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Abstract13

Complexity of life forms on Earth has increased tremendously, primarily driven by sub-14

sequent evolutionary transitions in individuality, a mechanism in which units formerly15

being capable of independent replication combine to form higher-level evolutionary units.16

Although this process has been likened to the recursive combination of pre-adapted sub-17

solutions in the framework of learning theory, no general mathematical formalization of18

this analogy has been provided yet. Here we show, building on former results connecting19

replicator dynamics and Bayesian update, that (i) evolution of a hierarchical population20

under multilevel selection is equivalent to Bayesian inference in hierarchical Bayesian21

models, and (ii) evolutionary transitions in individuality, driven by synergistic fitness22

interactions, is equivalent to learning the structure of hierarchical models via Bayesian23

model comparison. These correspondences support a learning theory oriented narrative24

of evolutionary complexification: the complexity and depth of the hierarchical structure25

of individuality mirrors the amount and complexity of data that has been integrated26

about the environment through the course of evolutionary history.27
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1 Introduction30

On Earth, life has undergone immense complexification [1, 2]. The evolutionary path31

from the first self-replicating molecules to structured societies of multicellular organisms32

has been paved with exceptional milestones: units that were capable of independent33

replication have combined to form a higher-level unit of replication [3, 4, 5]. Such evo-34

lutionary transitions in individuality opened the door to the vast increase of complexity35

via hierarchical aggregation of pre-adapted subunits. Paradigmatic examples include the36

transition of replicating molecules to protocells, the endosymbiosis of mitochondria and37

plastids by eucaryotic cells and the appearance of multicellular organisms and eusociality.38

Interestingly, it is possible to identify common evolutionary mechanisms that possibly led39

to these unique but analogous events [6, 7, 8, 9]. A crucial preliminary condition is the40

alignment of interests : in order to undergo an evolutionary transition in individuality,41

organisms must exhibit extreme form of cooperation, originating from genetic relatedness42

and/or synergistic fitness interactions [4]. However, the story does not end here: some-43

thing must maintain the alignment of interests subsequent to the transition, too. At that44

point, the fate of the organism depends on selective forces at multiple levels that might be45

in conflict with each other. Incorporating the effects of multilevel selection is, therefore,46

a crucial element of understanding evolutionary transitions in individuality [10].47

These theoretical considerations above delineate conditions under which a transition48

might occur and a possibly different set of conditions which help to maintain the integrity49

of units that have already undergone transition. However, these considerations alone can-50

not offer a predictive theory of complexification as they do not address the question of how51

necessary these environmental and ecological conditions are. An alternative, supplemen-52

tary approach that circumvents these difficulties is to investigate whether mathematical53

theories of adaptation and learning can provide further insights about the general scheme54

of evolutionary transitions in individuality. In this paper, we argue that they do. We55

first provide a mapping between multilevel selection modeled by discrete-time replica-56

tor dynamics and Bayesian inference in belief networks (i.e., directed graphical models),57

which shows that the underlying mathematical structures are isomorphic. The two key58

ingredients are (i) the already known equivalence between univariate Bayesian update59

and single-level replicator dynamics [11, 12] and (ii) a possible correspondence between60

properties of a hierarchical population composition and multivariate probability theory.61

We then show that this isomorphism allows for a natural interpretation of evolutionary62

transitions in individuality as learning the structure [13, 14] of the belief network. Indeed,63

following adaptive paths on the fitness landscape over possible hierarchical population64

compositions is equivalent to a well-known method used for selecting the optimal model65

structure in the Bayesian paradigm, namely, Bayesian model comparison. This suggests66

that complexification of life via successive evolutionary transitions in individuality is anal-67

ogous to the complexification of optimal model structure as more (or more complex) data68

about the environment is available.69

Relating the dynamics of evolutionary complexification to hierarchical probabilis-70
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tic generative models complements recent efforts of searching for algorithmic analogies71

between emergent evolutionary phenomena and neural network based learning models72

[15, 16]. These include correspondences between evolutionary-ecological dynamics and73

autoassociative networks [17] and also linking the evolution of developmental organiza-74

tion to learning in artificial neural networks [18]. As such connectionist models account75

for how global self-organizing learning behavior might emerge from simple local rules76

(e.g., weight updates), our approach aims at providing a common global framework for77

modeling both evolutionary and learning dynamics.78

In the following, we provide a brief introduction to the elementary building blocks79

of our arguments: Bayesian update and replicator dynamics. Bayesian update [19] fits80

a probability distribution P (I) of hypotheses I = I1, . . . , Im to the data e. It does so81

by integrating prior knowledge about the probability P (Ii) of hypothesis Ii with the82

likelihood that the actual data e = e(t) is being generated by hypothesis Ii, given by83

P (e(t)|Ii). Mathematically, the fitted distribution P (Ii|e(t)), called the posterior, is84

simply proportional to both the prior P (Ii) and the likelihood P (e(t)|Ii):85

P (Ii|e(t)) =
P (e(t)|Ii)P (Ii)∑
i P (e(t)|Ii)P (Ii)

(1)

On the other hand, the discrete replicator equation [20] that accounts for the change86

in relative abundance f(Ii) of types of replicating individuals Ii in the population driven87

by their fitness values w(Ii), reads as88

f(Ii; t + 1) =
w(Ii; t)f(Ii; t)∑
iw(Ii; t)f(Ii; t)

. (2)

As first noted by Harper [11] and Shalizi [12], equations (1) and (2) are equivalent,89

with the following identified quantities. The relative abundance f(Ii; t) of type Ii at90

time t corresponds to the prior probability P (Ii); the relative abundance f(Ii; t + 1) at91

time t + 1 is corresponding to the posterior probability P (Ii|e(t)); the fitness w(Ii; t)92

of type Ii at time t is corresponding to the likelihood P (e(t)|Ii); and the average fitness93 ∑
i w(Ii; t)f(Ii; t) is corresponding to the normalizing factor

∑
i P (e(t)|Ii)P (Ii) called the94

model evidence.95

Building on this observation, a natural question to ask is if this mathematical equiv-96

alence is only an apparent similarity due to the simplicity of both models, or it is a97

consequence of a deeper structural analogy between evolutionary and learning dynamics.98

We propose two conceptually new avenues along which this equivalence can be gener-99

alized. First, we identify concepts of hierarchical evolutionary processes with concepts100

of (i) multivariate probability theory, (ii) Bayesian inference in hierarchical models and101

(iii) conditional independence relations between variables in such models. Building on102

this theoretical bridge, we then investigate the dynamics of learning the structure (as103

opposed to parameter fitting in a fixed model) of hierarchical Bayesian models and the104

Darwinian evolution of multilevel populations, concluding that following adaptive evolu-105

tionary paths on the landscape of hierarchical populations naturally maps to optimizing106

the structure of hierarchical Bayesian models via Bayesian model comparison.107
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2 Results108

In order to generalize the algebraic equivalence between discrete-time replicator dynamics109

(2) and Bayesian update (1) to multilevel selection scenarios, multivariate distributions110

have to be involved. In general, a multivariate distribution P (x1, . . . , xk) over k variables,111

each taking m possible values, can be encoded by mk− 1 independent parameters, which112

is exponential in the number of variables. Apart from practical considerations such as113

the possible infeasibility of computing marginal and conditional distributions, sampling114

and storing such general distributions, a crucial theoretical limitation is that fitting data115

by a model with such a sizable parameter space would result in overfitting, unless the116

training dataset is itself comparably large [21].117

A way to overcome such obstacles is to explicitly abandon indirect dependencies be-118

tween variables by using structured probabilistic models, such as belief networks (called119

also Bayesian networks or directed graphical models) [22, 23]. Indeed, belief networks120

simplify joint distribution over multiple variables by specifying conditional independence121

relations corresponding to indirect (as opposed to direct) dependencies between variables.122

In the following, we build up an algebraic isomorphism between discrete-time multi-123

level replicator dynamics and iterated Bayesian inference in belief networks on a step-by-124

step basis. The key identified quantities are summarized in Table 1.125

Composition: mapping properties of multilevel populations to multivariate126

probability theory. A multilevel population is regarded as a hierarchical containment127

structure of types: Individual types Ii might be part of collectives C1
j which themselves128

might be part of higher-level collectives C2
k , and so on, as illustrated in Figure 1. Note129

that collectives at any level might possess heritable information (henceforth referred to as130

their identity); collectives of the same (hierarchical) composition might very well have dif-131

ferent identities. This makes this framework flexible enough to incorporate qualitatively132

different stages of evolutionary interdependence between organisms, leading eventually to133

a transition in individuality: (i) selection in which individuals enjoy the synergistic effect134

of belonging to a collective, but the collectives themselves do not possess any heritable135

information; (ii) selection in which collectives possess their own heritable information but136

also the individuals in them might replicate at different rates; (iii) and selection in which137

individuals have already lost their ability to replicate independently, therefore, their fit-138

ness is totally determined by the collective they belong to. As Michod and Nedelcu139

write on p. 61 of Ref. [24], "group fitness is, initially, taken to be the average of the140

lower-level individual fitnesses; but as the evolutionary transition proceeds, group fitness141

becomes decoupled from the fitness of its lower-level components". This, as we shall see,142

is exactly what our model accounts for mathematically, incorporating also the effect of143

stochastically varying environment.144

A key assumption that enables the machinery of multivariate probability theory145

to work is that abundance of collectives is measured in terms of abundance of indi-146

viduals they contain. Indeed, by identifying the abundance of individuals of type Ii,147

f(Ii in C1
j in C2

k in . . . ), that are part of collectives of type C1
j that are themselves part148

of collectives of type C2
k , etc., with the joint probabilities P (Ii, C

1
j , C

2
k , . . . ), two important149

additional identification follows:150
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Figure 1: Evolution of multilevel population as inference in Bayesian belief network.
The stochastic environment e governs the evolutionary dynamics of multilevel population
composition f(Ii in C1

j in C2
k). This is, in turn, equivalent to successive Bayesian inference

of hidden variables I, C1 and C2 based on the observation of current the environmental
parameters e. Since these environmental parameters are sampled and observed multiple
times (i.e., at every timestep t = 1, 2, 3 . . . ), the corresponding node of the belief network
is conventionally placed on a plate. Also note that the deletion of links between nodes
of the belief network is corresponding to conditional independence relations between
variables in the Bayesian setting and to specific structural properties of selection and
population composition in the evolutionary setting; see text for details.
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Figure 2: Two-level population encoded as a bivariate probability distribution. Joint
probabilities represent the relative abundance of different individuals in different col-
lectives. Conditional distributions depict the composition of collectives (rows) or the
membership distribution of individuals (columns). Marginals, illustrated by the one-
dimensional histograms, represent the abundance distribution of types at the individual
level (horizontal) or at the level of collectives (vertical histogram).
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multivariate probability theory multilevel population
joint probabilities P (Ii, C

1
j , C

2
k , . . . ) relative abundances of individuals

f(Ii in C1
j in C2

k in . . . )

marginals, e.g., P (C1
j ) =∑

i,k,... P (Ii, C
1
j , C

2
k , . . . )

relative abundances of units at a given
level, e.g., of collectives at level C1,
f(C1

j ) =
∑

i,k,... f(Ii in C1
j in C2

k in . . . ) =

f(any I in C1
j in any C2 in . . . )

conditional probabilities, e.g.,
P (Ii|C1

j ) = P (Ii, C
1
j )/P (C1

j ) OR
P (C1

j |Ii) = P (Ii, C
1
j )/P (Ii)

composition of collectives
f(Ii in C1

j )/f(any I in C1
j ) OR mem-

bership distribution of individuals
f(Ii in C1

j )/f(Ii in any C1)

Bayesian inference in hierarchical mod-
els

multilevel replicator dynamics

prior, P (Ii, C
1
j , C

2
k , . . . ; t) relative abundance f(Ii in C1

j in C2
k in . . . ; t)

likelihood, P (e(t)|Ii, C1
j , C

2
k , . . . ; t) fitness w(Ii in C1

j in C2
k in . . . ; t)

posterior, P (Ii, C
1
j , C

2
k , . . . ; t + 1) relative abundance

f(Ii in C1
j in C2

k in . . . ; t + 1)

model evidence,∑
i,j,k,... P (e(t)|Ii, C1

j , C
2
k , . . . ; t) ×

P (Ii, C
1
j , C

2
k , . . . ; t)

average fitness∑
i,j,k,...w(Ii in C1

j in C2
k in . . . ; t) ×

f(Ii in C1
j in C2

k in . . . ; t)

conditional independence relations properties of multilevel selection
conditional independence of the observed
variable e and a latent variable, e.g., I,
P (e|I, C1, C2, . . . ) = P (e|C1, C2, . . . )

units at a given level, e.g., individuals,
"freeze": their fitness is completely deter-
mined by the collective(s) they belong to:
w(Ii in C1

j in C2
k in . . . ) is the same for all i

conditional independence between two latent
variables, e.g., I and C2, P (I|C1, C2, . . . ) =
P (I|C1, . . . )

the composition of units at level C1 is inde-
pendent of what units they belong to at level
C2.

Bayesian structure learning evolutionary transitions in individual-
ity

evidence of model Ma,
E(Ma) = P (e|Ma) =∑

i,j,k,... P (e|Ii, C1
j , C

2
k , . . . ,Ma) ×

P (Ii, C
1
j , C

2
k , . . . |Ma)

average fitness given popula-
tion composition Ma, w̄(Ma) =∑

i,j,k,...w(Ii in C1
j in C2

k in . . . ) ×
f(Ii in C1

j in C2
k in . . . )

difference of evidence, E(Mb)− E(Ma) difference of average fitness of those units
that are participating in the transition in in-
dividuality, causing the Ma → Mb change
in population structure

Table 1: Identified quantities of evolution and learning
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• marginal distributions, such as P (C1
j ) =

∑
i,k,... P (Ii, C

1
j , C

2
k , . . . ) translate to the151

abundance distribution of types at the corresponding level (here, C1), f(C1
j ) =152 ∑

i,k,... f(Ii in C1
j in C2

k in . . . ) = f(any I in C1
j in any C2 in . . . )153

• conditional distributions, e.g., P (Ii|C1
j ) = P (Ii, C

1
j )/P (C1

j ) or P (C1
j |Ii) = P (Ii, C

1
j )/P (Ii)154

translate either to composition of collectives f(Ii in C1
j )/f(any I in C1

j ) or member-155

ship distribution of individuals (or lower level collectives), f(Ii in C1
j )/f(Ii in any C1).156

These computations are illustrated by a toy example in Figure 2.157

Dynamics: multilevel replicator dynamics as inference in Bayesian belief158

networks. Just like in the single-level case, the environmental parameters e(t), t =159

1, 2, 3, . . . are assumed to be sampled from an unknown generative process; the succes-160

sive observation of them drives the successive update of population composition. As161

discussed earlier, however, multilevel population structures can be mapped to multivari-162

ate probability distributions, forming multiple latent variables to be updated upon the163

observation of e.164

Formally, just as prior probabilities over multiple hypotheses P (Ii, C
1
j , C

2
k , . . . ; t) are165

updated to posterior probabilities P (Ii, C
1
j , C

2
k , . . . ; t + 1) based on the likelihood,166

P (e(t)|Ii, C1
j , C

2
k , . . . ; t), in the same way, multilevel population composition at time t,167

f(Ii in C1
j in C2

k in . . . ; t) is updated to the composition at t + 1 based on fitnesses168

w(Ii in C1
j in C2

k in . . . ; t). The critical conceptual identification here is therefore of (i)169

the likelihood of the hypothesis parametrized by (Ii, C
1
j , C

2
k , . . . ) and of (ii) the fitness170

of those individuals Ii that belong to those collectives C1
j that belong to C2

k , etc. The171

normalization factor that ensures that (i) the multivariate distribution is normalized (the172

model evidence
∑

i,j,k,... P (e(t)|Ii, C1
j , C

2
k , . . . ; t) × P (Ii, C

1
j , C

2
k , . . . ; t)) or that (ii) abun-173

dances are always measured relative to the total abundance of individuals (the average174

fitness
∑

i,j,k,...w(Ii in C1
j in C2

k in . . . ; t) × f(Ii in C1
j in C2

k in . . . ; t)), is conceptually175

irrelevant here as they do not change the ratio of probabilities or abundances. Their176

equivalence will, however, play a critical role in relating evolution of individuality and177

structure learning of belief networks.178

In order to demonstrate how simple calculations are performed in this framework and179

also to elucidate how fitnesses are determined, here we calculate the fitness of collective180

C1
j , w(C1

j ), which has been identified with P (e|C1
j ). Using simple relations of probability181

theory, P (e|C1
j ) =

∑
Ii
P (e, Ii|C1

j ) =
∑

Ii
P (e|Ii, C1

j )P (Ii|C1
j ). Translating this back to182

the language of evolution tells us that the fitness of C1
j is simply the average fitness of183

individuals it contains, as anticipated earlier.184

Structure: mapping structural properties of multilevel selection to the struc-185

ture of Bayesian belief network. Structured probabilistic models are useful be-186

cause they concisely summarize direct and indirect dependencies between multiple vari-187

ables. Specifically, Bayesian belief networks depict multivariate distributions, such as188

P (e, I, C1, C2), as a directed network, with the variables corresponding to the nodes and189

conditioning one variable on another corresponds to a directed link between the two.190

Since P (e, I, C1, C2) can always be written as P (e|I, C1, C2)P (I|C1, C2)P (C1|C2)P (C2)191
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in terms of conditional probabilities, the corresponding belief network is the one illus-192

trated in Figure 1. The route to simplify the structure of the distribution and corre-193

spondingly, the structure (i.e., connectivity) of the belief network is through conditional194

independence relations. Conditional independence relations, such as195

P (e|I, C1, C2) = P (e|C1, C2) (3)

correspond to the deletion of connections; (3), for example, corresponds to the deletion196

of the connection between variables e and I, shown in red in Figure 1, and it describes the197

conditional independence of the observed variable e and a latent variable, I. What does198

this independence relation mean in evolutionary terms? As it logically follows from the199

previous identifications, it specifies that the units at level I are frozen in an evolutionary200

sense: their fitness is completely determined by the collective they belong to. There is201

a second, qualitatively different type of conditional independence relations: those be-202

tween two latent variables, corresponding to two levels of the population. For example,203

P (I|C1, C2) = P (I|C1), corresponding to the deletion of the blue link in Figure 1, is204

interpreted as the following: the composition of any collective at level C1 is independent205

of what higher-level collective (at level C2) it belongs to. Such simplifications in hierar-206

chical population composition allows for the step-by-step modular combination of units207

to higher-level units, re-using existing sub-solutions over and over again.208

Structural dynamics: evolutionary transitions in individuality as Bayesian209

structure learning. It has been shown above that Bayesian inference in belief net-210

works can be interpreted as Darwinian evolutionary dynamics of multilevel populations,211

driven by the "observation" of the actual environment e(t). What fits the environment212

is the hierarchical distribution of individuals (i.e., lowest level replicators) to collectives.213

However, the number of levels and the existing types within each level, along with the214

assumptions of hierarchical containment dependencies (i.e., conditional independence re-215

lations) has to be a priori specified. In this sense, fitting the environment by such a216

pre-defined structure via successive Bayesian updates has limited adaptation abilities. In217

particular, it is unable to adjust the complexity of the model to be in accordance with218

that of the environment, an inevitable property to avoid under- or overfitting.219

In order to enlarge the space of possible models and therefore fit the environment220

better, one might allow the model structure to adapt as well. More complex models,221

however, will always fit any data better, and accordingly, adapting the model structure222

naively might result in overfitting, i.e., the inability of the model to account for never-seen223

data, corresponding to possible future environments. Organisms with too complicated224

hierarchical containment structures (and other adaptive parameters that are not modeled225

explicitly here) would go extinct in any varying environment. In order to remedy this226

situation, one has to take into consideration not only how good the best parameter227

combination fits the data, but also how hard it is to find such a parameter-combination.228

A systematic way of doing so is known as Bayesian model comparison, a well-known229

method in machine learning and Bayesian modeling. Mathematically, Bayesian model230

comparison simply ranks models (here, belief networks) according to their average ability231

to fit the data, referred to as the evidence E(M) of modelM:232
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E(M) = P (e|M) =
∑
i,j,k,...

P (e|Ii, C1
j , C

2
k , . . . ,M)× P (Ii, C

1
j , C

2
k , . . . |M) (4)

The first term in the sum describes the likelihood of the current parameters (i.e., their233

ability to fit the data), whereas the second term weights these likelihoods according to234

the prior probabilities of the parameters.235

How evolution, on the other hand, limits the number of to-be-fitted parameters in any236

organism to reinforce evolvability is an intriguing phenomenon. Here we show that in our237

minimal framework, selection naturally accounts for model complexity: model evidence238

corresponds to the average fitness w̄ of individuals, determined by their hierarchical239

grouping to higher-level replicators. Indeed, interpreting 4 in evolutionary terms gives240 ∑
i,j,k,...

w(Ii in C1
j in C2

k in . . . )× f(Ii in C1
j in C2

k in . . . ) = w̄(M) (5)

in which the first term in the sum corresponds to fitnesses of individuals according to241

what collectives they belong to, and the second terms weights these fitnesses according242

to the abundance of such hierarchical arrangements. It implies that not only the evolu-243

tion of the composition of multilevel population, but also the evolution of the structure244

of the multilevel population can be interpreted both in Darwinian and Bayesian terms:245

adaptive trajectories in the fitness landscape over population structures translate to adap-246

tive trajectories of model evidence over belief networks. Note that the word structure247

here is borrowed from learning theory for consistency and it does not refer to structured248

populations in population ecology.249

Let us now turn specifically to the Bayesian interpretation of the evolution of indi-250

viduality. Transitions in individuality, an evolutionary process in which lower-level units251

that were previously capable of independent replication form a higher-level evolutionary252

unit, correspond to a specific type transitions in the Bayesian model structure: either a253

new node is added to the top of the network (in case there was no such population level254

at all earlier), or a new value is added to any of the existing variables (in case the new255

evolutionary unit is formed at an already existing level). In each case, most of the belief256

network, including its parameters, remains the same, except the part that is participating257

in the transition. This part, however, always involves only those values (corresponding to258

types) of those variables (corresponding to levels) that are participating in the transition.259

If average fitness of these types is larger by grouping them together, they undergo a tran-260

sition in individuality. Although this is a general description of transitions disregarding261

many details, the correspondence with Bayesian model comparison is remarkable.262

Having defined our model framework mathematically, we now review its relation to263

multilevel selection and transition theory in more detail. Multilevel selection is concep-264

tually characterized into two types, dubbed multilevel selection 1 and 2, both assuming265

that collectives form in a population of replicators, which themselves affect selection of266

lower level units [25, 10, 6]. In case of multilevel selection 1 (MLS1), only temporary267

collectives form that periodically disappear to revert to an unstructured population of268

lower level units (transient compartmentation) [26, 27]. Multilevel selection 2 (MLS2) on269

the other hand involves collectives that last and reproduce indefinitely, hence being bona270

fide evolutionary units [28], see also [29]). Only if collectives are evolutionary units can271

they inherit information stably (i.e., being informational replicators, [30]), thus the step272
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Figure 3: Evolutionary transitions as Bayesian structure learning. Initially, a single-
level population I fits the environment e via replicator dynamics, or equivalently, via
successive Bayesian update. Then, a new collective (the square) emerges at a new level C1,
represented as a new node in the Bayesian belief network. Then, another new collective
emerges at level C1 (the circles), therefore, the variable C1 is renamed to C1′ as its
possible values now include the circle as well. Finally, new collectives emerge at an even
higher level (the rectangle and the ellipse at level C2), and correspondingly, a new node
is added to the network again. Note that the evolution of parameters (i.e., population
composition in a fixed structure) is not illustrated here for simplicity.
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toward a major evolutionary transition is MLS2. Note, that MLS1 can be understood as273

kin selection for most of the cases (cf. [28]), and might not even be a necessary prerequi-274

site for MLS2 to evolve. In general, compartmentalization itself (transient or not) is not275

a sufficient property for a system to be a true evolutionary unit (cf. [31, 32]).276

Our framework allows for parameterization of collective fitnesses such that they only277

depend on the collective’s composition, therefore corresponding to multilevel selection 2.278

The model is capable of handling MLS1 if, at each timestep, individuals are randomly279

reassorted among higher level collectives; incorporating this in the presented framework280

here is left for future work. Here we focus on the step from MLS2 toward a major281

transition: when collectives evolve to inherit information above their own composition. In282

our model this corresponds to the case when a property of the collective appears, possibly283

assigning different identities to collectives having identical composition. Such an identity-284

providing piece of information is understood as an emergent property of the collective that285

does not depend on the composition of lower level particles. If this is granted, higher level286

units can evolve on their own, somewhat independent of their compositions. In biological287

context, any such property corresponds to epigenetically inherited information that is not288

coded by genes.289

Let us conclude this section with some general remarks. First, in order to perform290

explicit calculations, the fitness of each type at each level, i.e., P (e|Ii, C1
j , C

2
k , . . . ), has291

to be specified. A natural way to do so is to pre-define a family of basis functions (e.g.,292

Gaussians) on the space of possible environments e, parametrized by a set of parameters293

(e.g., the mean and covariance of the Gaussian). Then, each type at each level is assigned294

one member of the family through its parameters. What determines the fitness of a given295

type at time t then is the value of the basis function assigned to that type at e(t). The296

advantage of such parametrization is threefold. First, it open the possibility of model-297

ing inter-type (i.e., microevolutionary) adaptation by making the parameters adaptive.298

Second, genetic relatedness, a crucial determining factor of evolutionary transitions, can299

be incorporated by coupling the parameters of types that have the similar containment300

structure. Third, normalization of such basis functions over the space of possible envi-301

ronments provides a natural way of accounting for adaptive trade-offs (i.e., the inability302

of a single organism to adapt to multiple substantially different environments at the same303

time). Here we do not enter into further details; investigating the relation between basis304

function types, adaptation algorithms and generative models of the environment P (e) is305

the subject of future work.306

3 Discussion307

In this paper we introduced a mapping between concepts of hierarchical Bayesian models308

and concepts of Darwinian evolution, providing a learning theory based interpretation of309

complexification of life through evolutionary transitions of individuality. The backbone of310

this interpretation is the fact that measuring the abundance and the composition of any311

type at any level can be naturally mapped to performing marginalization and computing312

conditional probabilities, respectively, of multivariate discrete probability distributions.313

Another key ingredient is that the stochastic environment determines the fitness of both314

individuals and collectives in a multilevel selection process. These two pillars are united by315

12

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 30, 2018. ; https://doi.org/10.1101/359596doi: bioRxiv preprint 

https://doi.org/10.1101/359596


the already known algebraic equivalence between Bayesian update and discrete replicator316

dynamics. Accordingly, the learning theory narrative of multilevel selection is as follows:317

as the environment e is successively observed, the distribution over the latent variables318

I, C1, C2, . . . , corresponding to the hierarchical population composition, is successively319

updated according to Bayes’ rule.320

Having identified this analogy, one might ask how the structure of the belief network321

(i.e., not just the parameters of a fixed network) itself evolves. In learning theory, differ-322

ent structures can be scored according to their model evidence, giving rise to Bayesian323

model comparison, which accounts not only for how good a given solution is, but also for324

how unlikely it is to find such a good solution in the parameter space. Consequently, this325

procedure optimizes the trade-off between complexity and goodness of fit, hence dubbed326

as automatic Occam’s razor. The evolution of belief network structure, in the context327

of Bayesian learning theory, is therefore driven by comparing model evidences of differ-328

ent structures. Interestingly, Bayesian model comparison fits neatly to our multilevel329

evolutionary dynamics interpretation: model evidence turns out to be equivalent to the330

average fitness of individuals, i.e., of the lowest level replicating units. This allows for331

a learning-theory based view of evolutionary transitions in individuality: units aggre-332

gate to form a higher-level replicating unit if their average fitness increases by doing so;333

this is mathematically equivalent to performing Bayesian model comparison between the334

different belief network structures.335

This procedure of simultaneous data acquisition, fitting, and structure learning is far336

from unique to our proposed model framework; apart from its extensive use in machine337

learning algorithms, it is conjectured to govern classified-as-intelligent systems such as338

the conceptual development in children and also our collective understanding of the world339

in terms of scientific concepts, both relying on the extraordinary generalization abilities340

from sparse and noisy data [33, 34]. We argue, based on the mathematical equivalence341

presented in this paper, that in order to devise seemingly-engeneered complex organisms,342

evolution, on Earth or anywhere, utilized comparable hierarchical learning mechanisms343

as we humans do to make sense of the world around us.344
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