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Abstract 

The whole exome sequencing (WES) is a time-consuming technology in the identification of clinical 

variants and it demands the accurate variant caller tools. The currently available tools compromise 

accuracy in predicting the specific types of variants. Thus, it is important to find out the possible 

combination of best aligner-variant caller tools for detecting SNVs and InDels separately. Moreover, 

many important aspects of InDel detection are not overlooked while comparing the performance of 

tools. One such aspect is the detection of InDels with respect to base pair length. To assess the 

performance of variant (especially InDels) caller in combination with different aligners, 20 automated 

pipelines were developed and evaluated using gold reference variant dataset (NA12878) from Genome 

in a Bottle (GiaB) consortium of human whole exome sequencing. Additionally, the simulated exome 

data from two human reference genome sequences (GRCh37 and GRCh38) were used to compare the 

performance of the pipelines. By analyzing various performance metrices, we observed that BWA and 

Novoalign aligners performed better with DeepVariant and SAMtools callers for detecting SNVs, and 

with DeepVariant and GATK for Indels. Altogether, DeepVariant with BWA and Novoalign 

performed best. Further, we showed that merging the top performing pipelines improved the accurate 

variant call set. Collectively, this study would help the investigators to effectively improve the 

sensitivity and accuracy in detecting specific variants. 

 

Keywords: Whole exome sequencing; Simulated exome data; Variant calling pipelines; SNVs and 

InDels Base pair length. 
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Introduction 

In the field of human genetics, Whole genome sequencing (WGS) explores clinical utility that provides 

the collection of individual’s genetic variation and etiology of the disease. Yet, the recent focus is on 

Whole exome sequencing (WES), which is being standard approach and is economic [1]. Though it 

covers only exonic regions (<2% of the whole genome), it produces the large quantity of data (raw 

reads) that requires a significant amount of bioinformatic analysis to produce biologically meaningful 

information [2]. In addition, the output must be accurate (detecting definite variants) and consistent in 

the identification of variants that account for the impact on phenotype. 

 

The first obstacle to the accuracy in variant detection is the technical error by exome capturing kits 

while capturing the regions of our interest. It increases the possibility of missing some significant 

variants [3]. Secondly, the detection of variants through in silico methods play a vital role. Though 

plenty of tools are available [4-5], each performs best with the data obtained from particular 

sequencing platform. To mention, SAMtools is best for Ion Proton data [6] and GATK is for Illumina 

data [7]. As the different tools may produce a different list of variants for the same input, the efficiency 

of the variant callers is still not clear [8, 9]. Currently, no single tool is superior in detecting all the 

definite variants. However, on the other hand, applying multiple tools can result in higher misleading 

output [10]. It has also been reported that read aligners influence the accuracy of variant detection 

[9,11]. Thus, it is important to evaluate the optimal combination of aligners with the variant callers that 

may produce accurate variant calls including single nucleotide variants (SNVs) and small insertion and 

deletion (InDels).   

 

Several benchmarking studies have been performed to evaluate the variant calling pipelines, which 

employs different aligners and variant callers. Notably, Liu et al. studied the performance of the 

pipelines with fixed aligner and different variant callers using single-sample and multi-sample variant-

calling strategies. The study showed that GATK is found be a powerful variant calling method and 

SAMtools showed high true positive SNVs on simulated whole genome sequencing data [12]. In 

another study, the performance was analyzed based on read depth, allele balance and mapping quality 

using different variant callers, wherein GATK outperformed with low coverage data and yielded more 

accurate data for multiple-sample calling [13]. An in-depth comparison has been conducted only for 
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SNV detection, specifically on somatic variation in cancer cells by Roberts et al. They have reported 

that the candidate SNV sets by different algorithms differ by number, the character of sites, sources of 

noise and sensitivity to low allelic fraction candidates [14]. 

 

Identification of InDels is more challenging because of the limitation of guidelines to detect them from 

sequencing data, compared to SNVs [15-16]. The most common InDel issues include low concordance 

rate among different sequencing platforms, realignment error, error near perfect repeat regions and 

incomplete reference genome in some cases [17]. Narzisi et al. suggested that the use of micro-

assembly to reduce such errors [18]. Yet, the detection of large (basepair length) InDels are much 

difficult than small InDels [17,19]. Thus, it is essential to consider basepair length of InDels as an 

important parameter in variant detection. 

 

In this study, we attempt to assess the best combination of alignment tool with variant callers for SNVs 

and InDels separately. To perform this, whole human exome sequencing dataset NA12878 from the 

public repository and the simulated data were taken as input. Five different aligners and 4 different 

variant callers were executed in all pairwise combinations (20 pipelines). Then we examined the 

variant calling capabilities of the pipelines by comparing their output with reported variants present in 

NA12878 exome. Majorly, this work aimed to build an extensive benchmark for studying the 

performance of pipelines in detecting SNVs and InDels. 

 

Results 

In order to assess the performance of aligners and variant callers for detecting accurate SNVs and 

InDels from WES data, 20 pipelines were developed and the results were compared with gold standard 

variants dataset NA12878 provided by GiaB. 

 

Performance of variant callers 

Initially, reads of human exome dataset NA12878 were checked for quality and adapter sequence was 

trimmed. Then, reads were aligned with the reference genomes GRCh37 and GRCh38 by different 

tools as given in Figure 1 (Details given in Table S1). After the post-alignment process, 4 different 

variant calling tools viz. GATK, SAMtools, FreeBayes and DeepVariant were used. Altogether using 

20 different pipelines, SNVs were detected in 4 exome datasets (i) NA12878 aligned with GRCh38 
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genome (exome-1), (ii) simulated exome using GRCh38 genome (exome-2), (iii) NA12878 aligned 

with GRCh37 genome (exome-3), and (iv) simulated exome using GRCh37 genome (exome-4). The 

pipelines were run on our server (340GB RAM with 40 core for exome-1and -2; 320GB RAM with 32 

core for exome-3 and -4) and the run time of each pipelines is displayed in Supplementary table S2 for 

all 4 exomes.  To access the performance of pipelines, we calculated true positive (TP), false positive 

(FP) and false negative (FN) variants using GiaB variant call set as standards. It contains 23,686 SNVs 

and 1,258 InDels for NA12878 exome. F-score was used as the function of performance.  

 

Figure 1. Schematic of the NGS data analysis pipeline 

 

In all the exome datasets, BWA_DeepVariant, Novoalign_DeepVariant, BWA_SAMTools,  

Novoalign_SAMTools were the top performing pipelines for the SNVs (Supplementary table S3). The 

F-score of the top 4 pipelines were 0.97 on exome-1, 0.99 (except BWA_SAMTools) on exome-2, 0.98 

(except BWA_SAMTools) on exome-3, 0.98 on exome-4. Next to these 4 pipelines, better results were 

obtained from Bowtie_DeepVariant, Bowtie_SAMTools and Mosaik_DeepVariant. In case of InDels, 

BWA_DeepVariant, Novoalign_DeepVariant scored best followed by BWA_GATK and 

Novoalign_GATK. Of these, DeepVariant based pipelines performed better than GATK based, showed 

the highest F-score of 0.99 on all exomes (Supplementary table S3). Further, to explore how the 
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sequencing depth affects the performance, the receiver operating characteristic (ROC) curves were 

plotted with the top 6 performing pipelines on all exomes. All the 6 pipelines performed roughly at the 

same level for SNVs, while subtle difference in their performance for InDels. Most of the SNVs and 

InDels were detected at about 150x, which indicated that this depth is a sufficient parameter for the 

variant detection analysis. However, Novoalign_SAMTools and BWA_SAMTools was less compared 

to others for InDels as expected (Figures 2 & S1).  

 

 

Figure 2. F-score as a function of depth for top 6 pipelines. ROC curves were plotted using the depth of 

SNVs (a, c) and InDels (b, d) against F-score using exome-1 (a, b) and exome-2 (c, d).  

 

Next, we examined the F-score of each pipeline with respect to genotype quality (GQ) as a scale of 

variant detection performance. At GQ>60, the pipelines showed good performance for both SNVs and 

InDels on all 4 exomes (Supplementary Table S4). Of the top six pipelines mentioned earlier, 

BWA_DeepVariant and Novoalign_DeepVariant remains on top for both SNVs and InDels on all 

exomes (Figures 3 and S2). BWA_SAMTools and Novoalign_SAMTools followed next for SNVs and 

Novoalign_GATK and BWA_GATK for InDels. These pipelines increase their performance as GQ 

increases, suggesting that higher GQ increases the rate of performance with respect to F-score. 

Surprisingly, in InDels detection BWA_DeepVariant and Novoalign_DeepVariant showed increased 

performance even at GQ>60 on simulated exome data (Figures 3d and S2). 
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Figure 3. F-score as a function of genotype quality for top 6 pipelines. ROC curves were plotted using 

the GQ of SNVs (a, c) and Indels (b, d) against F-score using exome-1 (a, b) and exome-2 (c, d).  

 

Further, we evaluated the accuracy of the SNVs and InDels with respect to genotype concordance. As 

expected, there was no change on top performing pipelines by comparing F-score as a function of 

genotype concordance on all exomes (Supplementary Table S5). We also investigated the ratio of 

heterozygous to homozygous (het/hom) and found the ratio was higher in SNVs detection than InDels. 

The ratio was ~1.6 for exome-1 and -2, and ~1.5 for exome-3 and -4 for SNVs. While ~1.2 for exome-

1 and -2, and ~1.2 and ~1.3 for exome-3 and exome-4 respectively. Difference in the performance was 

observed when we compared the heterozygous and homozygous detection with respect to F-score 

(Supplementary Table S6).  BWA_DeepVariant, Novoalign_DeepVariant, BWA_SAMTools and 

Novoalign_SAMTools showed high F-score, >0.96, for SNVs on all exomes. While 

BWA_DeepVariant, Novoalign_DeepVariant, BWA_GATK and Novoalign_GATK score high, >0.9, 

for InDels, and rest of them were failed to follow including BWA_SAMTools and 

Novoalign_SAMTools. 

 

Performance in SNV calling using Ti/Tv ratio 

One of the key quality metrics of SNV call set is the ratio of transition (Ti) to transversion (Tv). The 

Ti/Tv ratio was ~3.4 for exome-1 and -2, while ~3.2 for exome-3 and -4. We also investigated F-score 

with respect to transition (Ti) and transversion (Tv) compared to gold standards. The pipelines 

Novoalign_DeepVariant and BWA_DeepVariant scored high for Ti and Tv on all exomes followed by 
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Novoalign_SAMTools and BWA_SAMTools (Supplementary Table S7).  

Performance in InDel calling at different base pair (bp) length 

We analyzed the InDel detection performance of the pipelines with respect to F-score as a function of 

insertion and deletion base pair length. DeepVariant and GATK pipelines, particularly along with the 

aligners BWA and Novoalign, showed increased InDel detection rate at higher base pair length on all 

exomes. However, the performance of pipelines were differed at particular bp length of InDels. In all 

the 4 exomes, majority of the tools found deletions at 17, 23, 25 and 26 bp and insertions at 22 and 35 

bp length with F-score almost one (Figures 4, 5 and Supplementary Figures S3 & S4). 

BWA_DeepVariant and Novoalign_DeepVariant detected more number of insertions on exome-2 and -

4. The deletions of 24 and 27 bp length were not detected by any of the pipelines on exomes-1, -3 and -

4. While, insertions of 13, 23, 24, 27 and 59 bp length were detected by none on exomes-1 and -3. Also, 

the large 59 bp insertion was not detected on exome-2 (Supplementary Table S8). We pointed out the 

possible reasons for the InDels that is being not detected by the pipelines in the discussion section.  

 

Figure 4. InDels detection performance in exome-1. F-score of InDels were plotted against the base 

pair length of the InDels. Negative value of x-axis indicates the deletion and positive value for insertion. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359109doi: bioRxiv preprint 

https://doi.org/10.1101/359109


 

Figure 5. InDels detection performance in exome-2. F-score of InDels were plotted against the base 

pair length of the InDels. Negative value of x-axis indicates the deletion and positive value for insertion. 

 

Comparison of best performing pipelines 

In order to improve the accuracy in variant detection, we compared the GiaB true call set against the 

variants detected by the top 4 pipelines (mentioned earlier) BWA_DeepVariant, 

Novoalign_DeepVariant, BWA_SAMtools, and Novoalign_SAMtools, for SNVs (Figure 6a, 6c) and 

BWA_GATK, Novoalign_GATK, BWA_DeepVariant, and Novoalign_DeepVariant for InDels 

(Figure 6b, 6d). The similar were analyzed on exome-3&-4 and illustrated in Supplementary Figure S5.  
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Figure 6. Venn diagram depicting the comparison of GiaB variants (A) against the top performing 

pipelines B. BWA_SAMtools, C. BWA_DeepVariant, D. Novoalign_DeepVariant, E. 

Novoalign_SAMtools, F. BWA_GATK and G. Novoalign_GATK for SNVs (a, c) and InDels (b, d) on 

exome-1 (top row) and exome-2 (bottom row). 

The concordance of variants with GiaB call set was improved for all 4 merged pipelines on all exome 

(Figures 6 and S5).  The accuracy in calling true positive SNVs were improved to ~99 % on exome-1 

and -2, and ~98 % on exome-3 and -4. In case of InDels, ~96 % was observed on exome-1 and -3; 

however, ~98 % was observed on simulated exomes (exome-2 and -4).  Further, we evaluated best 

performing caller DeepVariant by merging its call set from BWA and Novoalign alignments. This 

showed ~98% and ~96% TP for SNVs and InDels on all exomes respectively. Altogether, merged 

pipelines showed increased performance by improving the accurate variant call set, despite of the 

increased the FDR.   

 

Although each caller uses different algorithms (strategy to identify the variants as given in 

Supplementary table S1), ~0.5-1.5% and ~ 0.5-4% false negative (FNs) SNVs and InDels were 

observed in all the exome dataset respectively. To investigate further, the genotype quality (GQ) and 

depth of the FN variants not detected by the top pipelines were analyzed. The depth of the FNs 

obtained by BWA and Novoalign alignments were plotted (Figure 7a-h) and the graphs showed they 

fell under the upper limit of 30X on all exomes. However, there are outlier suggesting that the depth 

might not be the only reason that affect the performance of variant detection. By comparing the GQ 

(Figure 7i-p), which showed <10 for all FNs on all exomes, the variant callers possibly missed the true 

variants due to the low GQ.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359109doi: bioRxiv preprint 

https://doi.org/10.1101/359109


Figure 7. Analysis of depth and genotype quality of true SNVs missed (false negatives) by BWA and 

Novoalign alignments. Depth of the false negative SNVs on exome-1(a), -2 (b), -3(c) and -4 (d) and 

InDels on exome-1(e), -2(f), -3(g) and -4(h). Genotype quality of false negative SNVs on exome-1 to -

2 (i, j, k and l) and InDels on exome-1 to -4 (m, n, o and p) respectively.   

 

 Discussion 

A major challenge in whole exome sequencing is how to process the data to yield high quality disease 

variants for downstream analysis. Currently, a variety of tools are available and we have automated 

these tools (differs in aligner and variant caller) to identify the best pipeline in variant detection. The 

human exome NA12878 was used for assessing the performance of the pipelines. Simulated data were 

also used, which is most popular for assessing and validating biological models and for understanding 

of specific data sets [20]. Even though there are differences among the results of these datasets, all the 

experiments are important as they give a different perspective when comparing the pipelines. 

 

The overall performance ranking of the pipelines is similar in real and simulated data; however, the 
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false discovery rate seems much lesser in simulated data, this might be due to the underlying error 

model of experimental exome data. The pipelines with BWA and Novoalign (non-commercial version) 

aligner members were attributed much in variant detection. The algorithm of BWA balances between 

running time, memory usage and accuracy. Whereas Novoalign is slow and high memory usage that 

contribute to better mapping. But results still varied greatly depending on the variant caller with respect 

to the specific variant which was called by the user. 

 

In SNVs detection, Ti/Tv ratio was one of the metrics for performance comparison. The ratio was 

transiently in accordance to the reported ratio range of 2.6-3.3 [21], on exome-1&-2 and transiently 

accordance on exome-3&-4 except in SOAP_GATK on exome-3 (3.55) and in Mosaik_GATK on 

exome-4 (3.94). But the ratio may not always necessarily mean more accurate since low-frequency 

variants sometimes have higher Ti/Tv ratio than moderate frequency SNVs [7]. Also, as per principle 

proposed by McKenna et al. [22], in this study the more likely true variant set had the highest Ti/Tv 

value Thus, Ti/Tv ratio was taken for the accuracy of the true positive variant detection, and the overall 

performance was evaluated by F-score. It should be emphasized that in SNVs detection, the better 

performance was observed in GATK compared with SAMtools which was reported as the best 

performer earlier [12-13], but the present study reports SAMtools performs better than GATK for 

SNVs. However, the recently developed variant caller DeepVariant performs well compared to all 

other tools.   

 

The overall performance of all the pipelines in InDel detection is comparatively lower than SNVs 

detection. This might be the result of using WES data as they miss many large InDels, and the accuracy 

of InDels detection with WES data is much lesser than that of WGS [17]. In the present work, in InDels 

detection DeepVariant member pipelines performed well compared to others both in accuracy as well 

as in higher coverage of base pair length. In respect to the aligner, BWA and Novoalign performed well 

in combination with DeepVariant. The investigation about missing variants reveals that genotype 

quality and depth may the reason for it, and the quality control process did not affect the detection of 

variants (Figure 7). In addition to it, in case of simulated exomes the error quality rate was set to 0.01% 

during simulation. 

Taken together, DeepVariant can be used with BWA and Novoalign to achieve the more accurate call 
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set. However, our recommendation is the use BWA and Novoalign aligners with DeepVariant and 

SAMtools callers for detecting SNVs, and with DeepVariant and GATK for Indels. However, the users 

may need to be aware that ~1% and ~2% of variants might not be detected of these pipelines. We 

conclude that our study will help to achieve more accurate variant calls, ultimately leading to the 

identification of disease causing variant for clinical genomics.  

Materials and methods 

Datasets 

FASTQ files of human exome HapMap/1000 CEU female NA12878 (accession No.: SRR098401) was 

downloaded from NCBI-Sequence Read Archive (SRA- http://www.ncbi.nlm.nih.gov/sra). This was 

sequenced using HiSeq Illumina 2000 platform and SureSelect human all exon v2 target capture kit 

[23]. The target region BED file was downloaded from Agilent SureDesgin 

(http://earray.chem/agilent.com/suredesign, ELID: S0293689). The human reference genomes GRCh37 

and GRCh38 were downloaded from the Ensembl [24]. GiaB high confidence callset version 2.19 

along with a BED file was downloaded from NCBI, which was further filtered to highly accurate call 

set using the BED file. The list of variants provided in GiaB was created by integrating 14 different 

datasets from five different sequencers, and was used as ‘gold standard’ to validate the variants 

detected by pipelines.  

 

Further to test the certainty of the performance of the pipelines, we have also used simulated human 

whole exome data generated by ART toolkit [25]. ART takes a reference genome in FASTA format 

and generates ‘synthetic’ sequencing reads. This mimics the technology-specific sequencing process 

with customized read length and error characteristics. The reference genomes GRCh37, GRCh38 and 

sequencing target BED (SureSelect human all exon v2 target capture region) file were inputs of the 

simulator. We have generated simulated short paired-end reads of 150 bp length with the depth of 

150X covering sequencing targets for Illumina HiSeq 2000 sequencing technology with 0.01 % error 

model. 

 

Pipeline development 

The modular pipeline (Figure 1) was developed to process both the original NA12878 data which were 

aligned with the genomes GRCh37, GRCh38 and their corresponding simulated exomes. The pipeline 
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involves several steps to produce high-quality alignment files, and to predict definite variants. Initially, 

the quality of the raw reads obtained from SRA was checked by FastQC [26] and the low-quality reads, 

adapter contaminates were trimmed by Cutadapt [27]. After aligning the reads with the reference 

genome, PCR duplicates were removed using PiCard Tools [28]. To avoid pseudo SNVs and InDels, 

local realignment was done by GATK. This was followed by read recalibration, based on target capture 

region provided by Agilent Sure Design, for error detection towards obtaining the base quality. Finally, 

SNVs and InDels were identified by different variant calling tools. For alignment (read mapping) and 

variant calling, respectively 5 and 4 different tools (Supplementary Table S1) were used based on 

prevalence and popularity. All the steps were integrated using shell scripts (available from 

https://github.com/bharani-lab/WES-pipelines.git) and all the possible 20 pipelines were developed 

with default parameters.  

 

Performance evaluation of variant callers 

The variants determined by pipelines were compared with standard variants provided by GiaB using 

VCFTools [29]. The performance of variant detection by different pipelines was measured statistically 

as, Sensitivity = TP / (TP+FN), Precision = TP / (TP+FP), False discovery rate (FDR) = FP / (TP+FP) 

and F-Score = 2TP / (2TP+FP+FN) where, TP is true positive variant found in both GiaB validated 

dataset and data determined by pipeline; FP is false positive variant determined by pipeline but not 

validated by GiaB; FN is false negative variant, known as missing variant which is validated by GiaB 

but not determined by pipelines. To analyze the performance, we used different metrics including read 

depth, genotype quality, genotype concordance and Het/Hom ratio. Furthermore, Ti/Tv ratio was used 

for SNVs and F-score as a function of base pair length for InDels. Venn diagram was plotted to 

compare the performance of top performing pipelines. 
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