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Abstract	

Background	

Inherent sources of error and bias that affect the quality of the sequence data include 24 

index hopping and bias towards the reference allele. The impact of these artefacts is 25 

likely greater for low-coverage data than for high-coverage data because low-26 

coverage data has scant information and standard tools for processing sequence data 27 

were designed for high-coverage data. With the proliferation of cost-effective low-28 

coverage sequencing there is a need to understand the impact of these errors and bias 29 

on resulting genotype calls. 30 

Results	

We used a dataset of 26 pigs sequenced both at 2x with multiplexing and at 30x 31 

without multiplexing to show that index hopping and bias towards the reference allele 32 

due to alignment had little impact on genotype calls. However, pruning of alternative 33 

haplotypes supported by a number of reads below a predefined threshold, a default 34 

and desired step for removing potential sequencing errors in high-coverage data, 35 

introduced an unexpected bias towards the reference allele when applied to low-36 

coverage data. This bias reduced best-guess genotype concordance of low-coverage 37 

sequence data by 19.0 absolute percentage points.  38 

Conclusions	

We propose a simple pipeline to correct this bias and we recommend that users of 39 

low-coverage sequencing be wary of unexpected biases produced by tools designed 40 

for high-coverage sequencing.  41 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/358085doi: bioRxiv preprint first posted online Jun. 28, 2018; 

http://dx.doi.org/10.1101/358085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction	

Sequence data has the potential to empower identification of causal variants 42 

underlying quantitative traits or diseases, to enhance livestock breeding, and to 43 

increase the precision and scope of population genetic studies. For sequence data to be 44 

used routinely in research and breeding, low-cost sequencing strategies must be used 45 

to assemble large data sets covering most of the genetic diversity in a population. 46 

Such low-cost strategies could involve sequencing individuals at low coverage 47 

followed by imputation [1–3]. 48 

Current sequencing technologies have inherent sources of errors and bias that 49 

affect the quality of the sequence data [4–6]. Two of the most important are index 50 

hopping and bias towards the reference allele. The impact of these artefacts is likely 51 

greater for low-coverage data than for high-coverage data because low-coverage data 52 

has scant information and standard tools for processing sequence data were designed 53 

for high-coverage data. With the proliferation of cost-effective low-coverage 54 

sequencing there is a need to understand the impact of these artefacts on resulting 55 

genotype calls. 56 

Index hopping has a biochemical cause and appears in the early stages of 57 

sequencing. Currently, the most widely used high-throughput sequencing platform is 58 

the HiSeq series of instruments from Illumina Inc. Due to the large sequencing 59 

capacity of these platforms, several samples are often sequenced jointly within a 60 

single flow cell channel by multiplexing. To link multiplexed sequence reads to the 61 

original samples, the adapter sequences used during library preparation include a set 62 

of unique index sequences. However, molecular recombination of indices, or ‘index 63 

hopping’, can occur when free adapters are present in a library pool. This leads to 64 

misassignment of sequence reads between samples in the multiplex. Recently 65 
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alarming data showed index hopping incidences of up to 10% [7]. These results 66 

sparked debate and concern about index hopping, though some subsequent studies 67 

reported a low incidence for most applications [8–10], which is in line with 68 

expectation provided that cleaning protocols are used to remove free adapters from 69 

the libraries [11]. While these results are reassuring, they pertained to high-coverage 70 

sequence data and the effect of index hopping on low-coverage sequence data and its 71 

downstream analysis remains unclear. 72 

Bias towards the reference allele can be observed in sequence data following 73 

bioinformatic processing. It originates mainly during read alignment, but it can also 74 

occur during variant discovery and genotyping. Alignment of sequence reads onto a 75 

haploid reference genome relies on the calculation of similarity scores between reads 76 

and the reference genome. The more a read diverges from the reference, the more 77 

unlikely it is to align appropriately. This disfavours the alignment of reads that carry 78 

the alternative allele at a variant position because such reads have at least one more 79 

mismatch to the reference genome compared to reads that carry the reference allele. If 80 

a read covers multiple variant sites and carries alternative alleles at multiple positions, 81 

the probability of aligning such a read decreases even further, which in turn produces 82 

a stronger reference allele bias in highly polymorphic regions. This can lead to biases 83 

in downstream applications, e.g., in estimation of allele frequencies [4,12]. 84 

Another potential source of bias towards the reference allele can occur during 85 

variant discovery and genotyping. One of the most popular variant callers is GATK 86 

HaplotypeCaller [13], which provides a pipeline for efficient joint genotyping of 87 

multiple samples. In the GATK Best Practices pipeline, variant discovery and joint 88 

genotyping of multiple samples are performed as two separate steps [13,14]. In the 89 

variant discovery step, read information for each position of the reference genome is 90 
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stored for each individual sample in a gVCF file, which differs from the traditional 91 

VCF file in that it stores information of the non-variant positions as well as the variant 92 

positions. In the joint genotyping step, the gVCF files that have been created 93 

separately for each individual are combined and genotypes are called for all 94 

individuals at all the positions that are variant for at least one individual in the 95 

sequenced population. Compared to other pipelines, this two-step process has the 96 

advantage that only the genotyping (and not the variant calling itself, which is the 97 

most computationally demanding step) is done jointly for all the samples. This 98 

improves scalability and facilitates the incorporation of new batches of sequenced 99 

individuals for the joint genotyping step. However, GATK HaplotypeCaller was 100 

designed for high-coverage sequencing and, to our knowledge, its performance in 101 

low-coverage sequencing has not been assessed. 102 

In this study we explored the impact of index hopping and bias towards the 103 

reference allele in low-coverage sequencing. We show that index hopping and bias 104 

towards the reference allele due to alignment have little impact on genotype calls. 105 

However, unexpected biases may arise from pipelines that use tools designed for 106 

high-coverage sequence data when applied to low-coverage sequence data. In 107 

particular we describe how a function from GATK HaplotypeCaller that is very useful 108 

for high-coverage data introduces a strong bias towards the reference allele when used 109 

on low-coverage data. We propose a new pipeline that avoids this bias. The results in 110 

this paper show the importance of validating the performance of tools designed for 111 

high-coverage data on low-coverage data. 112 

 113 
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Materials	and	Methods	

Sequenced	individuals	

A total of 26 commercial pigs were used in this study. Tissue samples were 114 

collected from ear punches or tail clippings and genomic DNA was extracted using 115 

Qiagen DNeasy 96 Blood & Tissue kits (Qiagen Ltd., Mississauga, ON, Canada). 116 

Paired-end library preparation was conducted using the TruSeq DNA PCR-free 117 

protocol (Illumina, San Diego, CA). Two sets of libraries were produced; one with 118 

average insert size of 350 bp and the other with average insert size of 550 bp. 119 

Libraries with average insert size of 350 bp were sequenced on a HiSeq 4000 120 

instrument, for a target coverage of 2x per sample. For this, all 26 samples were 121 

multiplexed within a single flow cell channel. Libraries with average insert size of 122 

550 bp were sequenced on a HiSeq X instrument, for a target coverage of 30x per 123 

sample. For this, the 26 samples were sequenced one sample per flow cell channel. 124 

All libraries were sequenced at Edinburgh Genomics (Edinburgh Genomics, 125 

University of Edinburgh, Edinburgh, UK). DNA samples from the same pigs were 126 

also genotyped using the GGP-Porcine HD BeadChip (GeneSeek, Lincoln, NE). 127 

 128 

Variant	discovery	

DNA sequence reads were pre-processed using Trimmomatic [15] to remove 129 

adapter sequences from the reads. The reads were then aligned to the reference 130 

genome Sscrofa11.1 (GenBank accession: GCA_000003025.6) using the BWA-MEM 131 

algorithm [16]. Duplicates were marked with Picard 132 

(http://broadinstitute.github.io/picard). Single nucleotide polymorphisms (SNPs) and 133 

short insertions and deletions (indels) were identified with the variant caller GATK 134 
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HaplotypeCaller (GATK 3.8.0; [13,14]). The GATK HaplotypeCaller performs local 135 

re-assembly of the reads to generate a list of possible haplotypes in a region by 136 

constructing a read-threading graph. Sections of that graph that are supported by a 137 

number of reads (kmers) lower than a predefined threshold are considered likely to be 138 

sequencing errors and removed from the graph in a step referred to as ‘pruning’. By 139 

default the threshold for pruning is set to ‘--minPruning 2’. We used the default 140 

settings but we also performed variant discovery without pruning (--minPruning 1). 141 

Variant discovery with GATK HaplotypeCaller was performed separately for each 142 

individual. A joint variant set for the 26 individuals was obtained by extracting the 143 

variant positions from all the individuals with GATK GenotypeGVCFs. Finally, 144 

variants were filtered with VCFtools [17] and only biallelic SNPs were retained. To 145 

minimise computing costs, we only considered variants on chromosome 1. 146 

 147 

Genotyping	

We did not use genotypes called directly by GATK GenotypeGVCFs or any 148 

software tool. Instead we extracted allele read counts (i.e., the coverage that each 149 

allele received at each variant site) from the VCF file. We then called genotypes 150 

based on genotype probabilities calculated from allele read counts of the reference 151 

allele (nRef) and the alternative allele (nAlt). Genotype probabilities for the reference 152 

homozygote (0), heterozygote (1), and alternative homozygote (2) were respectively 153 

calculated as: 154 

p(0) = (1− e)!"#$ · e!"#$, 155 

p 1 = 0.5!"#$ · 0.5!"#$, and 156 

p(2) = e!"#$ · (1− e)!"#$, 157 
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where e is the sequencing error rate, assumed to be 0.01. The three probabilities were 158 

scaled to sum up to 1. Genotype calls were made with three different levels of 159 

certainty: (i) the most probable genotypes (referred to as ‘best-guess’); (ii) genotypes 160 

that had a probability greater than 0.90; or (iii) genotypes that had a probability 161 

greater than 0.98. 162 

 163 

Genotype	and	allele	concordance	

Genotype concordance was calculated by: (i) comparing genotypes for the 164 

same variant from the sequence data and the marker array, using the marker array 165 

genotypes as the true genotypes; or (ii) comparing the same variant from the sequence 166 

data at low and high coverage and using the high-coverage genotype calls as the true 167 

genotypes. Genotype concordance was calculated as the percentage of matches 168 

between the nominal true genotypes and the genotype calls. We only considered 169 

genotypes for SNPs that segregated in the marker array and in the sequence data. The 170 

number of SNPs tested for concordance with marker array data was 5,136 for the low-171 

coverage data and 5,531 for the high-coverage data. The set of 5,531 SNPs was used 172 

for testing the concordance between low- and high-coverage sequence data. We also 173 

calculated allele concordance, as the percentage of matched alleles between the 174 

nominal true genotypes and the genotype calls. 175 

 176 

Bias	towards	the	reference	allele	due	to	variant	caller	and	new	pipeline	

Initially we called genotypes using the read counts stored in the gVCF files 177 

produced by GATK HaplotypeCaller. For the testing potential biases introduced by 178 

the variant caller, we also called genotypes using the read counts obtained directly 179 

from the aligned reads stored in the BAM files. To do so, we extracted the read counts 180 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/358085doi: bioRxiv preprint first posted online Jun. 28, 2018; 

http://dx.doi.org/10.1101/358085
http://creativecommons.org/licenses/by-nc-nd/4.0/


from the BAM files for variant sites discovered using pysam 181 

(https://github.com/pysam-developers/pysam). We refer to this method as the ‘new’ 182 

pipeline. 183 

Our initial results indicated that there was a strong bias towards the reference 184 

allele introduced by the variant caller. Therefore, for all further analyses we used read 185 

counts obtained from the BAM files with the new pipeline for genotyping. We called 186 

genotypes for the 5,531 variant positions on chromosome 1 discovered from the high-187 

coverage sequence data that had already been genotyped using the marker array. 188 

 189 

Bias	towards	the	reference	allele	due	to	alignment	

In this study we defined alignment bias to be the differential alignment of 190 

almost-identical reads that differ only in one allele at a given variant position, be it 191 

either the reference allele or the alternative allele. To quantify the alignment bias, we 192 

aligned the 2x data against two reference genomes: the ‘original’ reference genome 193 

and a ‘tailored’ reference genome. The tailored reference genome was created by 194 

replacing the reference allele with the alternative allele at all the variant positions 195 

discovered with the 30x sequence data in chromosome 1. Thus, the allele that was 196 

originally the alternative allele became the reference allele in the tailored reference 197 

genome and vice versa. We extracted the allele read counts from the aligned reads in 198 

the BAM files generated with both reference genomes. The allele read counts were 199 

used to call genotypes for evaluating the genotype concordance between the 2x data 200 

and the true genotypes (from the 30x data). Genotypes were called from the allele 201 

read counts obtained with either: (i) the original reference genome (REF), or (ii) the 202 

tailored reference genome (ALT). Because REF could favour the alignment of reads 203 

carrying the reference allele and disfavour the alignment of reads carrying the 204 
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alternative allele, and vice versa for ALT, we also considered two additional cases 205 

that were a combination of the previous two: (iii) read counts for the reference allele 206 

from the original reference genome and read counts for the alternative allele from the 207 

tailored reference genome (CIS), and (iv) vice versa, read counts for the reference 208 

allele from the tailored reference genome and read counts for the alternative allele 209 

from the original reference genome (TRANS). Thus, the CIS case used allele read 210 

counts that had more favourable alignment for each allele, and, on the contrary, the 211 

TRANS case used allele read counts that had more unfavourable alignment for each 212 

allele. 213 

 214 

Index	hopping	

In order to quantify the incidence of index hopping in our 2x dataset, we 215 

generated 2x data that were either free of index hopping or had different levels of 216 

index hopping simulated. The 2x data free of index hopping were generated by 217 

downsampling the 30x data (i.e., random sampling of ~1/15 of the 30x reads), which 218 

had been generated without multiplexing (1 sample per lane). The downsampled 2x 219 

data was used to obtain baseline sequence data in the absence of index hopping. We 220 

then added index hopping to this data by deliberately assigning reads to other 221 

individuals at random with a probability of 0.1%, 0.5%, 1%, 2%, or 5%. For each of 222 

these cases we downsampled the data independently before simulating index hopping 223 

to account for the random sampling of reads that occurs during sequencing. 224 

To analyse the data, genotypes in each dataset were called as we described 225 

above (best-guess or above a certain probability threshold) but also with an additional 226 

method based on the presence/absence of each allele that was more sensitive to index 227 

hopping. With this presence/absence method, the presence of a single read supporting 228 
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the opposite allele was sufficient to change the genotype call (e.g., the genotype call 229 

with nRef=10 and nAlt=0 would be homozygote but the genotype call with nRef=10 230 

and nAlt=1 would be heterozygote). Note that this method is equivalent to calling 231 

best-guess genotypes with null sequencing error rate. 232 

We regressed the percentages of genotype concordance on the level of index 233 

hopping and used this regression to predict the level of index hopping level in the 234 

observed 2x dataset. Concordance percentages represent relative, rather than absolute, 235 

information and therefore should not be analysed using standard statistical techniques 236 

that are defined in real space, which has an absolute scale [18]. In order to validate the 237 

results with a methodology that was more appropriate for compositional data we also 238 

analysed the data using isometric log-ratio transformations (ilr) of the concordance 239 

percentages [19,20]. The ilr were the log-ratios of the percentage of correct calls 240 

against the percentages of incorrect calls or the log-ratios of the percentage of correct 241 

homozygous calls against the percentage of incorrect heterozygous calls. For the ilr 242 

variables a quadratic regression was fitted. 243 

 244 

Results	

Variant	discovery	

Most of the SNPs present on the marker array were discovered using sequence 245 

data, either at high or low coverage. The number of biallelic SNPs discovered on 246 

chromosome 1 with high- and low-coverage data is shown in Table 1. A total of 247 

1,693,308 biallelic SNPs were discovered with the high-coverage data and 1,333,943 248 

with the low-coverage data. The low-coverage sequence data contained 76.3% 249 

(1,292,269) of the biallelic SNPs discovered with the high-coverage data. The marker 250 

array had 5,779 SNPs on chromosome 1 that segregated in the 26 sequenced 251 
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individuals. Of these, 95.7% (5,531) were discovered with the high-coverage data and 252 

88.9% (5,136) with the low-coverage data. 253 

Disabling the pruning step in GATK HaplotypeCaller for processing the low-254 

coverage data increased the number of variants discovered but also the number of 255 

potential false positives. The number of biallelic SNPs discovered on chromosome 1 256 

with low-coverage data with or without pruning is shown in Table 2. When pruning 257 

was disabled, a total of 1,877,644 biallelic SNPs were discovered with the low-258 

coverage data. This number was greater than the set of variants discovered with the 259 

high-coverage data with the default pruning settings (Table 1). However, 24.1% of 260 

those extra SNPs could not be validated using the high-coverage data, which is a 261 

much greater proportion than when pruning was used (3.1%). 262 

 263 

Genotype	 concordance	 and	 bias	 towards	 reference	 allele	 due	 to	 variant	

calling	

The variant caller that we used introduced a bias towards the reference allele 264 

and this had a great impact on genotype calling with low-coverage data. Table 3 265 

shows the genotype concordance for calls obtained with the allele read counts from 266 

the gVCF files produced by GATK HaplotypeCaller. The table shows a large bias 267 

towards the reference allele for low-coverage sequence data. In the most extreme case 268 

of positions with 1x, we would expect the genotypes that are heterozygous according 269 

to the marker array to be called as either one of the two possible homozygotes ‘0’ and 270 

‘2’ 50% of the times. Instead we called them as the reference homozygote ‘0’ 95.1% 271 

of the times and as the alternative homozygote ‘2’ only 4.9% of the times. Also, at 1x, 272 

82.0% of the alternative homozygotes ‘2’ were called as reference homozygote ‘0’. 273 
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Because of this bias, the overall genotype concordance was only 62.1% and the allele 274 

concordance was only 77.6%. 275 

The bias towards the reference allele due to variant caller can be avoided by 276 

calling genotypes from the read counts obtained directly from the aligned reads stored 277 

in BAM files. Table 4 shows the genotype concordance obtained with the new 278 

pipeline using allele read counts extracted directly from BAM files. The bias was 279 

corrected and the concordances matched expectations. Overall, genotype and allele 280 

concordances rose to 81.1% and 90.5%, respectively. As expected, most of the 281 

incorrect calls arose from the difficulty of calling heterozygous genotypes at low 282 

coverage. 283 

Disabling pruning was not as good a solution for correcting the bias as the new 284 

pipeline of extracting the allele read counts from the BAM files. Table 2 shows 285 

genotype and allele concordances with the default pruning setting and without 286 

pruning. Without pruning, the genotype and allele concordances rose to 76.5% and 287 

87.5%, respectively, but these percentages were lower than with the new pipeline. 288 

Once the bias towards the reference allele due to the variant caller was 289 

corrected, the concordance at homozygous positions was very high regardless of the 290 

conservativeness of the genotype calls, but these thresholds were important for 291 

concordance at heterozygous positions. Table 5 shows genotype concordance between 292 

calls with low- and high-coverage data obtained as best-guess genotypes or with a 293 

minimum probability of 0.90 or 0.98. At homozygous positions, the best-guess 294 

genotypes had an overall concordance of 98.5% and 98.2%, which was greater than 295 

the concordance of the calls with a minimum probability of 0.90 (97.2% and 96.4%, 296 

respectively), despite the latter being called with a greater level of certainty. The 297 

reason for this is that with a minimum probability of 0.90, there is not enough 298 
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certainty for calling any genotype at 1x, and at positions with coverage of 2x or 3x 299 

only potential heterozygotes (either true or false), but not homozygotes, can be called 300 

due to the considered error rate. While the number of homozygotes incorrectly called 301 

as heterozygous was actually very low, the impact of these incorrect calls on the 302 

overall concordance was noticeable because the low-coverage data had many more 303 

loci with 2x and 3x than with 4x or more. A similar situation happened with genotype 304 

calls with a minimum probability of 0.98. 305 

At heterozygous loci, it was very difficult to call heterozygotes at the lowest 306 

coverages. Because of the large proportion of loci with low coverage, the genotype 307 

concordance of heterozygous loci with best-guess genotypes was 52.4%. With more 308 

conservative calls the heterozygotes were called more accurately and the genotype 309 

concordance was 93.3% and 98.3% respectively with a minimum probability of 0.90 310 

and 0.98. However, there was a trade-off between the concordance of called 311 

genotypes and the number of called genotypes. With more conservative calls, the 312 

number of called genotypes was only 33.7%, with a minimum probability of 0.90, or 313 

8.3%, with a minimum probability of 0.98, of those that could be called using best-314 

guess genotypes. 315 

 316 

Bias	towards	reference	allele	due	to	alignment	

Reads with an allele that was present in the reference genome had a greater 317 

probability of successful alignment, but the difference was small. Table 6 shows the 318 

average allele read counts depending on which allele was in the reference genome. 319 

Approximately 1.3% of reads were not aligned when the reference genome contained 320 

the opposite allele than the read. The alignment bias also caused that the number of 321 

reads that carried the allele in the reference genome but were incorrectly mapped to a 322 
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position where the individual was homozygous for the opposite allele increased by 323 

9.8%, although these potentially mismapped reads represented only a small fraction of 324 

the total. 325 

However, the impact of the bias towards reference allele due to alignment on 326 

the genotype calls is likely to be low. Table 7 shows the genotype concordance 327 

between low- and high-coverage sequence data after alignment with the original 328 

reference genome (REF), the tailored reference genome (ALT), or a combination of 329 

both (CIS and TRANS). Using the REF or ALT reference genomes introduced some 330 

bias towards homozygotes calls for the reference or the alternative allele, respectively. 331 

Using the CIS combination, where the allele read counts were obtained from the most 332 

favourable case for each of them (i.e., the reference genome contained that same 333 

allele), increased the number of genotype calls regardless of the conservativeness of 334 

the calls and it increased the ability of correctly call heterozygotes with lower levels 335 

of certainty. On the contrary, using the TRANS combination, where the allele read 336 

counts were obtained from the least favourable case for each of them (i.e., the 337 

reference genome contained the opposite allele), reduced the number of genotype 338 

calls and the ability to correctly call heterozygotes. Overall, changes in best-guess 339 

genotype concordance were small and the percentage of incorrect calls between CIS 340 

(most favourable case) and REF (current practice) differed only by 0.1 absolute 341 

percentage points. 342 

 343 

Index	hopping	

Index hopping was estimated to be around 1.5% in our dataset. The results of 344 

using the method based on presence/absence of each allele, which is more sensitive to 345 

index hopping, are shown in Table 8. In the table we show the genotype concordance 346 
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observed in the real and simulated data. The regression of the genotype concordance 347 

for homozygotes on the level of index hopping had very high R-squared (R2≥0.99), 348 

while R-squared was below 0.05 for heterozygotes. Similarly, the regression of ilr 349 

transformations of concordance on the level of index hopping also had a high R-350 

squared when calculated for homozygotes (R2≥0.98). In all cases the index hopping 351 

level was estimated to be in the range from 1.3% to 1.8%. 352 

The results obtained using the concordance variables of best-guess genotypes 353 

and genotypes called with probabilities above 0.90 and 0.98, largely supported the 354 

results of the presence/absence calling method (data not provided). The results 355 

obtained using the concordance variables of best-guess genotypes gave estimates 356 

ranging from 1.3% to 1.8% (R2≥0.99). The concordance variables of genotypes with 357 

probabilities above 0.98 were less sensitive to index hopping and resulted in a lower 358 

regression fit and lower or unreliable estimates (1.1% to 1.3%, R2=0.96–99, for 359 

percentages; 1.4% to 1.7% but R2=0.81–0.97 for ilr). The concordance variables of 360 

the genotypes with probabilities above 0.90 were in between, with estimates ranging 361 

from 1.3% to 1.5% (R2≥0.99). 362 

The impact of different levels of index hopping on the genotype concordance 363 

is shown in Table 9. Incidences of 1% or 2% of index hopping increased the 364 

percentage of incorrect calls from 17.8% to 18.1% or 18.7%, respectively, for best-365 

guess genotypes, from 3.1% to 3.8% or 4.6%, respectively, for genotypes with a 366 

probability above 0.90, and from 0.6% to 0.8% or 0.7%, respectively, for genotypes 367 

with a probability above 0.98. 368 

 369 
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Discussion	

We quantified the impact of different sources of sequencing errors and biases 370 

towards the reference allele on genotype calls derived from low-coverage data. Index 371 

hopping and bias towards the reference allele due to alignment had little impact on the 372 

genotype calls. However, we found that variant callers can introduce a strong bias 373 

towards the reference allele and this has a great impact on genotype calls. This bias is 374 

likely to be pipeline specific [6], but we have detected it using one of the most 375 

popular tools for variant discovery. The step that causes this bias was designed for the 376 

processing of high-coverage data, but introduces a systematic bias when it is applied 377 

to low-coverage data. Other unexpected biases may appear when tools that have been 378 

designed for use with high-coverage data are used to process low-coverage data. 379 

Awareness of these biases allowed us to design a pipeline that gave significantly more 380 

accurate genotype calls from low-coverage sequence data than a standard pipeline. In 381 

what follows we discuss each of the sources of errors and biases that we have 382 

analysed and our proposed new pipeline for variant discovery and joint genotyping, 383 

which addresses the most important source of bias. 384 

 385 

Bias	towards	reference	allele	due	to	variant	caller	

Tools designed for high-coverage sequence data can introduce unexpected 386 

biases when used to process low-coverage sequence data. We found this to be the case 387 

for the ‘pruning’ step implemented in GATK HaplotypeCaller. During variant 388 

discovery it is virtually impossible to distinguish between a sequencing error and a 389 

genuine variant. In order to make variant discovery more robust different tools use 390 

different strategies to try to identify potential sequencing errors. In the case of GATK 391 

HaplotypeCaller, that strategy is the ‘pruning’ step. GATK HaplotypeCaller performs 392 
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local re-assembly of the reads to generate a list of possible haplotypes in a region by 393 

constructing a read-threading graph. Paths of this graph that are supported by a 394 

number of reads (kmers) equal or lower than a predefined threshold are considered to 395 

probably be sequencing errors and are removed from the graph (pruned). In the next 396 

step of the HaplotypeCaller method, each individual read is aligned against each 397 

possible haplotype, including the reference, and a likelihood score is calculated for 398 

each read-haplotype pair. Then, the likelihood that a read carries each of the alleles at 399 

a site is calculated as the product of the likelihoods of all haplotypes that carry that 400 

allele. Finally, the allele with the greatest marginal likelihood is called. 401 

While this is a reasonable strategy for high-coverage sequence data, it 402 

introduces a huge bias towards the reference allele when used for low-coverage 403 

sequence data. This can be intuitively understood with a simple example. Imagine that 404 

in any given site with the reference allele ‘A’ and the alternative allele ‘B’ we have 405 

only 1 read and that this read carries the alternative allele B. The graph path 406 

representing the haplotype with the allele B will be supported by only 1 read and will 407 

be pruned out of the graph with the default settings, where at least 2 reads supporting 408 

a path are required. This means that the only haplotype that will remain in the graph 409 

path is the reference haplotype with allele A. Then, in the next step that same read 410 

with the allele B will be paired to all the possible haplotypes. In this case, the only 411 

possibility is the reference haplotype with allele A and therefore that read is called as 412 

carrying the reference allele A. Thus, instead of the true state with nRef=0 and nAlt=1 413 

we end up with the opposite situation with nRef=1 and nAlt=0. The same bias would 414 

arise with a coverage of 3x, if 2 reads carry allele A and 1 read carries allele B. In that 415 

case, instead of the true state with nRef=2 and nAlt=1, which indicates a 416 

heterozygote, we end up with nRef=3 and nAlt=0, which indicates a reference 417 
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homozygote. These biased allele read counts are then stored in a gVCF, the file that 418 

includes both the variant and non-variant sites and that is used for multi-sample joint 419 

genotyping. 420 

The bias in our low-coverage data was so pervasive that it was carried over to 421 

their downstream analyses. The bias affected imputation accuracy at population level. 422 

We estimated that the individual-wise dosage correlations decreased by an average of 423 

0.10 (0.04 SD; max. 0.20) and the individual-wise percentage of correct best-guess 424 

genotypes by 7.5 absolute percentage points (3.8% SD; max. 14.7%) due to this bias 425 

(unpublished data). The imputation algorithm that we used for this test calculates 426 

genotype probabilities from the allele read counts [21], but the impact of the bias on 427 

imputation accuracy could be even greater for imputation algorithms that instead take 428 

genotype calls as an input. 429 

 430 

New pipeline 431 

We propose a new pipeline for variant discovery and genotype calling with 432 

low-coverage sequence data. The pipeline that we propose has two steps: (i) variant 433 

discovery with the default pruning setting of GATK HaplotypeCaller; and (ii) 434 

genotype calling from the aligned reads stored in the BAM files for the variants 435 

discovered. This new pipeline gave better genotype and allele concordances than 436 

using GATK HaplotypeCaller with disabled pruning. 437 

- Variant discovery with GATK HaplotypeCaller: Disabling pruning does not 438 

seem an appropriate solution for variant discovery with low-coverage sequencing 439 

because this increases the number of potential false positives (Table 2), as well as 440 

computational time. The pruning option of GATK HaplotypeCaller makes variant 441 

discovery more robust to false positives, but there is a trade-off between specificity 442 
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and sensitivity. While pruning reduces the ability to discover variants from low-443 

coverage data, this may be overcome by sequencing strategies that target haplotypes 444 

from the population instead of individuals (e.g., AlphaSeqOpt; [22,23]) in two ways: 445 

(i) sequencing at high coverage of individuals that share large amounts of haplotypes 446 

with the population ensures the discovery of many common variants [24]; and (ii) 447 

given that the realized coverage at a base position follows a Poisson distribution and, 448 

therefore, every individual has greater coverage than the average target coverage in 449 

many random positions, many variants can be discovered if a sufficiently large 450 

number of individuals are sequenced at low coverage, even if pruning is enabled. For 451 

instance, with only 26 individuals sequenced at 2x we discovered 76.3% of the 452 

variants discovered with the same individuals at 30x. The gap between variants 453 

discovered at low or high coverage would diminish with increasing sample sizes. 454 

- Genotype calling from aligned reads: GATK HaplotypeCaller with pruning 455 

induces a bias towards the reference allele when used with low-coverage data. This 456 

bias is introduced during variant discovery, but manifests itself in the genotype calls 457 

because the joint genotyping uses the allele read counts stored in gVCF files produced 458 

by the variant caller. This bias can be avoided if we call genotypes based on allele 459 

read counts extracted directly from the aligned reads in the BAM files. Tools such as 460 

pysam (https://github.com/pysam-developers/pysam) can be used for this purpose. 461 

This pipeline improves scalability. Because gVCF files are created during the 462 

variant discovery step, they contain biased allele read counts. In the new pipeline we 463 

use regular VCF files to obtain a list of variant positions discovered across the 464 

sequenced samples from which we want to extract the raw allele read counts. Using 465 

this pipeline it is very easy to add new batches of samples without having to repeat 466 
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joint genotyping, just by extracting the allele read counts for the new animals and the 467 

new variants discovered and then adding them to any pre-existing dataset. 468 

 469 

Bias	towards	the	reference	allele	due	to	alignment	

With the current pig reference genome Sscrofa11.1 the bias towards the 470 

reference allele due to alignment was very low and its impact on genotype calls was 471 

negligible. Our estimates suggest that 1.3% of reads did not align because the 472 

reference genome contained the opposite allele to the read allele and this increased the 473 

percentage of incorrect best-guess genotype calls by 0.1 absolute percentage points. 474 

The reference genome Sscrofa11.1 was largely constructed using Pacific Biosciences 475 

long reads, with a coverage of 65x. This current version of the reference genome 476 

provides much better mapping quality than the previous version Sscrofa10.2 477 

(GenBank accession: GCA_000003025.4). For example, in a 2x sample the 478 

percentage of mapped reads increased from 89% in Sscrofa10.2 to 95% in 479 

Sscrofa11.1, the percentage of properly paired reads from 77% to 86%, and the 480 

percentage of reads with high mapping quality (MAPQ≥40) from 71% to 84%. Here 481 

we only considered SNPs but we expect that the alignment bias would have greater 482 

impact when using a lower quality reference genome or in regions of high variability 483 

and structural complexity, e.g., in presence of multiple indels. The development of 484 

alternative-aware alignment algorithms or genome variation graphs [5,25] could 485 

alleviate the bias towards the reference genome due to alignment in the near future, 486 

but these methods still pose some practical limitations and their use is not generalised 487 

yet.  488 

 489 
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Index	hopping	

We estimated the level of index hopping in the 26 samples sequenced in a 490 

multiplex at 2x to be 1.5%. This was within the expectation according to Illumina 491 

guidelines (<2%; [11]). The impact of index hopping on the percentage of incorrect 492 

genotype calls depends on the conservativeness of the calls. For conservative calls the 493 

impact was negligible, but for best-guess genotypes the percentage of incorrect calls 494 

increased by 0.3 to 0.9 absolute percentage points (1.8% to 5.2% more incorrect 495 

calls). 496 

We used a novel empirical method to estimate the level of index hopping. Our 497 

method relies on sequencing the same set of samples twice, with multiplexing and 498 

without it, so that the level of index hopping in the multiplexed data can be measured 499 

against a scale of simulated index hopping levels obtained from a set of index 500 

hopping-free data. Previously, Owens et al. [8] proposed a method for testing index 501 

hopping that was based on finding heterozygotes with unbalanced read counts for the 502 

reference and alternative alleles (e.g., one allele A supported by many reads but the 503 

opposite allele B only by one), and then estimating index hopping from the 504 

expectation derived from the number of individuals in the multiplex that had many 505 

reads supporting that allele B. That method has the advantage that it uses existing data 506 

and it does not require the same samples to be sequenced twice. However, that 507 

method requires high-coverage data and does not answer how index hopping affects 508 

the genotype calls. 509 

Results in our study, together with those of other studies [8,9], reassure us that 510 

the high levels of index hopping reported by Sinha et al. [7] are unlikely to occur in 511 

most applications if good cleaning protocols are followed to remove excess free-512 
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floating indexing primers during library preparation or if unique dual indexed are used 513 

[10]. 514 

 515 

Conclusion	

Index hopping and bias towards the reference allele due to alignment have 516 

little impact on downstream genotype calls from low-coverage sequence data, but 517 

unexpected biases may arise from pipelines that use tools designed for high-coverage 518 

sequence data when used on low-coverage sequence data. The step of ‘pruning’ 519 

implemented in GATK HaplotypeCaller is an example of a desirable feature for high-520 

coverage data that introduces a systematic bias when it is applied to low-coverage 521 

data. We propose a simple new pipeline to correct this bias. We recommend that users 522 

of low-coverage sequencing be very wary of unexpected biases before using tools 523 

designed for high-coverage sequencing. 524 
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Table 1. Number of biallelic SNPs discovered in chromosome 1 at low and high 617 

coverage and overlap with the marker array. 618 

 Low coverage High coverage 
Number of variants 1,333,943 1,693,308 
Overlap with high-coverage data 96.9% - 
Overlap with low-coverage data - 76.3% 
Overlap with the marker arraya 88.9% 95.7% 
a Relative to the 5779 of variants present in the marker array that segregated in the 26 619 
individuals tested. 620 
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Table 2. Number of biallelic SNPs discovered in chromosome 1 at low coverage with 621 

different GATK HaplotypeCaller pruning options along with percentage not validated 622 

at high coverage and genotype and allele concordances with the marker array. 623 

 minPruning=2 
(default) 

minPruning=1 

Number of variants 1,333,943 1,877,644 
Not validated at high coverage 3.1% 24.1% 
Best-guess genotype concordance 62.1% 76.5% 
Allele concordance 77.6% 87.5% 
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Table 3. Concordance between best-guess genotype calls from sequence data and marker array genotypes with the allele read counts obtained 624 

with the default settings of GATK HaplotypeCaller. Concordance is shown by coverage at variant position. 625 

   Genotype 
concordance 

(%) 

Allele 
concordance 

(%) 

Concordance by genotype (%) 
   True=0  True=1  True=2 
  na 0|0 1|0 2|0  0|1 1|1 2|1  0|2 1|2 2|2 
Low coverage               
 1x 27,185 42.2 61.0 99.97 - 0.03  95.14 - 4.86  81.96 - 18.04 
 2x 33,638 57.2 76.0 99.94 0.00 0.06  72.87 3.51 23.62  20.07 0.25 79.68 
 3x 24,789 70.3 84.5 99.91 0.08 0.01  56.37 31.87 11.76  6.23 1.45 92.32 
 4x 14,015 79.7 89.6 99.85 0.13 0.02  43.11 51.44 5.46  2.14 1.69 96.16 
 5x 6,502 85.6 92.7 99.93 0.04 0.04  32.65 64.75 2.59  0.90 1.96 97.14 
 6-10x 3,705 90.5 95.2 99.83 0.12 0.06  22.47 74.68 2.85  0.61 1.07 98.32 
 Overall 109,834 62.1 77.6 99.92 0.04 0.03  66.41 21.50 12.09  29.84 0.71 69.45 
High coverage 131,806 99.7 99.9 99.80 0.19 0.01  0.21 99.72 0.07  0.17 0.16 99.68 
a Number of genotypes called across 26 individuals at 5,136 and 5,531 SNPs for low- and high-coverage data, respectively. 626 
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Table 4. Concordance between best-guess genotype calls from sequence data and marker array genotypes with the allele read counts obtained 627 

from the aligned reads in the BAM files. Concordance is shown by coverage at variant position. 628 

   Genotype 
concordance 

(%) 

Allele 
concordance 

(%) 

Concordance by genotype (%) 
   True=0  True=1  True=2 
  na 0|0 1|0 2|0  0|1 1|1 2|1  0|2 1|2 2|2 
Low coverage               
 1x 28,300 62.1 80.8 99.34 - 0.66  51.46 - 48.54  0.96 - 99.04 
 2x 32,699 79.5 89.7 98.42 1.53 0.05  26.41 48.15 25.44  0.21 1.70 98.09 
 3x 25,993 88.3 94.1 98.25 1.72 0.03  14.01 71.98 14.01  0.12 2.36 97.52 
 4x 16,346 92.5 96.3 97.91 2.09 0.00  8.36 83.84 7.80  0.00 2.77 97.23 
 5x 8,878 94.9 97.5 97.28 2.72 0.00  4.83 91.15 4.02  0.16 2.81 97.03 
 6-10x 6,444 95.0 97.5 97.43 2.50 0.07  5.01 91.09 3.90  0.00 2.75 97.25 
 Overall 118,660 81.1 90.5 98.39 1.43 0.18  24.43 52.30 23.27  0.33 1.71 97.96 
High coverage 131,782 99.8 99.9 99.80 0.19 0.01  0.12 99.81 0.07  0.10 0.17 99.73 
a Number of genotypes called for 5,531 SNPs across 26 individuals both for low- and high-coverage data. 629 
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Table 5. Concordance between genotype calls with different levels of conservativeness from low- and high-coverage sequence data with the 630 

allele read counts obtained from the aligned reads in the BAM files. Concordance is shown by coverage at variant position. 631 

   Genotype 
concordance 

(%) 

Allele 
concordance 

(%) 

Concordance by genotype (%) 
   True=0  True=1  True=2 
  na 0|0b 1|0 2|0  0|1 1|1 2|1  0|2 1|2 2|2 
Best-guess               
 1x 30,875 62.6 81.1 99.45 - 0.55  51.35 - 48.65  0.70 - 99.30 
 2x 35,688 79.9 90.0 98.60 1.40 0.00  26.20 48.26 25.54  0.04 1.61 98.35 
 3x 28,357 88.6 94.3 98.36 1.64 0.00  13.80 72.20 14.00  0.00 2.22 97.78 
 4x 17,849 92.7 96.4 98.05 1.95 0.00  8.22 84.01 7.77  0.00 2.63 97.37 
 5x 9,619 95.3 97.6 97.40 2.60 0.00  4.55 91.52 3.93  0.00 2.49 97.51 
 6-10x 7,047 95.2 97.6 97.73 2.27 0.00  4.96 91.05 4.00  0.00 2.68 97.32 
 Overall 129,435 81.4 90.7 98.53 1.34 0.13  24.27 52.40 23.33  0.18 1.61 98.21 
Probability ≥ 0.90               
 1x 0 - - - - -  - - -  - - - 
 2-3xb 14,572 95.5 97.7 - 100.00 -  - 100.00 -  - 100.00 - 
 4x 14,359 92.7 96.3 99.97 0.03 0.00  16.24 68.39 15.37  0.00 0.05 99.95 
 5x 8,315 96.3 98.2 99.92 0.08 0.00  6.76 87.41 5.83  0.00 0.10 99.90 
 6-10x 6,397 98.1 99.0 99.83 0.17 0.00  3.08 94.65 2.27  0.00 0.29 99.71 
 Overall 43,643 95.1 97.5 97.18 2.82 0.00  3.52 93.26 3.21  0.00 3.65 96.35 
Probability ≥ 0.98               
 1-3x 0 - - - - -  - - -  - - - 
 4-5xb 4,366 99.8 99.9 - 100.00 -  - 100.00 -  - 100.00 - 
 6-10x 6,313 98.1 99.1 99.83 0.17 0.00  3.15 94.58 2.26  0.00 0.29 99.71 
 Overall 10,679 98.8 99.4 99.65 0.35 0.00  1.00 98.28 0.72  0.00 0.57 99.43 
a Number of genotypes called for 5,531 SNPs across 26 individuals.  632 
b Heterozygotes are easier to call than homozygotes. At these coverages there is not enough certainty to call the homozygotes. Note, however, 633 
that the actual counts for (1|0) and (1|2) are very low compared to (1|1): 19-fold and 569-fold lower for genotypes called with a probability 634 
greater than 0.90 and 0.98, respectively. 635 
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Table 6. Average allele read counts depending on which allele is in the reference 636 

genome. 637 

    True genotype 
Allelea Reference 

genome 
Allele in reference 
genomea 

Overall 0 1 2 

Reference Original Reference 1.483 2.470 1.237 0.017 
 Tailored Alternative 1.463 2.440 1.219 0.016 
  Difference not aligned 1.3% 1.2% 1.5% 9.8% 
Alternative Original Reference 0.980 0.014 1.217 2.407 
 Tailored Alternative 0.993 0.016 1.234 2.438 
  Difference not aligned 1.3% 9.8% 1.3% 1.3% 

a Alleles are defined as reference or alternative referring to the original pig reference 638 
genome Sscrofa11.1 (GenBank assembly accession: GCA_000003025.6). 639 
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Table 7. Impact of bias towards reference allele due to alignment on concordance between low- and high-coverage sequence data by alignment 640 

with the original reference genome (REF), the tailored reference genome (ALT), or a combination of both (CIS and TRANS). 641 

   Genotype 
concordance 

(%) 

Allele 
concordance 

(%) 

Concordance by genotype (%) 
   True=0  True=1  True=2 
  na 0|0 1|0 2|0  0|1 1|1 2|1  0|2 1|2 2|2 
Best-guess               
 REF 129,435 81.4 90.7 98.53 1.34 0.13  24.27 52.40 23.33  0.18 1.61 98.21 
 ALT 129,327 81.4 90.7 98.36 1.49 0.14  23.66 52.42 23.92  0.17 1.47 98.36 
 CIS 129,610 81.5 90.7 98.37 1.49 0.14  23.82 52.73 23.45  0.17 1.62 98.21 
 TRANS 129,148 81.3 90.6 98.52 1.34 0.13  24.11 52.10 23.79  0.18 1.46 98.36 
Probability ≥ 
0.90 

              

 REF 43,643 95.1 97.5 97.18 2.82 0.00  3.52 93.26 3.21  0.00 3.65 96.35 
 ALT 43,489 95.0 97.5 96.75 3.25 0.00  3.35 93.30 3.36  0.00 3.22 96.78 
 CIS 43,970 95.0 97.5 96.88 3.12 0.00  3.44 93.30 3.26  0.00 3.52 96.48 
 TRANS 43,145 95.1 97.6 97.10 2.90 0.00  3.42 93.28 3.30  0.00 3.32 96.68 
Probability ≥ 
0.98 

              

 REF 10,679 98.8 99.4 99.65 0.35 0.00  1.00 98.28 0.72  0.00 0.57 99.43 
 ALT 10,638 98.8 99.4 99.64 0.36 0.00  0.92 98.26 0.81  0.00 0.41 99.59 
 CIS 10,858 98.8 99.4 99.65 0.35 0.00  0.98 98.23 0.78  0.00 0.55 99.45 
 TRANS 10,463 98.8 99.4 99.64 0.36 0.00  0.94 98.31 0.75  0.00 0.43 99.57 
a Number of genotypes called for 5,531 SNPs across 26 individuals. Read counts for low-coverage data can be recalled at all variant positions 642 
discovered with high-coverage data. 643 
 644 
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Table 8. Estimates of index hopping incidence through concordance between low- and high-coverage sequence data in the real and simulated 645 

datasets, expressed as percentages or their isometric log-ratios. 646 

  Concordance by genotype (%)  Isometric log-ratios 
  True=0  True=1  True=2  3 partsa  2 partsb 
  0|0 1|0 2|0  0|1 1|1 2|1  0|2 1|2 2|2  0|0 vs. 

1|0, 2|0 
1|1 vs. 
0|1, 2|1 

2|2 vs. 
0|2, 1|2 

 0|0 vs. 
1|0 

2|2 vs. 
1|2 

Observed 98.45 1.42 0.13  24.15 52.62 23.23  0.18 1.71 98.10  4.44 0.65 4.22  3.00 2.86 
Simulated                   
 0% 99.62 0.35 0.03  23.57 52.98 23.45  0.04 0.47 99.48  5.61 0.66 5.35  4.00 3.78 
 0.1% 99.53 0.44 0.03  23.59 53.52 22.89  0.08 0.52 99.40  5.47 0.68 5.06  3.83 3.72 
 0.5% 99.28 0.66 0.06  23.91 53.22 22.87  0.10 0.92 98.98  5.07 0.67 4.72  3.55 3.31 
 1% 98.99 0.90 0.10  23.70 53.23 23.07  0.14 1.33 98.53  4.72 0.67 4.43  3.32 3.04 
 2% 98.20 1.64 0.16  23.73 52.90 23.37  0.23 2.16 97.62  4.29 0.66 4.04  2.89 2.70 
 5% 96.34 3.29 0.37  23.56 53.37 23.07  0.59 4.75 94.66  3.65 0.68 3.29  2.39 2.12 
Regression                   
 R2 0.999 0.998 0.999  0.014 0.044 0.014  0.989 1.000 0.999  0.993 0.213 0.981  0.995 0.989 
 Estimate 1.74 1.77 1.47  - - -  1.28 1.45 1.43  1.58 - 1.48  1.67 1.46 
a The 3-part isometric log-ratios take the form !

! ln
(!|!)
!|! · !|!  647 

b The 2-part isometric log-ratios take the form !! ln
(!|!)
!|!  648 

 649 
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Table 9. Impact of index hopping level on concordance between low- and high-coverage sequence. 650 

  Genotype 
concordance 

(%) 

Allele 
concordance 

(%) 

Concordance by genotype (%) 
  True=0  True=1  True=2 
  0|0 1|0 2|0  0|1 1|1 2|1  0|2 1|2 2|2 
Best-guess              
 0% 82.2 91.1 99.63 0.34 0.03  23.65 52.82 23.53  0.04 0.47 99.49 
 0.1% 82.4 91.2 99.55 0.41 0.03  23.67 53.36 22.97  0.08 0.49 99.43 
 0.5% 82.2 91.1 99.30 0.64 0.06  23.97 53.08 22.96  0.10 0.89 99.01 
 1% 81.9 90.9 99.03 0.87 0.10  23.77 53.09 23.14  0.14 1.28 98.58 
 2% 81.3 90.6 98.25 1.59 0.16  23.79 52.78 23.43  0.23 2.07 97.70 
 5% 80.1 89.9 96.45 3.17 0.37  23.63 53.23 23.14  0.59 4.58 94.82 
Probability ≥ 0.90              
 0% 96.9 98.5 99.20 0.80 0.00  2.46 94.98 2.55  0.00 1.16 98.84 
 0.1% 96.7 98.3 99.01 0.99 0.00  2.59 94.70 2.71  0.00 1.26 98.74 
 0.5% 96.4 98.2 98.39 1.61 0.00  2.59 94.75 2.66  0.00 1.98 98.02 
 1% 96.2 98.1 97.87 2.13 0.00  2.68 94.99 2.33  0.00 2.98 97.02 
 2% 95.4 97.7 96.36 3.64 0.00  2.59 94.85 2.56  0.00 4.92 95.08 
 5% 93.2 96.6 92.53 7.47 0.00  2.65 94.78 2.57  0.00 10.55 89.45 
Probability ≥ 0.98              
 0% 99.4 99.7 100.00 0.00 0.00  0.53 99.03 0.44  0.00 0.00 100.00 
 0.1% 99.3 99.6 100.00 0.00 0.00  0.63 98.85 0.53  0.00 0.00 100.00 
 0.5% 99.4 99.7 99.95 0.05 0.00  0.37 99.09 0.54  0.00 0.09 99.91 
 1% 99.2 99.6 99.82 0.18 0.00  0.51 98.97 0.52  0.00 0.46 99.54 
 2% 99.1 99.5 99.47 0.53 0.00  0.52 98.89 0.59  0.00 0.75 99.25 
 5% 98.6 99.3 98.42 1.58 0.00  0.59 98.94 0.47  0.00 2.83 97.17 
 651 
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