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Abstract

Large-scale cellular imaging and phenotyping is a widely adopted strategy for understanding
biological systems and chemical perturbations. Quantitative analysis of cellular images for
identifying phenotypic changes is a key challenge within this strategy, and has recently seen
promising progress with approaches based on deep neural networks. However, studies so far
require either pre-segmented images as input or manual phenotype annotations for training, or
both. To address these limitations, we have developed an unsupervised approach that exploits the
inherent groupings within cellular imaging datasets to define surrogate classes that are used to
train a multi-scale convolutional neural network. The trained network takes as input full-
resolution microscopy images, and, without the need for segmentation, yields as output feature

vectors that support phenotypic profiling. Benchmarked on two diverse benchmark datasets, the


https://doi.org/10.1101/361410
http://creativecommons.org/licenses/by/4.0/

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

bioRxiv preprint doi: https://doi.org/10.1101/361410; this version posted July 3, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

proposed approach yields accurate phenotypic predictions as well as compound potency
estimates comparable to the state-of-the-art. More importantly, we show that the approach
identifies novel cellular phenotypes not included in the manual annotation nor detected by

previous studies.

Author summary

Cellular microscopy images provide detailed information about how cells respond to genetic or
chemical treatments, and have been widely and successfully used in basic research and drug
discovery. The recent breakthrough of deep learning methods for natural imaging recognition
tasks has triggered the development and application of deep learning methods to cellular images
to understand how cells change upon perturbation. Although successful, deep learning studies so
far either can only take images of individual cells as input or require human experts to label a
large amount of images. In this paper, we present an unsupervised deep learning approach that,
without any human annotation, analyzes directly full-resolution microscopy images displaying
typically hundreds of cells. We apply the approach to two benchmark datasets, and show that the

approach identifies novel visual phenotypes not detected by previous studies.

Introduction

Image-based high-throughput cellular assays allow meticulous monitoring of chemical or genetic
perturbations of cellular systems at large scale(1—4). Quantitative analysis of the collections of
image data generated by these assays is pivotal for an objective assessment of the phenotypic
diversity observed within the data. Conventional workflows developed for image analysis
involve a series of disjoint data-processing tasks, such as detection of cellular objects, numerical

characterization of these objects via feature engineering, as well as classification of cellular
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objects based on their features into different phenotypes(5,6). Many of these steps have been
addressed with the deep learning methodology(7,8), which has previously yielded state-of-the-
art results for such computer vision tasks(9—13). Approaches(14—16) based on deep learning for
analyzing high-content cellular images follow primarily a supervised learning paradigm,
whereby images annotated with phenotypic labels are used to train a deep neural network model
that maps images to one of the labels. The predictions of supervised approaches are therefore
constrained to the set of phenotypes defined during training, and therefore do not naturally
support the identification of additional phenotypes. The acquisition of these phenotypic labels
through manual annotation of the image data is also time-consuming (e.g., requiring
crowdsourcing efforts(17)), and error-prone(18). The applicability of supervised approaches is

thus contingent upon the availability and quality of the manual annotation.

Strategies to escape the limitations imposed by the a priori definition and acquisition of
phenotypic labels include transfer learning as well as unsupervised learning. In the former, a
neural network classification model trained in a supervised manner on a non-cellular image
dataset is applied to a cellular image dataset(19). Since the categories defined in the source non-
cellular dataset do not match those of the target cellular dataset, the aim of this strategy is to map
cellular images to a continuous coordinate system, i.e., a feature space, by treating the activation
of the hidden layers of the pre-trained deep model as a feature vector. While this strategy has
been shown to work well for extracting biologically informative features(19), there are no
guarantees that models trained on non-cellular data generalize well to arbitrary cellular image
data. Technical issues such as different channel encodings (e.g., RGB channels in non-cellular
images compared with an arbitrary number of fluorescence channels in cellular images) and

noise models (e.g., additive Gaussian noise models in non-cellular images(20) compared with
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Mixed-Poisson-Gaussian statistics(21) in fluorescence images) also hinder the applicability of

approaches based on transfer learning.

Approaches following an unsupervised learning paradigm are, in contrast, typically
optimized on the specific cellular dataset of interest. The aim of unsupervised learning is to map
images to a feature space where biologically relevant patterns within the dataset might emerge.
While in the supervised learning paradigm deep models are designed to predict an extrinsic
characteristic or attribute of the data, e.g., the phenotypic label manually assigned to the images,
in the unsupervised learning paradigm deep models are designed to predict an intrinsic
characteristic of the data. The most inherent property of each image is the pixel data itself. The
training process of both autoencoder networks(22) as well as generative adversarial networks
(23)(GANSs) therefore typically involves the optimization of an image synthesis function aiming
to reconstruct an image’s raw pixel data from a low dimensional representation of the input
image. This type of approaches has been able to map single-cell images with small dimensions
(e.g., 40 x 40 pixels) to a low-dimensional space (e.g., 64-D) where aberrant morphologies
during cell division as induced by siRNAs may be identified(24). Because of the high spatial and
phenotypical variability found in multi-cellular images with larger dimensions (e.g., 1280 % 1024
pixels over three fluorescent channels, i.e., a 3932160-D space), the compression and
reconstruction of high-content images via a neural network is currently a computationally

prohibitive task.

Here we present an unsupervised approach based on the exemplar convolutional neural
network(25) (Exemplar-CNN) training methodology that optimizes a network model to
discriminate among surrogate classes, which, in our case, are automatically defined through the

intrinsic groupings of images (e.g., images belonging to the same treatment) typically found in

4
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90 high-content imaging studies. The proposed approach uses exclusively dataset-specific multi-
91  cellular images, and requires no phenotypic annotations or optimization of computationally-
92  expensive image reconstruction functions. Using this unsupervised strategy, we train our multi-
93  scale convolutional neural network architecture (M-CNN(16)) on the multi-cellular images of the
94  KiMorph(26) and BBBC021(27,28) datasets, which involve genetic and chemical perturbations
95  of cellular systems at scale, respectively. Our approach, without any user-provided phenotypic
96 labels and without any object segmentation, is able to map images to a feature space that enables
97  prediction of phenotypes that match well with held-out labels. In addition, we show that the

98  approach identifies novel phenotypes in the benchmark datasets not detected by previous studies.

99 Results

100  Training and validating a deep neural network with the Exemplar-CNN methodology

101  To train a neural network model without any user-provided phenotypic annotation, we used the
102  Exemplar-CNN(25) training methodology (see Methods for details). When applied to high-
103  content cellular images, the trained network model maps in one step an image to a continuous
104  feature space representing the phenotypic homogeneity and variability observed in the data (see
105  Fig. 1 for a schematic overview of the approach). We validated this unsupervised strategy on the
106  Kimorph and BBBCO021 datasets, which include images of cells subjected to siRNA and
107  compound treatments, respectively. On each dataset, we trained a multi-scale convolutional
108  neural network (M-CNN(16)) model with the Exemplar-CNN training methodology. To define
109 the surrogate classes required by this methodology, we hypothesized that images belonging to
110  the same well (KiMorph) or compound treatment (BBBCO021) defined a single surrogate class.

111 No phenotypic categories and annotations were therefore needed for training. Note that different
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112 surrogate classes might belong to the same phenotypic category, but this information is not
113  known to the network. We trained the neural network exclusively with the pixel data of
114  annotated images; the annotations were removed during training, and only used subsequently to

115  validate the performance of the approach.

116  Fig. 1. Schematic overview of the Exemplar-CNN approach. Images are grouped into
117  surrogate classes based on intrinsic information (such as treatment information) instead of
118  external annotation. Taking the full-resolution images of the surrogate classes as input, an M-
119 CNN model is trained with the objective of separating the different surrogate classes. Once
120  trained, as input images are fed to the network, the neural activation values are extracted as
121  feature vectors, thus mapping the input images to a low-dimensional feature space. Finally,

122  distance calculation and clustering analysis enable the identification of novel phenotypes.

123

124 Once the dataset-specific network models were trained, we validated the performance of
125  the approach in two steps. First, we built a nearest-neighbor classifier based on the feature
126  vectors computed by the trained M-CNN model to predict the phenotype of annotated images.
127  We used the classification accuracy of the nearest neighbor classifier to evaluate whether the
128  feature vectors computed by the network encoded relevant phenotypic information. Second, we
129  applied the trained M-CNN model to the dataset’s entire image collection, including images with
130  no annotation and not used during training, thereby obtaining one feature vector for each image
131  in the entire collection. We performed hierarchical clustering analysis on the feature vectors, and,
132 through visual inspection of images in selected clusters, identified novel phenotypes. The next

133  two sections describe in detail the results for each dataset.
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134  KiMorph analysis and results

135  The Kimorph dataset comes from an RNAi screen where HeLa cells were reverse transfected
136  with siRNAs targeting ca. 800 kinases in duplicate. siRNA-mediated perturbations of the UBC,
137  CLSPN and TRAPPC3 genes were used as positive controls while the Renilla luciferase (Rluc)
138 siRNA treatment was used as a neutral control. After transfection, cells were fixed and labeled
139  for DNA, F-actin, and B-tubulin, and imaged through an automated microscope (experimental
140  details can be found in the original publication(26)). Each of the four control siRNA treatments
141 (UBC, CLSPN, TRAPPC3, and Rluc) was spotted across 12 wells in duplicate. We declared all
142  fields-of-view (FOVs) coming from each well to define a single surrogate class, which amounted
143  to 48 surrogate classes (i.e., one class per replicate well). We then trained an M-CNN model to
144  maximize separation among these classes (see Methods for training details). Note that some
145  surrogate classes belong to the same control siRNA treatment but this information is not known
146  to the network. Previous studies(26,29) have shown that each of the four control siRNA
147  treatments induces a consistent phenotype across wells. If the network learned to identify
148 invariant and discriminative features reflecting the control phenotypes, we hypothesized that
149  these would remain relatively similar within surrogate classes belonging to the same control

150  while varying more strongly across surrogate classes belonging to different controls.

151 After training, we used the M-CNN model and PCA to extract a 94-dimensional feature
152 vector for each original FOV image. We aggregated the feature vectors at the well level, and
153  calculated cosine distance values between each pair of wells (see Methods for details). The
154  resulting distance matrix, with rows ordered by control groups, is shown in Fig. 2a. We observe
155  square blocks (submatrices) along the diagonal of the matrix, which reflect the low distance

156  values (i.e., high similarity) within wells from the same control siRNA treatment as entailed by


https://doi.org/10.1101/361410
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/361410; this version posted July 3, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

157  the feature vectors computed by the network. To quantitatively verify the invariant and
158  discriminative properties of the feature vectors within and across the four different phenotypes,
159  we tested whether we could predict the phenotype of each well based on the phenotype of the
160  well’s nearest neighbor in feature space. Over 50 repetitions of a random hold-out cross-
161  validation strategy, this nearest-neighbor classification approach identifying the four control
162  phenotypes yielded 100% classification accuracy (Supplementary Table 1). The results show
163  that the feature vectors computed by the M-CNN model, which was trained without any
164  phenotypic annotation, remain relatively similar within the same phenotype yet vary across
165  different ones, thus encoding phenotypic information that enables the identification of distinct

166  phenotypes.

167  Fig. 2. Exemplar-CNN training and clustering analysis results for the KiMorph dataset. (a)
168  Cosine distance matrix between pairs of wells of control siRNA treatments. Rows are ordered by
169  control groups. Blue indicates a small distance value while yellow corresponds to a large
170  distance value. (b) Sample images from clusters including the control siRNA treatments (left

171  column) as well as from clusters including phenotypes distinct from the control treatments (right

172 column).
173
174 We next tested whether the M-CNN model trained with four control siRNA treatments

175  could generalize to images and phenotypes not used during training. We therefore fed each
176  image of the entire KiMorph dataset through the trained M-CNN model and PCA, and obtained a
177  94-D feature vector per image. Feature vectors of images belonging to the same siRNA treatment

178  were aggregated onto a single vector (see Methods for details). We calculated pairwise cosine
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179  distances among all vectors corresponding to all 781 siRNA perturbations (see Supplementary
180  Table 2), performed hierarchical clustering, and grouped all siRNA perturbations onto 27
181  clusters (see Supplementary Table 3). On each cluster, we carried out a Gene Ontology (GO)
182  enrichment analysis for biological processes through the topGO R package(30), with all kinases
183  in the library taken as the background set. After Benjamini-Hochberg correction for multiple
184  testing, we found that 22 clusters out of the 24 clusters that included more than one gene were
185  enriched with two or more GO terms. This indicates that the feature vectors computed by the
186  network supported the identification of shared biological functions of groups of genes (see
187  Supplementary Table 4). To validate the results, we first inspected clusters 17, 16, and 18,
188  which included the three positive siRNA controls (viz. UBC, CLSPN, and TRAPPC3),
189  respectively (Fig. 2b). The UBC cluster, which the enrichment analysis associates with DNA
190 damage and integrity checkpoints, includes essential genes such as COPB2 and PLK1 that, when
191 knocked down, cause a lethal phenotype akin to that of the UBC treatment. Likewise, the
192  CLSPN cluster comprises genes such as CDC7 and CDK3, which are associated with cell cycle
193  control, and whose knockdowns induce an enlarged cell phenotype resembling that of the
194  CLSPN treatment. In the TRAPPC3 cluster, which is enriched with the ‘integrin-mediated
195  signaling pathway’ GO term, we typically observe an elongated cell phenotype that is likewise
196  triggered by the CARDIO and SYK knockdowns. Overall, the clustering results and the
197  recapitulation of known biological functions of groups of genes suggest the feature vectors

198 learned by the network capture phenotypic information.

199 The main advantage of an unsupervised approach is its ability to discover novel phenotypes.
200  To verify this premise, we identified clusters that were relatively distant (in terms of the cosine

201  distance values) from the four siRNA controls (see Methods for details). One of these distant
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202 clusters (viz. cluster 3) only includes images from the LAK perturbation. Visual inspection of the
203  images reveals an experimental artifact in images from replicate 1 (Fig. 2b top right; compare to
204 images from replicate 2). The artifact is not visible in images of any other treatment, and so the
205  approach correctly grouped images with this artifact onto a separate cluster. Images from cluster
206 27, which includes genes such as ACVRI1 and GALK2, display a phenotype of enlarged nuclei
207  and cells with a strong actin signal (Fig. 2b middle right) that do not resemble any of the control
208  phenotypes. Likewise, in cluster 20, which includes genes such as RAC1 and PDGFRB, and
209  shows enrichment for the ‘positive regulation of Rho protein signal transduction’ GO term, we
210  observe a reduced cell count and cell size in the images. These results suggest that the proposed

211  unsupervised strategy supports the identification of novel imaging phenotypes.

212  BBBCO021 analysis and results

213  In the BBBCO021 dataset, MCF-7 breast cancer cells were treated with 113 compounds at eight
214  concentrations in triplicate, before being fixed and labeled for DNA, F-actin, and B-tubulin.
215 Images were captured from each channel with four fields per well(28). A subset of 103
216  compound-concentration pairs (hereafter defined as treatments) covering 38 compounds was
217  previously inspected and annotated for one of twelve mechanisms-of-action (MoAs)(31). We
218  declared all images coming from each treatment to belong to the same surrogate class, which
219  resulted in 103 surrogate classes. The M-CNN model was trained to discriminate among all 103
220  surrogate classes (see Methods for training details). Note that the network is not aware that
221  certain surrogate classes (i.e., treatments) belong to the same compound or the same MoA. If the
222  network learned MoA-relevant features, we posited that these would remain relatively invariant

223  within each MoA yet vary across different MoAs.

10
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224 Once trained, we used the M-CNN model and PCA to extract an 8-D vector for each
225  input image used during training. We aggregated the feature vectors of images belonging to the
226  same treatment onto a single feature vector and computed cosine distances between all pairs of
227  treatments (Fig. 3a). Each row of the matrix corresponds to one treatment. Treatments are
228  ordered by MoA, and then by compound and concentration. Overall we observe sub-matrices
229  (squares) along the diagonal indicating that the network learned features that remain relatively
230  invariant within each MoA. To quantitatively verify the homogeneity and variation of the learned
231  features within and across phenotypes, respectively, we tested whether the MoA of a treatment
232 could be identified based on the MoA label of the treatment’s nearest neighbor in feature space.
233  Here we adopted the same leave-one-compound-out cross-validation strategy used in previous
234  benchmarking studies(31) that prevents matching treatments from the same compound (see
235  Methods for details). With this nearest-neighbor classification strategy, we achieve a median
236  accuracy over all classes of 88%. The confusion matrix is shown in Supplementary Table 5.
237  For certain MoAs (e.g., aurora kinase inhibitors, cholesterol-lowering, protein degradation, and
238  protein synthesis), the approach achieved 100% classification accuracy. For other MoAs, the
239  accuracy ranged from 75% to 89%. The performance of the approach is comparable to our
240  previous supervised approach(16), which is explicitly optimized to distinguish these twelve
241  MoAs, as well as to other non-supervised approaches(19,31). Overall the results show that, while
242  the MoA categories are unknown to the network, it manages to learn features which remained

243  relatively invariant within each MoA yet varied across MoAs.

244  Fig. 3. Exemplar-CNN training results for the BBBC021 annotated subset. (a) Cosine
245  distance matrix between pairs of treatments. Labels on the left are the MoA annotations. Rows

246  are ordered by MoA annotation, compound, and concentration. Blue indicates a small distance

11
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247  value while yellow corresponds to a large distance value. (b) Zoomed-in view of the red box in
248 (a), KI for kinase inhibitors and MD for microtubule destabilizers. Labels on the right are
249  compounds and concentrations in uM. (¢) Sample images corresponding to the treatments in (b).
250  Colchicine, which is annotated as a microtubule destabilizer (MD), visually looks more similar

251  to treatments annotated as kinase inhibitors (KI).

252

253 While the approach is able to recapitulate known information about the annotated data,
254  we tested further its ability to reveal phenotypic information beyond the annotation. To this aim,
255  we conducted a closer examination of the distance matrix. While treatments annotated with the
256  same MoA are mapped by the network to nearby positions in feature space, and are therefore
257  distinguishable via a nearest-neighbor classifier, the sub-matrices along the diagonal of the
258  distance matrix in Fig. 3a reveal a certain heterogeneity within individual MoAs. For example,
259  for the aurora kinase inhibitors (Aur) MoA, the corresponding sub-matrix reveals three groups
260  corresponding to the three compounds annotated with this MoA (viz. AZ-A, AZ258 and AZ841),
261  which suggests that the compounds caused slightly different sub-phenotypes. A similar
262  observation can be made for the actin disruptors (Act), protein degradation (PD), and protein
263  synthesis (PS) MoAs. The microtubule destabilizers (MD) MoA is comprised by four
264  compounds (14 treatments, sub-matrix highlighted in red in Fig. 3a. and zoomed in view in Fig.
265  3b). Three of the four compounds, Demecolcine, Nocodazole, and Vincristine, are relatively
266  similar to each other as well as distant to the kinase inhibitor (KI) group, although Nocodazole
267  shows a sub-phenotype different from Demecolcine and Vincristine. The fourth compound,
268  Colchicine at 0.03uM, which is annotated as MD, instead seems to be closer to the kinase

269  inhibitors (KI) treatments than to the other MD treatments, and is accordingly predicted as KI by

12
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270  the nearest-neighbor classification scheme. Visual examination of the corresponding images also
271  confirms Colcichine’s similarity to the KI treatments (Fig. 3¢). Although only one concentration
272 (0.03uM) of Colcichine is included in the annotation subset, there are seven concentrations
273 (0.001 — 3.0 uM) in the entire BBBCO021 dataset. Only at 3.0uM, Colchicine causes phenotypes
274  similar to other microtubule destabilizers (Supplementary Fig. 2). The proposed unsupervised
275  approach is thus able to detect phenotype information in the data beyond the manual annotation,

276  which is not feasible with a supervised method.

277 Next, we set out to verify the applicability of the approach to the entire BBBC021
278  dataset. Here we first trained an M-CNN model using all images from the 103 annotated
279  treatments (amounting to 103 surrogate classes) plus images from the neutral control (DMSO),
280  which were grouped into an additional surrogate class. Once trained, we applied the model to all
281 13200 images included in the dataset. Using PCA, we obtained a 77-D feature vector per image.
282 Vectors of images belonging to the same treatment replicate (well) were aggregated onto a single
283  vector. We then determined the similarity of each replicate vector to each of the 12 MoAs and
284  DMSO based on the cosine distances of each vector to all replicate vectors belonging to the 103
285  MoA-annotated treatments as well as to all DMSO wells (see Methods for details). The 13

286  similarity values of each treatment replicate are shown in Supplementary Table 6.

287 In our previous supervised analysis of the BBBCO021 dataset, four compounds were
288  selected as representative concentration-response curves (16). In the current study, we selected
289  the same four compounds and plotted the similarity values to each MoA and DMSO as a
290  function of the concentration (Supplementary Fig. 1). In the previous supervised approach, the
291 y-axis was the classification probability and for each compound there was only one or two

292  dominant MoAs across concentrations. In the current unsupervised approach, the y-axis is the

13
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293  similarity to each MoA which ranges from 0 to 2, and the gaps between curves are much less
294  pronounced. To compare the overall trend, we simplified the plot by only showing MoAs shown
295  as dominant in the previous supervised approach (Fig. 4a). Data points highlighted by dashed
296  circles correspond to concentrations annotated with the curve’s MoA (and therefore achieving
297  maximum similarity). For Floxuridine, consistent with the supervised approach, the DNA
298  replication (DR) MoA is the top MoA prediction for all concentrations. For Nocodazole, the
299  curve shows a similar trend to the supervised approach, with DMSO as the top MoA in low
300 concentrations (0.001-0.01uM) and microtubule destabilizers (MD) as the top MoA in high
301 concentrations (0.1-4.0uM). For Alsterpaullone, in the current unsupervised analysis, kinase
302  inhibitor (KI) and DMSO are on the same level until the higher concentrations. DNA-damage
303 (DD) increases at the last concentration but does not pass the level of KI. In the previous
304 supervised analysis the differences among the MoAs were much more obvious although with
305 larger error bars. Finally, for Hydroxyurea, for which none of the concentrations was included in
306 the training data, the trend of the curve is consistent with the supervised approach, where DMSO
307  decreases over concentration while DNA-damage (DD) increases and takes over at the two

308  highest concentrations.

309 Fig. 4. Example concentration-response curves and clustering analysis for the BBBC021
310 dataset. (a) Similarity-vs-concentration plots for four compounds. The similarity (y-axis) to
311  selected MoAs and DMSO over concentration (x-axis) computed using the features vectors
312  yielded by the proposed approach is shown. The dots and error bars represent the median and
313 MAD over the experimental replicates (n=2 for Alsterpaullone and n=3 for the other three

314  compounds). Data points marked by dashed circles are annotated with the curve’s MoA and
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315  therefore achieve maximum similarity. (b) Sample images of clusters including distinct

316  phenotypes not related to the annotated phenotypes.

317 Finally, we tested the ability of the approach to detect novel phenotypes. To this end, we
318  further aggregated the replicate vectors belonging to the same treatment onto a single vector.
319 Likewise, DMSO vectors stemming from the same plate were aggregated onto a single vector.
320 We calculated pairwise cosine distances among all treatments, including DMSO, and applied a
321  hierarchical clustering procedure that yielded 79 clusters (see Methods as well as
322  Supplementary Table 7 for the complete distance matrix). We inspected visually clusters that
323  included exclusively compound-concentration treatments without any MoA annotation (see Fig.
324  4b). For example, in cluster 37, we found images from Mitoxantrone at 10uM and Staurosporine
325 at 0.1pM and 0.3uM that induced a strong toxic phenotype. In cluster 20, which included images
326  from AZ-841 at 30uM only, we found images that displayed an unusual purple phenotype that
327  could hint at a tubulin toxin/disruptor MoA for this treatment. Finally, in cluster 41, we found
328 images from Staurosporine at 0.0003uM, Bryostatin at 3.0uM, as well as Valproic Acid at
329  150uM where groups of elongated cells with thin protrusions forming a networked pattern were
330 visible. The results underscore the ability of the proposed unsupervised approach to identify

331 novel phenotypes not previously known and not included during training.

332 Discussion

333  Deep learning has been successfully pioneered in the field of image-based high-throughput
334  screening(14-16,19,24). The majority of approaches based on deep neural networks adopt a
335 supervised learning paradigm that requires manual definition and acquisition of phenotypic

336 labels. As such, supervised approaches do not support naturally the discovery of new
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337  phenotypes. In this work, instead of relying on predefined phenotypic labels, we developed an
338  unsupervised learning approach that exploits the inherent variation across treatments typically
339 found in imaging-based studies to learn phenotypically relevant features that enable the

340 discovery of novel phenotypes.

341 The proposed approach obviates the need for manually specified phenotypic categories by
342  defining automatically surrogate categories through the inherent grouping of images (e.g.,
343  images belonging to the same well) found in the experimental design of high-content studies.
344  The fact that multiple surrogate categories may belong to a (known) phenotypic class remains
345  explicitly held-out to the neural network model throughout. Our results on two benchmark
346  datasets demonstrate that the feature vectors extracted from the images through the trained
347  models support the recognition of known phenotypes included within the surrogate categories.
348 By testing the models on images outside of the surrogate categories, we also showed that the
349 models generalize to phenotypes beyond those used during training. With a straightforward
350 clustering analysis of the feature vectors, we managed to pinpoint novel phenotypes, which is
351 one of the main goals of image-based high-content screening studies, where genetic or chemical

352  perturbations may potentially induce a range of unexpected phenotypes.

353 Certainly, one could identify novel phenotypes with conventional image analysis
354  approaches, which typically require segmentation and manual feature engineering(26,28,32,33).
355 It is however encouraging to see that the proposed unsupervised approach, which requires no
356  segmentation, no manual feature engineering, and no phenotypic categories and annotations, also
357  supports the identification of novel phenotypes in a more automated fashion. The proposed
358 approach does not provide single-cell readouts, and therefore does not replace single-cell

359  analyses(34,35).
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360 With the proposed unsupervised learning strategy, the inferred network models depend on
361 the phenotypic data included within the surrogate classes. In our study, we restricted the
362  surrogate classes to images that had a phenotypic annotation. This strategy facilitated the
363  validation of the approach, as it allowed testing whether the approach supported the recovery of
364 known phenotypic classes. Additional work is however needed to decide which images and
365  phenotypes should be included within the surrogate classes. One possibility would be to adapt an
366 active learning approach, where surrogate classes would be iteratively added based on a certain

367  performance criterion.

368 Methods

369 Exemplar Convolutional Neural Networks

370  We use the Exemplar-CNN optimization strategy(25) to train a convolutional neural network
371  without relying on any phenotypic label annotation. In contrast to a typical supervised learning
372  approach, where the neural network is trained to discriminate among a set of predefined
373  phenotypic classes, the proposed approach is trained to discriminate among a set of surrogate
374  classes. The main idea underlying the Exemplar-CNN methodology is to learn image features
375  that are both invariant within each surrogate class as well as discriminative across surrogate
376 classes. In the original strategy, each exemplar (i.e., a region-of-interest within an image) and
377  transformed versions thereof (obtained through extreme data augmentation schemes) defined a
378  single surrogate class. This strategy was shown to work well with a large number of surrogate
379  classes (e.g., up to 4000). However, when the number of (exemplar) images is very large and the
380 images look very similar, discrimination among the surrogate classes becomes more challenging.
381 A prior grouping (e.g., through clustering) of similar images was suggested as an approach to

382  reduce the number of classes as well as to group very similar images into a single surrogate class.
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383 In our case, instead of taking each image and its variations as a single surrogate class, we take
384  advantage of the intrinsic grouping of images provided by the experimental design of each study
385  to define the surrogate classes. For example, for each well, multiple fields-of-view (FOVs) are
386  typically acquired. We may therefore define all FOVs from a single well to define a single
387  surrogate class. Similarly, each treatment combination (e.g., a compound at a specific
388  concentration) is typically replicated. Images from these replicates may be therefore declared as
389  a single surrogate class. The definition of surrogate classes depends on the experimental details
390 in each study. After defining N, surrogate classes in such a way, we associate a numerical label

391  Ysurrogate With each surrogate class and its images.

392 We use a multi-scale convolutional neural network (M-CNN) architecture to solve the
393  task of surrogate class discrimination. The last two layers of our M-CNN architecture include a
394  fully connected layer with 128 hidden units, as well as a soft-max output layer, which yields a
395  vector p with elements p; that encode a probability score for each of the N, surrogate classes to
396  be identified (all architectural details are provided in Supplementary Table 8). Using N, images
397  associated with surrogate classes and their numerical labels, we optimize the parameters of the

398 M-CNN by minimizing the following error function:

N;
1 o
Q)
399 MZ f (p(o,ysjrmgate) + Allwll,
=

400  where f(-,-) is the cross-entropy error function evaluating the agreement between the network’s

401  soft-max output p and the surrogate (true) label y(i) for the i-th training example, ||-||, is

surrogate
402  the L2 norm, w is a vector including all weights of the network, and A is a coefficient that

403  regulates the influence of the magnitude of the weight vector on the error function. We use the
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404  stochastic gradient descent (SGD) algorithm via backpropagation and drop-out to approximate a

405  solution.

406  Learning details

407  Generally, we used the same strategy and parameter values that we used previously to train the
408 M-CNN architecture in a supervised way(16). In this study, we however increased the number of
409 training epochs to 27. The step size over which the learning rate is held constant was also
410 increased to 9 epochs. One epoch is equal to the number of iterations needed to evaluate all
411 1images in the training dataset. We additionally used the dropout technique(36) on the
412  penultimate layer of the M-CNN architecture to encourage a better exploration of the available

413  activation space.

414  Feature extraction, projection, and aggregation

415  Once trained, the application of the M-CNN model to any input image yields a 128-dimensional
416  activation vector z with elements z; corresponding to the activation values of each hidden unit
417  within the fully connected layer (second-to-last layer) that are recorded as the input image is
418  passed through the network. We subsequently project all activation vectors onto an orthogonal
419  basis computed via principal component analysis (PCA) that takes exclusively into consideration
420  the activation vectors of (non-augmented) images used during training. Principal components
421  explaining 99% of the variance define the new feature sub-space onto which all activation
422  vectors are typically projected.

423 Feature vectors belonging to the fields-of-view (FOVs) of a well are aggregated by taking
424  the element-wise median of the vectors. The resulting vector is taken as the feature vector

425  representing the corresponding well. Likewise, to construct the feature vector for a given
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426  treatment, feature vectors of the treatment’s replicate wells are summarized by taking the
427  element-wise median of the vectors.

428

429  Distance and similarity calculations

430 To compare treatments, we use the cosine distance between two feature vectors. The cosine
431 distance is defined as one minus the cosine of the angle between the vectors. The values thus
432 range from O (denoting an identical direction for both vectors) to 2 (denoting opposite
433  directions). To obtain a measure of similarity between treatments within the same numerical
434  range, we subtract each cosine distance value from two.

435

436  Clustering

437  We compute cosine distances among all pairs of treatments in a dataset. We use a hierarchical
438  clustering algorithm to group treatments based on these pairwise cosine distance values. The
439  resulting hierarchical tree is partitioned with a threshold value equivalent to the cosine distance
440  entailed by an angle of w / 3.

441

442  Nearest neighbor classifier

443  Using pairwise cosine distances, we build a nearest neighbor classifier to investigate whether the
444  feature vectors obtained via the unsupervised model encoded information that supported the
445  retrieval of known phenotypic categories that had been manually assigned to a subset of
446  treatments. Evaluation of the classifier’s performance requires splitting the feature vectors onto a

447  training set and a test set. Given a feature vector from the test set, we determine its closest
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448  feature vector (i.e., its nearest-neighbor) within the training set, and assign the nearest neighbor’s
449  phenotypic or MoA category to the test feature vector.

450 In the KiMorph dataset, we use a random hold-out cross-validation strategy where we
451 randomly group all feature vectors into a training set and test set. The proportion of treatments
452  assigned to the training set is 90%. Using the nearest-neighbor classifier, we predict the
453  phenotype of the feature vectors in the test set, and evaluate the classification performance. We
454  repeat the partitioning and evaluation process 50 times. The confusion matrix aggregating the
455  results over the 50 repeats is shown in Supplementary Table 1.

456

457 In the BBBCO021 dataset, we use a leave-one-compound-out validation strategy, where the
458 training dataset excludes feature vectors of treatments (i.e., compound-concentration pairs)
459  sharing the same compound as the test feature vector. We use all 103 treatments as test feature
460  vectors once, obtain a nearest-neighbor prediction for the MoA, and compare the prediction with
461  treatments’ known MoA. The resulting confusion matrix is shown in Supplementary Table 4.
462

463 Image pre-processing

464  All image intensities are subjected to an Anscombe transform. Histogram normalization of each
465 1image is carried out on per-plate basis as described previously(16). All image intensities are
466  mapped to an 8-bit range.

467

468 Image datasets

469 The KiMorph dataset is available from the Wolfgang Huber Group EBI website at

470  https://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/.
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471 The BBBCO021 version 1 image dataset is available from the Broad Bioimage Benchmark
472  Collection at http://www.broadinstitute.org/bbbc/BBBC021/.

473

474  Detailed description of the datasets can be found on their corresponding webpages.
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