatDtrans−optim. The final panel shows the results 355

of Remixing Dtrans−optim itself which also improves 356

the performance. Overall, we find that DataRemix im- 357

proves multiple criteria of biological validity as op- 358

timizing for the trans-eQTL objective also results in 359

improved correlation networks. Interestingly, we find 360

that while the Remixed Dtrans−optim is no better than 361

Remixed DQN on trans-eQTL discovery, it performs 362

slightly better on the pathway prediction task. Tak- 363

ing the two objectives into account, we conclude that 364

starting with a properly covariate-normalized dataset 365

is superior overall, which is also the our finding regard- 366

ing the cis-eQTL objective. 367
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Figure 7: DataRemix-transformed datasets improve the pathway
prediction objective which is not explicitly optimized. Each plot
is a per-pathway AUPR (area under precision-recall curve) from
various datasets (y-axis) contrasted with the results from the opti-
mal covariate-normalized dataset Dtrans−optim, which serves as the
baseline (x-axis). Panel A shows the contrast between Dtrans−optim

and DQN . The performance of Dtrans−optim is considerably better.
Panel B shows the results of the Remixed DQN datasets (optimized
for trans-eQTL discovery with Thompson Sampling). Even though
DQN starts out as considerably worse, the Remixed version is able
to outperform Dtrans−optim. Panel C shows the results of Remixed
Dtrans−optim. We choose to use AUPR instead of AUC because we
find that Remixed version matches but doesn’t further improve the
AUC performance of Dtrans−optim

368

A major finding of our study is that for the eQTL and 369

pathway prediction tasks, the starting point of nor- 370

malizing DGN datasets appears to matter relatively 371

little. Even though the quantile-normalized dataset 372

performs considerably worse in the beginning, after 373

Remixing its performance matches that of the opti- 374

mal covariate-normalized datasets. Of course, if covari- 375

ates are available, it is preferable to use them and in 376

the case of DGN, slightly further improvement can be 377

achieved. However our results indicate that in some 378

cases datasets can be effectively normalized even in the 379

absence of meta-data about quality control or batch 380

variables which is an important consideration for many 381
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legacy datasets where such information is not avail-382

able.383

Novel Biological Findings384

At the optimal DateRemix parameters for DQN , we385

find an additional 24 loci that have significant associ-386

ations with more than one gene and are not in link-387

age disequilibrium with those significant hits in the388

Dtrans−optim. We highlight two examples of new reg-389

ulatory modules recovered via DataRemix that ap-390

pear to be biologically credible based on the known391

functions of the genes involved. One of the newly sig-392

nificant interactions involves the SNP rs2331413 lo-393

cated in proximity of the ERN1 gene, which func-394

tions as a sensor of unfolded protein in the endoplas-395

mic reticulum and triggers an intracellular signalling396

pathway termed the unfolded protein response. Three397

downstream genes associated with rs2331413 are like-398

wise endoplasmic reticulum proteins. The ERN1 lo-399

cus has been associated with several phenotypes in400

GWAS studies, most notably drug induced hepatotox-401

icity (Petros et al.. 2017).402

We also find an SNP rs11145917 located near403

INPP5E gene which is associated with two genes in404

the alpha interferon response. Even though only two405

genes show genome-wide significance, several other406

canonical members of the alpha interferon response407

are just slightly short of the significance threshold sug-408

gesting that the locus affects the upstream signaling409

components. The INPP5E locus has been implicated410

in a variety of autoimmune diseases as well as blood411

immune-cell composition phenotype (de Lange et al..412

2017; Astle et al.. 2016), though to our knowledge no413

mechanism has been proposed. Our analysis suggests414

that INPP5E may affect baseline activity of the alpha415

interferon pathway, which is a testable prediction with416

potential clinical importance.417

HERC5 ISG15

rs2331413−−ERN1

SEC61A1 HYOU1 SEC24C

rs11145917−−INPP5E

A B

ERN1 endoplasmic reticulum to nucleus signaling 1
SEC61A1 Sec61 translocon alpha 1 subunit

HYOU1 hypoxia up-regulated 1
SEC24C SEC24 homolog C, COPII coat complex component

INPP5E inositol polyphosphate-5-phosphatase E
HERC5 E3 ubiquitin protein ligase , alpha interferon induced

ISG15 ISG15 ubiquitin-like modifier, alpha interferon induced

Figure 8: Clusters of trans-eQTLs detected by DataRemix that were
not significant in the original dataset. Panel A. Both the cis and
trans genes are involved in ER biology and specifically unfolded
protein response. Panel B. Both of the trans genes are canonical
targets of alpha interferon. The upstream cis gene, INPP5E, is a
signaling molecule that mediates cell responses to various stimula-
tion and its locus has been implicated in a variety of autoimmune
diseases as well as blood immune-cell composition phenotypes.

418

Thompson Sampling Performance 419

We find that Thompson Sampling matches the best 420

grid-search performance in under 100 steps giving a 40- 421

fold reduction in the number of evaluations. We also 422

note that it is possible for the Thompson sampling 423

to surpass the grid-search results since the parameter 424

combinations are not constrained by the choice of grid. 425
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Figure 9: Objective evaluations as a function of iteration number
for the trans-eQTL and cis-eQTL objectives using the quantile nor-
malized DQN dataset. Red lines indicate the maximum value that
was obtained by grid-search and blue lines indicate the cumulative
maximum of Thompson Sampling.

426

Discussion 427

We have proposed DataRemix, a new optimizable 428

transformation for gene expression data. The transfor- 429

mation is able to improve the biological validity of gene 430

expression representations and can be used for effec- 431

tive normalization in the absence of any knowledge of 432

technical covariates. One limitation of the DataRemix 433

approach is that it works best on data that is well 434

approximated by a single Gaussian. However, it is rel- 435

atively straightforward to adapt the approach to ma- 436

trix decompositions different from SVD that are more 437

suitable for non-Gaussian data, such as independent 438

component analysis. We also note that it is possible 439

to introduce additional parameters that specify more 440

complex weighting schemes. However, as the number 441

of parameters is increased, there is a potential for over- 442

optimization of a specific objective above others. We 443

emphasize that in our simple parametrization, we ob- 444

serve that multiple metrics of biological validity im- 445

prove when only one is explicitly optimized. Specifi- 446

cally we find that optimizing for trans-eQTL discovery 447

also improves the correlation network as measured by 448

guilt-by-association pathway prediction. This property 449

is less likely to be preserved as the number of param- 450

eters is increased. 451

Methods 452

GTex Dataset 453

We downloaded the complete gene-level TPM data 454

(RNASeQCv1.1.8) from the GTex consortium (Lons- 455

dale et al.. 2013). These data were quantile normalized. 456
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DGN Dataset457

Depression Gene Networks (DGN) dataset contains458

whole-blood RNA-seq and genotype data from 922 in-459

dividuals. The genotype data was filtered for MAF>0.05.460

The genomic coordinate of each SNP was taken461

from the Ensembl Variation database (version 90,462

hg19/GRCh37). SNP identifiers that were not present463

in that release were excluded. After filtering there were464

649,875 autosomal single nucleotide polymorphisms465

(SNPs). Data is available upon application through466

NIMH Center for Collaborative Genomic Studies on467

Mental Disorders. For gene expression we used the468

gene-level quantified dataset. The dataset comes al-469

ready filtered for expressed genes and was further fil-470

tered for gene symbols that were not present in En-471

sembl 90 leaving 13,708 genes. The dataset comes in472

two covariate normalized versions with normalization473

parameters optimized for cis- and trans-eQTL discov-474

ery separately. To create the naive-normalized dataset,475

we applied a log transformation, log(x+1), to the raw476

counts and quantile normalized the results.477

eQTL mapping478

eQTL association mapping was quantified with Spear-479

man rank correlation. For cis-eQTLs, testing was lim-480

ited to SNPs which locate within 50kb of any of481

the gene’s transcription start sites (Ensembl, version482

90). cis-eQTl is deemed significant at 10% FDR with483

Benjamini-Hochberg correction for the total number of484

tests. For trans-eQTLs, the significance cutoff is 20%485

FDR with Benjamini-Hochberg correction for the total486

number of tests. Since the Benjamini-Hochberg FDR487

is a function of the entire p-value distribution in order488

to ensure consistency comparisons, the rejection level489

was set once based on the p-value that corresponded490

to 10% or 20% FDR in the original cis-optimized491

Dcis−optim and trans-optimized Dtrans−optim dataset492

respectively. To reduce the computational cost of grid493

evaluations, all the optimization computations were494

performed on a set of 100,000 subsampled SNPs.495

Correlation network evaluation496

We evaluated the quality of the correlation network497

derived from a particular dataset using guilt-by-498

association pathway prediction. Specifically, the genes499

were ranked by their average Pearson correlation to500

other genes in the pathway (excluding the gene when501

the gene itself is a pathway member). The resulting502

ranking was evaluated for performance using AUC or503

AUPR metric. For pathway ground-truth we used the504

“canonical” pathways dataset from MSigDB, compris-505

ing 1,330 pathways (Subramanian et al.. 2005).506

Software Access 507

DataRemix is an R package which is freely available 508

at GitHub (https://github.com/wgmao/DataRemix). 509
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