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Abstract なな 
Large-scale cellular imaging and phenotyping is a widely adopted strategy for understanding なに 
biological systems and chemical perturbations. Quantitative analysis of cellular images for なぬ 
identifying phenotypic changes is a key challenge within this strategy, and has recently seen なね 
promising progress with approaches based on deep neural networks. However, studies so far なの 
require either pre-segmented images as input or manual phenotype annotations for training, or なは 
both. To address these limitations, we have developed an unsupervised approach that exploits the なば 
inherent groupings within cellular imaging datasets to define surrogate classes that are used to なぱ 
train a multi-scale convolutional neural network. The trained network takes as input full-なひ 
resolution microscopy images, and, without the need for segmentation, yields as output feature にど 
vectors that support phenotypic profiling. Benchmarked on two diverse benchmark datasets, the にな 
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に  

proposed approach yields accurate phenotypic predictions as well as compound potency にに 
estimates comparable to the state-of-the-art. More importantly, we show that the approach にぬ 
identifies novel cellular phenotypes not included in the manual annotation nor detected by にね 
previous studies. にの 
Author summary には 
Cellular microscopy images provide detailed information about how cells respond to genetic or にば 
chemical treatments, and have been widely and successfully used in basic research and drug にぱ 
discovery. The recent breakthrough of deep learning methods for natural imaging recognition にひ 
tasks has triggered the development and application of deep learning methods to cellular images ぬど 
to understand how cells change upon perturbation. Although successful, deep learning studies so ぬな 
far either can only take images of individual cells as input or require human experts to label a ぬに 
large amount of images. In this paper, we present an unsupervised deep learning approach that, ぬぬ 
without any human annotation, analyzes directly full-resolution microscopy images displaying ぬね 
typically hundreds of cells.  We apply the approach to two benchmark datasets, and show that the ぬの 
approach identifies novel visual phenotypes not detected by previous studies. ぬは 
Introduction ぬば 
Image-based high-throughput cellular assays allow meticulous monitoring of chemical or genetic ぬぱ 
perturbations of cellular systems at large scale(1–4). Quantitative analysis of the collections of ぬひ 
image data generated by these assays is pivotal for an objective assessment of the phenotypic ねど 
diversity observed within the data. Conventional workflows developed for image analysis ねな 
involve a series of disjoint data-processing tasks, such as detection of cellular objects, numerical ねに 
characterization of these objects via feature engineering, as well as classification of cellular ねぬ 
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objects based on their features into different phenotypes(5,6). Many of these steps have been ねね 
addressed with the deep learning methodology(7,8), which has previously yielded state-of-the-ねの 
art results for such computer vision tasks(9–13). Approaches(14–16) based on deep learning for ねは 
analyzing high-content cellular images follow primarily a supervised learning paradigm, ねば 
whereby images annotated with phenotypic labels are used to train a deep neural network model ねぱ 
that maps images to one of the labels. The predictions of supervised approaches are therefore ねひ 
constrained to the set of phenotypes defined during training, and therefore do not naturally のど 
support the identification of additional phenotypes. The acquisition of these phenotypic labels のな 
through manual annotation of the image data is also time-consuming (e.g., requiring のに 
crowdsourcing efforts(17)),  and error-prone(18). The applicability of supervised approaches is のぬ 
thus contingent upon the availability and quality of the manual annotation. のね 

Strategies to escape the limitations imposed by the a priori definition and acquisition of のの 
phenotypic labels include transfer learning as well as unsupervised learning. In the former, a のは 
neural network classification model trained in a supervised manner on a non-cellular image のば 
dataset is applied to a cellular image dataset(19). Since the categories defined in the source non-のぱ 
cellular dataset do not match those of the target cellular dataset, the aim of this strategy is to map のひ 
cellular images to a continuous coordinate system, i.e., a feature space, by treating the activation はど 
of the hidden layers of the pre-trained deep model as a feature vector. While this strategy has はな 
been shown to work well for extracting biologically informative features(19), there are no はに 
guarantees that models trained on non-cellular data generalize well to arbitrary cellular image はぬ 
data. Technical issues such as different channel encodings (e.g., RGB channels in non-cellular はね 
images compared with an arbitrary number of fluorescence channels in cellular images) and はの 
noise models (e.g., additive Gaussian noise models in non-cellular images(20) compared with はは 
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Mixed-Poisson-Gaussian statistics(21) in fluorescence images) also hinder the applicability of はば 
approaches based on transfer learning. はぱ 

Approaches following an unsupervised learning paradigm are, in contrast, typically はひ 
optimized on the specific cellular dataset of interest. The aim of unsupervised learning is to map ばど 
images to a feature space where biologically relevant patterns within the dataset might emerge. ばな 
While in the supervised learning paradigm deep models are designed to predict an extrinsic ばに 
characteristic or attribute of the data, e.g., the phenotypic label manually assigned to the images, ばぬ 
in the unsupervised learning paradigm deep models are designed to predict an intrinsic ばね 
characteristic of the data. The most inherent property of each image is the pixel data itself. The ばの 
training process of both autoencoder networks(22) as well as generative adversarial networks ばは 
(23)(GANs) therefore typically involves the optimization of an image synthesis function aiming ばば 
to reconstruct an image’s raw pixel data from a low dimensional representation of the input ばぱ 
image. This type of approaches has been able to map single-cell images with small dimensions ばひ 
(e.g., 40 × 40 pixels) to a low-dimensional space (e.g., 64-D) where aberrant morphologies ぱど 
during cell division as induced by siRNAs may be identified(24). Because of the high spatial and ぱな 
phenotypical variability found in multi-cellular images with larger dimensions (e.g., 1280 × 1024 ぱに 
pixels over three fluorescent channels, i.e., a 3932160-D space), the compression and ぱぬ 
reconstruction of high-content images via a neural network is currently a computationally ぱね 
prohibitive task.  ぱの 

Here we present an unsupervised approach based on the exemplar convolutional neural ぱは 
network(25) (Exemplar-CNN) training methodology that optimizes a network model to ぱば 
discriminate among surrogate classes, which, in our case, are automatically defined through the ぱぱ 
intrinsic groupings of images (e.g., images belonging to the same treatment) typically found in ぱひ 
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high-content imaging studies. The proposed approach uses exclusively dataset-specific multi-ひど 
cellular images, and requires no phenotypic annotations or optimization of computationally-ひな 
expensive image reconstruction functions. Using this unsupervised strategy, we train our multi-ひに 
scale convolutional neural network architecture (M-CNN(16)) on the multi-cellular images of the ひぬ 
KiMorph(26) and BBBC021(27,28) datasets, which involve genetic and chemical perturbations ひね 
of cellular systems at scale, respectively. Our approach, without any user-provided phenotypic ひの 
labels and without any object segmentation, is able to map images to a feature space that enables ひは 
prediction of phenotypes that match well with held-out labels. In addition, we show that the ひば 
approach identifies novel phenotypes in the benchmark datasets not detected by previous studies. ひぱ 
Results ひひ 
Training and validating a deep neural network with the Exemplar-CNN methodology などど 
To train a neural network model without any user-provided phenotypic annotation, we used the などな 
Exemplar-CNN(25) training methodology (see Methods for details). When applied to high-などに 
content cellular images, the trained network model maps in one step an image to a continuous などぬ 
feature space representing the phenotypic homogeneity and variability observed in the data (see などね 
Fig. 1 for a schematic overview of the approach). We validated this unsupervised strategy on the などの 
Kimorph and BBBC021 datasets, which include images of cells subjected to siRNA and などは 
compound treatments, respectively. On each dataset, we trained a multi-scale convolutional などば 
neural network (M-CNN(16)) model with the Exemplar-CNN training methodology. To define などぱ 
the surrogate classes required by this methodology, we hypothesized that images belonging to などひ 
the same well (KiMorph) or compound treatment (BBBC021) defined a single surrogate class. ななど 
No phenotypic categories and annotations were therefore needed for training. Note that different ななな 
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surrogate classes might belong to the same phenotypic category, but this information is not ななに 
known to the network. We trained the neural network exclusively with the pixel data of ななぬ 
annotated images; the annotations were removed during training, and only used subsequently to ななね 
validate the performance of the approach.  ななの 
Fig. 1. Schematic overview of the Exemplar-CNN approach. Images are grouped into ななは 
surrogate classes based on intrinsic information (such as treatment information) instead of ななば 
external annotation. Taking the full-resolution images of the surrogate classes as input, an M-ななぱ 
CNN model is trained with the objective of separating the different surrogate classes. Once ななひ 
trained, as input images are fed to the network, the neural activation values are extracted as なにど 
feature vectors, thus mapping the input images to a low-dimensional feature space. Finally, なにな 
distance calculation and clustering analysis enable the identification of novel phenotypes. なにに 

 なにぬ 
Once the dataset-specific network models were trained, we validated the performance of なにね 

the approach in two steps. First, we built a nearest-neighbor classifier based on the feature なにの 
vectors computed by the trained M-CNN model to predict the phenotype of annotated images. なには 
We used the classification accuracy of the nearest neighbor classifier to evaluate whether the なにば 
feature vectors computed by the network encoded relevant phenotypic information. Second, we なにぱ 
applied the trained M-CNN model to the dataset’s entire image collection, including images with なにひ 
no annotation and not used during training, thereby obtaining one feature vector for each image なぬど 
in the entire collection. We performed hierarchical clustering analysis on the feature vectors, and, なぬな 
through visual inspection of images in selected clusters, identified novel phenotypes. The next なぬに 
two sections describe in detail the results for each dataset.  なぬぬ 
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KiMorph analysis and results なぬね 
The Kimorph dataset comes from an RNAi screen where HeLa cells were reverse transfected なぬの 
with siRNAs targeting ca. 800 kinases in duplicate. siRNA-mediated perturbations of the UBC, なぬは 
CLSPN and TRAPPC3 genes were used as positive controls while the Renilla luciferase (Rluc) なぬば 
siRNA treatment was used as a neutral control. After transfection, cells were fixed and labeled なぬぱ 
for DNA, F-actin, and B-tubulin, and imaged through an automated microscope (experimental なぬひ 
details can be found in the original publication(26)). Each of the four control siRNA treatments なねど 
(UBC, CLSPN, TRAPPC3, and Rluc) was spotted across 12 wells in duplicate. We declared all なねな 
fields-of-view (FOVs) coming from each well to define a single surrogate class, which amounted なねに 
to 48 surrogate classes (i.e., one class per replicate well). We then trained an M-CNN model to なねぬ 
maximize separation among these classes (see Methods for training details). Note that some なねね 
surrogate classes belong to the same control siRNA treatment but this information is not known なねの 
to the network. Previous studies(26,29) have shown that each of the four control siRNA なねは 
treatments induces a consistent phenotype across wells.  If the network learned to identify なねば 
invariant and discriminative features reflecting the control phenotypes, we hypothesized that なねぱ 
these would remain relatively similar within surrogate classes belonging to the same control なねひ 
while varying more strongly across surrogate classes belonging to different controls. なのど 

After training, we used the M-CNN model and PCA to extract a 94-dimensional feature なのな 
vector for each original FOV image. We aggregated the feature vectors at the well level, and なのに 
calculated cosine distance values between each pair of wells (see Methods for details). The なのぬ 
resulting distance matrix, with rows ordered by control groups, is shown in Fig. 2a. We observe なのね 
square blocks (submatrices) along the diagonal of the matrix, which reflect the low distance なのの 
values (i.e., high similarity) within wells from the same control siRNA treatment as entailed by なのは 
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the feature vectors computed by the network. To quantitatively verify the invariant and なのば 
discriminative properties of the feature vectors within and across the four different phenotypes, なのぱ 
we tested whether we could predict the phenotype of each well based on the phenotype of the なのひ 
well’s nearest neighbor in feature space. Over 50 repetitions of a random hold-out cross-なはど 
validation strategy, this nearest-neighbor classification approach identifying the four control なはな 
phenotypes yielded 100% classification accuracy (Supplementary Table 1). The results show なはに 
that the feature vectors computed by the M-CNN model, which was trained without any なはぬ 
phenotypic annotation, remain relatively similar within the same phenotype yet vary across なはね 
different ones, thus encoding phenotypic information that enables the identification of distinct なはの 
phenotypes.  なはは 
Fig. 2. Exemplar-CNN training and clustering analysis results for the KiMorph dataset. (a) なはば 
Cosine distance matrix between pairs of wells of control siRNA treatments. Rows are ordered by なはぱ 
control groups. Blue indicates a small distance value while yellow corresponds to a large なはひ 
distance value. (b) Sample images from clusters including the control siRNA treatments (left なばど 
column) as well as from clusters including phenotypes distinct from the control treatments (right なばな 
column). なばに 

 なばぬ 
 We next tested whether the M-CNN model trained with four control siRNA treatments なばね 
could generalize to images and phenotypes not used during training. We therefore fed each なばの 
image of the entire KiMorph dataset through the trained M-CNN model and PCA, and obtained a なばは 
94-D feature vector per image. Feature vectors of images belonging to the same siRNA treatment なばば 
were aggregated onto a single vector (see Methods for details). We calculated pairwise cosine なばぱ 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/361410doi: bioRxiv preprint 

https://doi.org/10.1101/361410
http://creativecommons.org/licenses/by/4.0/


ひ  

distances among all vectors corresponding to all 781 siRNA perturbations (see Supplementary なばひ 
Table 2), performed hierarchical clustering, and grouped all siRNA perturbations onto 27 なぱど 
clusters (see Supplementary Table 3). On each cluster, we carried out a Gene Ontology (GO) なぱな 
enrichment analysis for biological processes through the topGO R package(30), with all kinases なぱに 
in the library taken as the background set. After Benjamini–Hochberg correction for multiple なぱぬ 
testing, we found that 22 clusters out of the 24 clusters that included more than one gene were なぱね 
enriched with two or more GO terms. This indicates that the feature vectors computed by the なぱの 
network supported the identification of shared biological functions of groups of genes (see なぱは 
Supplementary Table 4). To validate the results, we first inspected clusters 17, 16, and 18, なぱば 
which included the three positive siRNA controls (viz. UBC, CLSPN, and TRAPPC3), なぱぱ 
respectively (Fig. 2b). The UBC cluster, which the enrichment analysis associates with DNA なぱひ 
damage and integrity checkpoints, includes essential genes such as COPB2 and PLK1 that, when なひど 
knocked down, cause a lethal phenotype akin to that of the UBC treatment. Likewise, the なひな 
CLSPN cluster comprises genes such as CDC7 and CDK3, which are associated with cell cycle なひに 
control, and whose knockdowns induce an enlarged cell phenotype resembling that of the なひぬ 
CLSPN treatment. In the TRAPPC3 cluster, which is enriched with the ‘integrin-mediated なひね 
signaling pathway’ GO term, we typically observe an elongated cell phenotype that is likewise なひの 
triggered by the CARD10 and SYK knockdowns. Overall, the clustering results and the なひは 
recapitulation of known biological functions of groups of genes suggest the feature vectors なひば 
learned by the network capture phenotypic information. なひぱ 

The main advantage of an unsupervised approach is its ability to discover novel phenotypes. なひひ 
To verify this premise, we identified clusters that were relatively distant (in terms of the cosine にどど 
distance values) from the four siRNA controls (see Methods for details). One of these distant にどな 
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clusters (viz. cluster 3) only includes images from the LAK perturbation. Visual inspection of the にどに 
images reveals an experimental artifact in images from replicate 1 (Fig. 2b top right; compare to にどぬ 
images from replicate 2). The artifact is not visible in images of any other treatment, and so the にどね 
approach correctly grouped images with this artifact onto a separate cluster. Images from cluster にどの 
27, which includes genes such as ACVR1 and GALK2, display a phenotype of enlarged nuclei にどは 
and cells with a strong actin signal (Fig. 2b middle right) that do not resemble any of the control にどば 
phenotypes. Likewise, in cluster 20, which includes genes such as RAC1 and PDGFRB, and にどぱ 
shows enrichment for the ‘positive regulation of Rho protein signal transduction’ GO term, we にどひ 
observe a reduced cell count and cell size in the images. These results suggest that the proposed になど 
unsupervised strategy supports the identification of novel imaging phenotypes. になな 
BBBC021 analysis and results になに 
In the BBBC021 dataset, MCF-7 breast cancer cells were treated with 113 compounds at eight になぬ 
concentrations in triplicate, before being fixed and labeled for DNA, F-actin, and 〈-tubulin. になね 
Images were captured from each channel with four fields per well(28). A subset of 103 になの 
compound-concentration pairs (hereafter defined as treatments) covering 38 compounds was になは 
previously inspected and annotated for one of twelve mechanisms-of-action (MoAs)(31). We になば 
declared all images coming from each treatment to belong to the same surrogate class, which になぱ 
resulted in 103 surrogate classes. The M-CNN model was trained to discriminate among all 103 になひ 
surrogate classes (see Methods for training details). Note that the network is not aware that ににど 
certain surrogate classes (i.e., treatments) belong to the same compound or the same MoA. If the ににな 
network learned MoA-relevant features, we posited that these would remain relatively invariant ににに 
within each MoA yet vary across different MoAs. ににぬ 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/361410doi: bioRxiv preprint 

https://doi.org/10.1101/361410
http://creativecommons.org/licenses/by/4.0/


なな  

Once trained, we used the M-CNN model and PCA to extract an 8-D vector for each ににね 
input image used during training. We aggregated the feature vectors of images belonging to the ににの 
same treatment onto a single feature vector and computed cosine distances between all pairs of にには 
treatments (Fig. 3a). Each row of the matrix corresponds to one treatment. Treatments are ににば 
ordered by MoA, and then by compound and concentration. Overall we observe sub-matrices ににぱ 
(squares) along the diagonal indicating that the network learned features that remain relatively ににひ 
invariant within each MoA. To quantitatively verify the homogeneity and variation of the learned にぬど 
features within and across phenotypes, respectively, we tested whether the MoA of a treatment にぬな 
could be identified based on the MoA label of the treatment’s nearest neighbor in feature space. にぬに 
Here we adopted the same leave-one-compound-out cross-validation strategy used in previous にぬぬ 
benchmarking studies(31) that prevents matching treatments from the same compound (see にぬね 
Methods for details). With this nearest-neighbor classification strategy, we achieve a median にぬの 
accuracy over all classes of 88%. The confusion matrix is shown in Supplementary Table 5. にぬは 
For certain MoAs (e.g., aurora kinase inhibitors, cholesterol-lowering, protein degradation, and にぬば 
protein synthesis), the approach achieved 100% classification accuracy. For other MoAs, the にぬぱ 
accuracy ranged from 75% to 89%. The performance of the approach is comparable to our にぬひ 
previous supervised approach(16), which is explicitly optimized to distinguish these twelve にねど 
MoAs, as well as to other non-supervised approaches(19,31). Overall the results show that, while にねな 
the MoA categories are unknown to the network, it manages to learn features which remained にねに 
relatively invariant within each MoA yet varied across MoAs. にねぬ 
Fig. 3. Exemplar-CNN training results for the BBBC021 annotated subset. (a) Cosine にねね 
distance matrix between pairs of treatments. Labels on the left are the MoA annotations. Rows にねの 
are ordered by MoA annotation, compound, and concentration. Blue indicates a small distance にねは 
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value while yellow corresponds to a large distance value. (b) Zoomed-in view of the red box in にねば 
(a), KI for kinase inhibitors and MD for microtubule destabilizers. Labels on the right are にねぱ 
compounds and concentrations in µM. (c) Sample images corresponding to the treatments in (b). にねひ 
Colchicine, which is annotated as a microtubule destabilizer (MD), visually looks more similar にのど 
to treatments annotated as kinase inhibitors (KI). にのな 

 にのに 
While the approach is able to recapitulate known information about the annotated data, にのぬ 

we tested further its ability to reveal phenotypic information beyond the annotation. To this aim, にのね 
we conducted a closer examination of the distance matrix. While treatments annotated with the にのの 
same MoA are mapped by the network to nearby positions in feature space, and are therefore にのは 
distinguishable via a nearest-neighbor classifier, the sub-matrices along the diagonal of the にのば 
distance matrix in Fig. 3a reveal a certain heterogeneity within individual MoAs. For example, にのぱ 
for the aurora kinase inhibitors (Aur) MoA, the corresponding sub-matrix reveals three groups にのひ 
corresponding to the three compounds annotated with this MoA (viz. AZ-A, AZ258 and AZ841), にはど 
which suggests that the compounds caused slightly different sub-phenotypes. A similar にはな 
observation can be made for the actin disruptors (Act), protein degradation (PD), and protein にはに 
synthesis (PS) MoAs. The microtubule destabilizers (MD) MoA is comprised by four にはぬ 
compounds (14 treatments, sub-matrix highlighted in red in Fig. 3a. and zoomed in view in Fig. にはね 
3b). Three of the four compounds, Demecolcine, Nocodazole, and Vincristine, are relatively にはの 
similar to each other as well as distant to the kinase inhibitor (KI) group, although Nocodazole にはは 
shows a sub-phenotype different from Demecolcine and Vincristine. The fourth compound, にはば 
Colchicine at 0.03µM, which is annotated as MD, instead seems to be closer to the kinase にはぱ 
inhibitors (KI) treatments than to the other MD treatments, and is accordingly predicted as KI by にはひ 
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the nearest-neighbor classification scheme. Visual examination of the corresponding images also にばど 
confirms Colcichine’s similarity to the KI treatments (Fig. 3c). Although only one concentration にばな 
(0.03µM) of Colcichine is included in the annotation subset, there are seven concentrations にばに 
(0.001 – 3.0 µM) in the entire BBBC021 dataset. Only at 3.0µM, Colchicine causes phenotypes にばぬ 
similar to other microtubule destabilizers (Supplementary Fig. 2). The proposed unsupervised にばね 
approach is thus able to detect phenotype information in the data beyond the manual annotation, にばの 
which is not feasible with a supervised method.  にばは 
 Next, we set out to verify the applicability of the approach to the entire BBBC021 にばば 
dataset. Here we first trained an M-CNN model using all images from the 103 annotated にばぱ 
treatments (amounting to 103 surrogate classes) plus images from the neutral control (DMSO), にばひ 
which were grouped into an additional surrogate class. Once trained, we applied the model to all にぱど 
13200 images included in the dataset. Using PCA, we obtained a 77-D feature vector per image. にぱな 
Vectors of images belonging to the same treatment replicate (well) were aggregated onto a single にぱに 
vector. We then determined the similarity of each replicate vector to each of the 12 MoAs and にぱぬ 
DMSO based on the cosine distances of each vector to all replicate vectors belonging to the 103 にぱね 
MoA-annotated treatments as well as to all DMSO wells (see Methods for details). The 13 にぱの 
similarity values of each treatment replicate are shown in Supplementary Table 6. にぱは 

In our previous supervised analysis of the BBBC021 dataset, four compounds were にぱば 
selected as representative concentration-response curves (16). In the current study, we selected にぱぱ 
the same four compounds and plotted the similarity values to each MoA and DMSO as a にぱひ 
function of the concentration (Supplementary Fig. 1). In the previous supervised approach, the にひど 
y-axis was the classification probability and for each compound there was only one or two にひな 
dominant MoAs across concentrations. In the current unsupervised approach, the y-axis is the にひに 
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similarity to each MoA which ranges from 0 to 2, and the gaps between curves are much less にひぬ 
pronounced. To compare the overall trend, we simplified the plot by only showing MoAs shown にひね 
as dominant in the previous supervised approach (Fig. 4a). Data points highlighted by dashed にひの 
circles correspond to concentrations annotated with the curve’s MoA (and therefore achieving にひは 
maximum similarity). For Floxuridine, consistent with the supervised approach, the DNA にひば 
replication (DR) MoA is the top MoA prediction for all concentrations. For Nocodazole, the にひぱ 
curve shows a similar trend to the supervised approach, with DMSO as the top MoA in low にひひ 
concentrations (0.001-0.01µM) and microtubule destabilizers (MD) as the top MoA in high ぬどど 
concentrations (0.1-4.0µM). For Alsterpaullone, in the current unsupervised analysis, kinase ぬどな 
inhibitor (KI) and DMSO are on the same level until the higher concentrations. DNA-damage ぬどに 
(DD) increases at the last concentration but does not pass the level of KI. In the previous ぬどぬ 
supervised analysis the differences among the MoAs were much more obvious although with ぬどね 
larger error bars. Finally, for Hydroxyurea, for which none of the concentrations was included in ぬどの 
the training data, the trend of the curve is consistent with the supervised approach, where DMSO ぬどは 
decreases over concentration while DNA-damage (DD) increases and takes over at the two ぬどば 
highest concentrations.  ぬどぱ 
Fig. 4. Example concentration-response curves and clustering analysis for the BBBC021 ぬどひ 
dataset. (a) Similarity-vs-concentration plots for four compounds. The similarity (y-axis) to ぬなど 
selected MoAs and DMSO over concentration (x-axis) computed using the features vectors ぬなな 
yielded by the proposed approach is shown. The dots and error bars represent the median and ぬなに 
MAD over the experimental replicates (n鳥=鳥2 for Alsterpaullone and n竺=鳥3 for the other three ぬなぬ 
compounds). Data points marked by dashed circles are annotated with the curve’s MoA and ぬなね 
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therefore achieve maximum similarity. (b) Sample images of clusters including distinct ぬなの 
phenotypes not related to the annotated phenotypes. ぬなは 

Finally, we tested the ability of the approach to detect novel phenotypes. To this end, we ぬなば 
further aggregated the replicate vectors belonging to the same treatment onto a single vector. ぬなぱ 
Likewise, DMSO vectors stemming from the same plate were aggregated onto a single vector. ぬなひ 
We calculated pairwise cosine distances among all treatments, including DMSO, and applied a ぬにど 
hierarchical clustering procedure that yielded 79 clusters (see Methods as well as ぬにな 
Supplementary Table 7 for the complete distance matrix). We inspected visually clusters that ぬにに 
included exclusively compound-concentration treatments without any MoA annotation (see Fig. ぬにぬ 
4b). For example, in cluster 37, we found images from Mitoxantrone at 10µM and Staurosporine ぬにね 
at 0.1µM and 0.3µM that induced a strong toxic phenotype. In cluster 20, which included images ぬにの 
from AZ-841 at 30µM only, we found images that displayed an unusual purple phenotype that ぬには 
could hint at a tubulin toxin/disruptor MoA for this treatment.  Finally, in cluster 41, we found ぬにば 
images from Staurosporine at 0.0003µM, Bryostatin at 3.0µM, as well as Valproic Acid at ぬにぱ 
150µM where groups of elongated cells with thin protrusions forming a networked pattern were ぬにひ 
visible. The results underscore the ability of the proposed unsupervised approach to identify ぬぬど 
novel phenotypes not previously known and not included during training. ぬぬな 
Discussion ぬぬに 
Deep learning has been successfully pioneered in the field of image-based high-throughput ぬぬぬ 
screening(14–16,19,24). The majority of approaches based on deep neural networks adopt a ぬぬね 
supervised learning paradigm that requires manual definition and acquisition of phenotypic ぬぬの 
labels. As such, supervised approaches do not support naturally the discovery of new ぬぬは 
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phenotypes. In this work, instead of relying on predefined phenotypic labels, we developed an ぬぬば 
unsupervised learning approach that exploits the inherent variation across treatments typically ぬぬぱ 
found in imaging-based studies to learn phenotypically relevant features that enable the ぬぬひ 
discovery of novel phenotypes.  ぬねど 

The proposed approach obviates the need for manually specified phenotypic categories by ぬねな 
defining automatically surrogate categories through the inherent grouping of images (e.g., ぬねに 
images belonging to the same well) found in the experimental design of high-content studies. ぬねぬ 
The fact that multiple surrogate categories may belong to a (known) phenotypic class remains ぬねね 
explicitly held-out to the neural network model throughout. Our results on two benchmark ぬねの 
datasets demonstrate that the feature vectors extracted from the images through the trained ぬねは 
models support the recognition of known phenotypes included within the surrogate categories. ぬねば 
By testing the models on images outside of the surrogate categories, we also showed that the ぬねぱ 
models generalize to phenotypes beyond those used during training. With a straightforward ぬねひ 
clustering analysis of the feature vectors, we managed to pinpoint novel phenotypes, which is ぬのど 
one of the main goals of image-based high-content screening studies, where genetic or chemical ぬのな 
perturbations may potentially induce a range of unexpected phenotypes.  ぬのに 

Certainly, one could identify novel phenotypes with conventional image analysis ぬのぬ 
approaches, which typically require segmentation and manual feature engineering(26,28,32,33). ぬのね 
It is however encouraging to see that the proposed unsupervised approach, which requires no ぬのの 
segmentation, no manual feature engineering, and no phenotypic categories and annotations, also ぬのは 
supports the identification of novel phenotypes in a more automated fashion. The proposed ぬのば 
approach does not provide single-cell readouts, and therefore does not replace single-cell ぬのぱ 
analyses(34,35).  ぬのひ 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/361410doi: bioRxiv preprint 

https://doi.org/10.1101/361410
http://creativecommons.org/licenses/by/4.0/


なば  

With the proposed unsupervised learning strategy, the inferred network models depend on ぬはど 
the phenotypic data included within the surrogate classes. In our study, we restricted the ぬはな 
surrogate classes to images that had a phenotypic annotation. This strategy facilitated the ぬはに 
validation of the approach, as it allowed testing whether the approach supported the recovery of ぬはぬ 
known phenotypic classes. Additional work is however needed to decide which images and ぬはね 
phenotypes should be included within the surrogate classes. One possibility would be to adapt an ぬはの 
active learning approach, where surrogate classes would be iteratively added based on a certain ぬはは 
performance criterion. ぬはば 
Methods ぬはぱ 
Exemplar Convolutional Neural Networks ぬはひ 
We use the Exemplar-CNN optimization strategy(25) to train a convolutional neural network ぬばど 
without relying on any phenotypic label annotation. In contrast to a typical supervised learning ぬばな 
approach, where the neural network is trained to discriminate among a set of predefined ぬばに 
phenotypic classes, the proposed approach is trained to discriminate among a set of surrogate ぬばぬ 
classes. The main idea underlying the Exemplar-CNN methodology is to learn image features ぬばね 
that are both invariant within each surrogate class as well as discriminative across surrogate ぬばの 
classes. In the original strategy, each exemplar (i.e., a region-of-interest within an image) and ぬばは 
transformed versions thereof (obtained through extreme data augmentation schemes) defined a ぬばば 
single surrogate class. This strategy was shown to work well with a large number of surrogate ぬばぱ 
classes (e.g., up to 4000). However, when the number of (exemplar) images is very large and the ぬばひ 
images look very similar, discrimination among the surrogate classes becomes more challenging. ぬぱど 
A prior grouping (e.g., through clustering) of similar images was suggested as an approach to ぬぱな 
reduce the number of classes as well as to group very similar images into a single surrogate class. ぬぱに 
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In our case, instead of taking each image and its variations as a single surrogate class, we take ぬぱぬ 
advantage of the intrinsic grouping of images provided by the experimental design of each study ぬぱね 
to define the surrogate classes. For example, for each well, multiple fields-of-view (FOVs) are ぬぱの 
typically acquired. We may therefore define all FOVs from a single well to define a single ぬぱは 
surrogate class. Similarly, each treatment combination (e.g., a compound at a specific ぬぱば 
concentration) is typically replicated. Images from these replicates may be therefore declared as ぬぱぱ 
a single surrogate class. The definition of surrogate classes depends on the experimental details ぬぱひ 
in each study. After defining 軽s  surrogate classes in such a way, we associate a numerical label ぬひど 検surrogate with each surrogate class and its images.   ぬひな 

We use a multi-scale convolutional neural network (M-CNN) architecture to solve the ぬひに 
task of surrogate class discrimination. The last two layers of our M-CNN architecture include a ぬひぬ 
fully connected layer with 128 hidden units, as well as a soft-max output layer, which yields a ぬひね 
vector 素 with elements 貢賃  that encode a probability score for each of the 軽s  surrogate classes to ぬひの 
be identified (all architectural details are provided in Supplementary Table 8). Using 軽t images ぬひは 
associated with surrogate classes and their numerical labels, we optimize the parameters of the ぬひば 
M-CNN by minimizing the following error function: ぬひぱ 
な軽t

布 血岾素岫沈岻┸ 検surrogate
岫沈岻 峇 髪 膏押敬押態朝t

沈退怠  ぬひひ 
where f(糾┸糾) is the cross-entropy error function evaluating the agreement between the network’s ねどど 
soft-max output 素岫沈岻 and the surrogate (true) label 検surrogate

岫沈岻  for the i-th training example, 押糾押態 is ねどな 
the L2 norm, 敬 is a vector including all weights of the network, and 膏 is a coefficient that ねどに 
regulates the influence of the magnitude of the weight vector on the error function. We use the ねどぬ 
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stochastic gradient descent (SGD) algorithm via backpropagation and drop-out to approximate a ねどね 
solution.  ねどの 
Learning details ねどは 
Generally, we used the same strategy and parameter values that we used previously to train the ねどば 
M-CNN architecture in a supervised way(16). In this study, we however increased the number of ねどぱ 
training epochs to 27. The step size over which the learning rate is held constant was also ねどひ 
increased to 9 epochs. One epoch is equal to the number of iterations needed to evaluate all ねなど 
images in the training dataset. We additionally used the dropout technique(36) on the ねなな 
penultimate layer of the M-CNN architecture to encourage a better exploration of the available ねなに 
activation space. ねなぬ 
Feature extraction, projection, and aggregation ねなね 
Once trained, the application of the M-CNN model to any input image yields a 128-dimensional ねなの 
activation vector z with elements zi corresponding to the activation values of each hidden unit ねなは 
within the fully connected layer (second-to-last layer) that are recorded as the input image is ねなば 
passed through the network. We subsequently project all activation vectors onto an orthogonal ねなぱ 
basis computed via principal component analysis (PCA) that takes exclusively into consideration ねなひ 
the activation vectors of (non-augmented) images used during training. Principal components ねにど 
explaining 99% of the variance define the new feature sub-space onto which all activation ねにな 
vectors are typically projected.  ねにに 
 Feature vectors belonging to the fields-of-view (FOVs) of a well are aggregated by taking ねにぬ 
the element-wise median of the vectors. The resulting vector is taken as the feature vector ねにね 
representing the corresponding well. Likewise, to construct the feature vector for a given ねにの 
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treatment, feature vectors of the treatment’s replicate wells are summarized by taking the ねには 
element-wise median of the vectors.  ねにば 
 ねにぱ 
Distance and similarity calculations ねにひ 
To compare treatments, we use the cosine distance between two feature vectors. The cosine ねぬど 
distance is defined as one minus the cosine of the angle between the vectors. The values thus ねぬな 
range from 0 (denoting an identical direction for both vectors) to 2 (denoting opposite ねぬに 
directions). To obtain a measure of similarity between treatments within the same numerical ねぬぬ 
range, we subtract each cosine distance value from two.  ねぬね 
 ねぬの 
Clustering ねぬは 
We compute cosine distances among all pairs of treatments in a dataset. We use a hierarchical ねぬば 
clustering algorithm to group treatments based on these pairwise cosine distance values. The ねぬぱ 
resulting hierarchical tree is partitioned with a threshold value equivalent to the cosine distance ねぬひ 
entailed by an angle of ヾ / 3. ねねど 
 ねねな 
Nearest neighbor classifier ねねに 
Using pairwise cosine distances, we build a nearest neighbor classifier to investigate whether the ねねぬ 
feature vectors obtained via the unsupervised model encoded information that supported the ねねね 
retrieval of known phenotypic categories that had been manually assigned to a subset of ねねの 
treatments. Evaluation of the classifier’s performance requires splitting the feature vectors onto a ねねは 
training set and a test set. Given a feature vector from the test set, we determine its closest ねねば 
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feature vector (i.e., its nearest-neighbor) within the training set, and assign the nearest neighbor’s ねねぱ 
phenotypic or MoA category to the test feature vector.  ねねひ 
 In the KiMorph dataset, we use a random hold-out cross-validation strategy where we ねのど 
randomly group all feature vectors into a training set and test set. The proportion of treatments ねのな 
assigned to the training set is 90%. Using the nearest-neighbor classifier, we predict the ねのに 
phenotype of the feature vectors in the test set, and evaluate the classification performance. We ねのぬ 
repeat the partitioning and evaluation process 50 times. The confusion matrix aggregating the ねのね 
results over the 50 repeats is shown in Supplementary Table 1.   ねのの 
 ねのは 
In the BBBC021 dataset, we use a leave-one-compound-out validation strategy, where the ねのば 
training dataset excludes feature vectors of treatments (i.e., compound-concentration pairs) ねのぱ 
sharing the same compound as the test feature vector. We use all 103 treatments as test feature ねのひ 
vectors once, obtain a nearest-neighbor prediction for the MoA, and compare the prediction with ねはど 
treatments’ known MoA. The resulting confusion matrix is shown in Supplementary Table 4.  ねはな 
 ねはに 
Image pre-processing ねはぬ 
All image intensities are subjected to an Anscombe transform. Histogram normalization of each ねはね 
image is carried out on per-plate basis as described previously(16). All image intensities are ねはの 
mapped to an 8-bit range. ねはは 
 ねはば 
Image datasets ねはぱ 
The KiMorph dataset is available from the Wolfgang Huber Group EBI website at ねはひ 
https://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/.  ねばど 
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The BBBC021 version 1 image dataset is available from the Broad Bioimage Benchmark ねばな 
Collection at http://www.broadinstitute.org/bbbc/BBBC021/. ねばに 
 ねばぬ 
Detailed description of the datasets can be found on their corresponding webpages. ねばね 
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