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 Stomata are an attractive model for studying the physiological responses of plants to various 

environmental stimuli1–3. Of the morphological parameters that represent the degree of stomatal 

opening, the length of the minor axis of the stomatal pore (the stomatal aperture) has been most 

commonly used to dissect the molecular basis of its regulation. Measuring stomatal apertures is time 

consuming and labour intensive, preventing their use in large-scale studies. Here, we completely 

automated this process by developing a program called DeepStomata, which combines stomatal 

region detection and pore isolation by image segmentation. The former, which comprises histograms 

of oriented gradients (HOG)-based stomatal detection and the convolutional neural network (CNN)-

based classification of open/closed-state stomata, acts as an efficient conditional branch in the 

workflow to selectively quantify the pores of open stomata. An analysis of batches of images showed 

that the accuracy of our automated aperture measurements was equivalent to that of manual 

measurements, however had higher sensitivity (i,e., lower false negative rate ) and the process speed 

was at least 80 times faster. The outstanding performance of our proposed method for automating a 

laborious and repetitive task will allow researchers to focus on deciphering complex phenomena. 

 To fully understand the molecular mechanisms underlying the regulation of stomatal movement, 

sufficient numbers of stomata must be analysed under a range of experimental conditions. To date, ocular 
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micrometer-assisted visual estimation has been widely used to measure stomatal apertures; however, as 

stomatal movements are highly sensitive to their environment, the number of stomata that can be analysed 

before their apertures change is very limited using this method. Imaging intact or replica leaf surfaces 

enables the analysis to be deferred, alleviating the possibility of aperture changes during observation; 

however, aperture measurements are still labour intensive. Recent technical advances in computer vision 

can assist the quantification process. CARTA, an ImageJ plugin that utilizes a self-organizing map 

algorithm, allowed the semi-automatic classification of open/closed-state stomata4. More recently, a script 

that automatically quantifies stomatal apertures has been developed 

(https://github.com/TeamMacLean/stomatameasurer); however, it requires that images be taken using a 

confocal scanning laser microscope with a high-contrast background. In many studies, images are acquired 

using an optical camera with bright-field microscopy, which contains dense and complex pixel 

information. To the best of our knowledge, no methods currently facilitate the automatic measurement of 

stomatal apertures from such images. 

 As a solution to these issues, phenotypes that can serve as a proxy for stomatal opening have been 

used to identify factors that regulate stomatal movement. Thermal imaging of leaves or monitoring their 

water loss can reflect the stomatal aperture-dependent transpiration rate5,6, while immunostaining can 

detect the degree of H+-ATPase phosphorylation that provides the motive force for stomatal opening7,8. 

These approaches have been successfully used to isolate genetic factors or compounds involved in 

stomatal regulation; however, these proxies do not always reflect the true status of the stomatal aperture. 

Recently, we isolated compounds that regulate stomatal movements (stomatal closing compounds; SCLs) 

in a chemical screen focussed on stomatal apertures9. Limiting to include only chemicals for quantification 

that altered stomatal aperture greatly enhanced the screening throughput to 150 compounds per day, which 

resulted in the successful identification of 9 candidates from over 20,000 chemicals. However, we could 

not exclude the possibility of overlooking false negatives due to technical error or a gradual effect of the 

compound. Automating the quantification process would not only ensure high throughput, but would also 

provide uniform quality and higher sensitivity in various analyses. Here, we propose a complete 

automation of this process, enabling the batch processing of bright-field images containing both open and 

closed stomata (Fig. 1). 

 During conceptualization, we were inspired by the principle of facial recognition10,11 (Fig. 2A), or 

more broadly region proposal algorithms. First, the position of the face within the image is isolated either 

using a predefined threshold, or by a machine learning-based method such as histograms of oriented 

gradients (HOG), local binary patterns, or Haar-like cascades. Next, using the cropped face image as an 

input, high-context information such as age, biological sex, emotion, and identity are further qualitatively 

or quantitatively evaluated using a convolutional neural network (CNN). CNNs are a type of neural 

network used in deep learning, and are powerful tools for image recognition and classification12. Since 

deep learning enables the neural network itself to learn the most suitable feature, it generally prevails over 

conventional machine learning in various situations. In this report, we propose a method for stomatal 
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aperture measurement that partially follows facial recognition: (1) Detection of the stomatal candidate 

regions within the image using a HOG; (2) Classification of whether the detected stomata are open or 

closed using the CNN; and (3) Selective quantification of the apertures of open stomata by pore region 

isolation using binary based image segmentation. 

 The pipeline of the proposed method is summarized in Fig. 2b. The details of the respective 

processes are provided in the Methods section of this paper. For stomatal detection, we combined HOG 

with a max-margin object detection method13,14. The constructed HOG detector scans the input image and 

the HOGs are compared within the sub-region of images for stomatal detection (Supplementary Fig. 1a). 

We constructed a detector that can accept any orientation and degree of stomatal aperture (Supplementary 

Fig. 1b). The precision and recall value of the detector on the test dataset were 0.954 and 0.940, 

respectively (Supplementary Fig. 1c). In addition to stomata, the detector was found to collect false 

positives, images containing a background non-stomata region; therefore, we categorized the collected 

images into four classes: open, partially open, or closed stomata, or false positives. We then trained a CNN 

that takes these images as an input and infers the probability of each belonging to the four separate classes 

(Supplementary Fig. 2a). After training, the classification accuracy reached an average of 92.9% on the test 

dataset (Supplementary Fig. 2b). Images classified as false positives were discarded, and closed stomata 

were assigned a stomatal aperture of 0 µm. Regions containing open and partially open stomata were 

further analysed to isolate the stomatal pore. This was done by combining region segmentation with the 

filtering out of non-pore regions using manually defined geometrical shape parameters. Finally, the minor 

axis length of the stomatal pore was retrieved as the stomatal aperture. 

To evaluate the accuracy of the proposed method, the automatically measured stomatal apertures were 

compared with manually measured values. The slope (1.048) and the R-squared value (0.982) of the 

regression line revealed a negligible difference between the two datasets (Fig. 2c). In addition, the status of 

the stomata inferred by the CNN showed a clear segregation between open, partially open, and closed 

stomata, based on their stomatal apertures. The maximum aperture of the closed stomata was 1.7 µm. The 

minimum and maximum values of the partially open stomata were 0.9 µm and 3.4 µm, respectively, while 

for the open stomata they were 7.2 µm and 12 µm, respectively (Fig. 2d). This suggests that deep learning 

not only functions as an efficient conditional branch, but also enables a human-like qualitative decision to 

be embedded in the image analysis pipeline. 

Based on the proposed method, we built a program (DeepStomata) that enables batch image 

processing. We first analysed the effect of the plant hormone abscisic acid (ABA) and the fungal toxin 

fusicoccin (FC) on stomatal movement, which are known to inhibit and induce stomatal opening, 

respectively1,2,15. We determined their half-maximal active concentration by treating stomata with various 

concentrations of the compounds, followed by image acquisition and automatic quantification (Fig. 3a and 

3b). The calculated half-maximal inhibitory concentration (IC50) of ABA and the half-maximal effective 

concentration (EC50) of FC against stomatal opening were 474 nM and 4.46 µM, respectively. Our 
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calculated IC50 of ABA was close to a previously reported value, 0.36 µM9. Next, we reanalysed 715 

images acquired from our recent chemical screen to identify compounds that alter stomatal movement9. In 

addition to the stomatal apertures, we also calculated the percentage of open, partially open, and closed 

stomata classified by the CNN. Of the 82 compounds evaluated (Fig. 3c,e and Supplementary Fig. 3), two 

(SCL1 and SCL1-2) inhibited light-induced stomatal opening (mean stomatal aperture below 50% of 

DMSO-treated plants; Student’s t-test p < 0.05) (Fig. 3d, dark blue). We further confirmed that the 

stomatal apertures measured by our program were identical to those measured manually following 

treatment with these compounds (Fig. 3e). SCL1 and SCL1-2 were the only bioactive compounds 

identified in the previous study9; however, with a more marginal threshold (mean stomatal aperture below 

80% of the DMSO-treated plants; Student’s t-test p < 0.05), eight other compounds were also found to 

have an inhibitory effect on stomatal opening (Fig. 3d, light blue). These compounds were overlooked in 

the qualitative evaluation used in our previous screen. Moreover, the total time required to process the 

dataset was 12.3 minutes in the present study, while it was estimated to take over 16 hours for a single 

worker to manually measure the apertures in the 715 images at a constant speed without any breaks (Fig. 

3f). Collectively, these results suggest that introducing automation by DeepStomata enables a higher 

sensitivity (i.e., a lower false negative rate) and a dramatically faster analysis. 

As reviewed by Grys et al.16, the phenotypic analysis of biological images first requires that the object 

of interest be isolated from the background. Thresholding or edge-detection algorithms followed by region 

segmentation have often been used to isolate cells or cellular components; however, the input previously 

had to be free of background noise, such as an image acquired using a confocal laser scanning microscope. 

Such approaches were not suitable for evaluating stomatal pores in our images, which depict complex leaf 

surfaces and contain rich information in the non-stomatal regions (Fig. 1). Moreover, the lack of apparent 

pores in the closed stomata made their automated quantification difficult. In this study, we utilized HOG-

based stomata detection with a CNN-based object classifier, which was inspired by a region proposal 

method. This allowed us not only to count the closed stomata, but also to crop the sub-regions containing 

open stomata, making the pore isolation more straightforward using region segmentation.  

In the present study, we established a method that enables the complete automation of stomatal 

aperture measurement. To the best of our knowledge, this is the first approach that can process stomata 

images obtained using a bright-field ocular microscope. Our study also demonstrates that techniques used 

in the field of computer vision and pattern recognition can have powerful applications in plant image 

analysis. Moreover, recent technical advances in deep learning have enabled the direct detection of object 

positions17–20 and segment regions at a pixel level21,22, in addition to their classification. Since such 

methods are capable of learning and processing more complex tasks than conventional machine learning 

approaches, we expect that programs incorporating these techniques will further broaden the versatility of 

automated tasks used for laborious and repetitive plant image analyses, such as chemical/genetic 

screening, thus freeing researchers to focus on deciphering complex phenomena. 
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Methods 

Code Availability 

DeepStomata was written in Python with open source libraries. The source code is available in github 

repository (https://github.com/totti0223/deepstomata/) under MIT license. 

Stomatal Detection by HOG 

Stomatal detection by HOG was performed using the simple_object_detector module of the dlib library 

(http://dlib.net), based on the developer’s tutorial (http://dlib.net/train_object_detector.py.html). Greyscaled 

images were used for training and detection. Notably, upon detector training and detection, the input image 

was down-sampled (2448×1920 px to 512×402 px) to eliminate some of the minor noise within the 

original image, which could affect the detection accuracy, and to enhance the detection speed. The co-

ordinates of the detected objects in the down-sampled image were then converted for mapping to the 

original image by multiplying by the scaling factor, 4.78 (2448 px / 512 px). Sub-regions were cropped 

according to the co-ordinates and passed to the following classifier. 

Region Classification by CNN 

A TensorFlow library (https://www.tensorflow.org/) was used to construct the CNN classifier, the 

architecture of which is described in Supplementary Fig. 2a. A dataset containing, respectively, 590, 480, 

and 799 images of open, partially open, and closed stomata and 99 false positives was prepared for training 

the network. Images were collected by manually classifying the images obtained by the HOG detector. 

Since the primary objective was to discriminate between open and closed stomata and exclude the false 

positives, no stringent criteria were introduced to discriminate between open and partially open stomata. 

The partially open class was defined to examine whether the CNN could learn a human-like classification. 

Stomata were defined as open if their stomatal apertures were larger than about 4 µm, and defined as 

partially open if they had smaller apertures.  

The classified images were resized to 56×56 px to train the CNN. Training was performed by minimizing 

the loss value using the Adam optimizer algorithm with the following parameters: 6% drop out rate; 

0.0001 learning rate; 5000 iterations; and 200 batch size. If the maximum probability value of the classifier 

showed that the image depicted an open or partially open stoma, the image was passed to the final 

quantification step. In the case of images classified as closed, the stomatal apertures of the objects were 

assigned a value of 0 µm. False positives were discarded. 

Stomatal Pore Quantification 

The apertures of the stomatal pores were quantified using the image processing modules of scikit-image 

(http://scikit-image.org). The input image, the cropped image generated by the detector, was first converted 
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to greyscale, Gaussian blurred, and binarized using an adaptive threshold. Erosion and dilation followed by 

dilation and erosion were applied to remove minor noise and fill gaps. Next, the ndimage.label module of 

scipy (https://www.scipy.org) and the measure.regionprops module of scikit-image were used to label and 

retrieve the geometric properties of the segmented regions. To discriminate the stomatal pore, manually 

defined criteria (area, solidity, and major axis length) were introduced to filter out non-stomatal pore 

regions. The x,y co-ordinates of the centroid of the respective regions were also introduced as filtering 

criteria because the pore tended to be located at the centre of the detected region. The optimized 

parameters for filtering were: 100 px < area < 6000 px, solidity > 0.8, major axis length < 40 px, and an 

x,y co-ordinate of 0.2 × (X,Y) < (x,y) < 0.8 ± (X,Y) for the centroid, where (X,Y) is the width and height 

of the cropped sub-region. The minor axis length of the remaining region was retrieved as the value of the 

stomatal aperture. 

Image Acquisition 

Dayflower (Commelina benghalensis) plants were grown in soil in a glasshouse at 25°C, under a natural 

photoperiod of 10 h light/14 h dark. Dayflower leaf discs were treated with chemical compounds for 

screening as described previously9. Briefly, plants were incubated in darkness overnight to ensure the 

complete closure of their stomata. Using a biopsy punch (Kai Medical), 4-mm leaf discs were excised from 

fully expanded leaves under dim light. The discs were emerged in buffer (50 mM KCl, 0.1 mM CaCl2, 0.4 

M mannitol, 5 mM MES-KOH, pH 6.5) with or without a screening compound and with or without light 

irradiation [150 µmol m–2 s–1 red light (LED-R; Eyela), 50 µmol m–2 s–1 blue light (Stick-B-32; Eyela), or 

white light (LED unit of BX43 microscope; Olympus)]. Images of the leaf disc were taken using a 

stereomicroscope (BX43; Olympus) with a 10× objective lens (UPlanFL N; Olympus) and a CCD camera 

(DP27; Olympus). Upon acquisition, the “Extended Focus Imaging” function of the cellSens standard 

software (Olympus) was used to maximize the number of fully focused stomata within each image. The 

stomatal apertures were manually quantified using cellSens standard software. Closed stomata were 

assigned an aperture of 0 µm, and the stomatal apertures of the open stomata were quantified by measuring 

the minor axis length of the stomatal pore. 
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Figure Legends 

Figure 1 | Automatic quantification of stomatal aperture by DeepStomata. a, Taking bright-field 

images as an input, our proposed method enables the automation of stomatal aperture measurement. The 

detected stomata and their open, partially open, or closed states are marked as red, orange, and blue boxes, 

respectively. Enlarged views of representative stomata from each image are shown in b. For each stoma, its 

open, partially open, or closed status, and its quantified aperture are shown. The detected stomatal pore 

regions of the open stomata are coloured red or orange. 

Figure 2 | Workflow and processing accuracy of automatic stomatal aperture quantification. a, 

Schematic diagram of facial detection. First, the sub-region of an image that contains a face is detected and 

cropped (Face Detection) using predefined features or machine learning. Next, the cropped images are 

passed to the trained convolutional neural networks (CNNs) to infer complex factors such as age, 

biological sex, emotions, or identity (name). b, Schematic diagram of our proposed method. First, the sub-

regions that contain stomata are obtained by the HOG detector (Step 1; See Supplementary Figure 1a for 

details of the constructed HOG detector). Next, cropped images are processed by the CNN to infer whether 

the respective input image is an open, partially open, or closed stoma, or a false positive that does not 

contain a stoma (Step 2; See Supplementary Figure 2a for details of the CNN architecture). Images 

classified as false positives are discarded from the analysis. Closed stomata are assigned a 0-µm stomatal 

aperture. Open and partially open stomata are passed to the pore quantification step (Step 3), in which the 

images are processed to create and label their segmented regions. To discriminate the stomatal pore, 
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manually set criteria were introduced to filter out non-pore regions (See Methods for details). c, Scatter 

plot of automatically quantified stomatal apertures versus manually quantified apertures. The 

classifications denoted by the CNN are displayed in different colours. The equation and R-squared value of 

the regression line are displayed. Data categorized by classification are summarized in d. d, Box plots 

showing the stomatal apertures of the closed, partially open, and open stomata classified by the CNN. 

Statistical differences were determined using a one-way ANOVA followed by a Tukey post-hoc analysis; 

different letters indicate significant differences (p < 0.01). 

Figure 3 | Examples of applications in the characterization and screening of compounds that control 

stomatal movements. a–b, Dose-response curves of the inhibition of light-induced stomatal opening by 

abscisic acid (ABA) (a) or promotion of stomatal opening in the dark by fusicoccin (FC) (b). The IC50 or 

EC50 value and the R-squared value of the sigmoid curves are displayed. c–e, Summary of the chemical 

screen performed to identify compounds that inhibit light-induced stomatal opening, analysed using 

DeepStomata. Dayflower leaf discs were treated with either DMSO, 10 µM ABA, or 50 µM of a 

compound from the chemical library, and then irradiated under red light and blue light for four hours9. For 

clarity, some of the results have been omitted. Refer to Supplementary Fig. 3 for the complete set of 

results. c, Stacked bar graph representing the ratio of open (green), partially open (blue), and closed 

(orange) stomata classified by the CNN. d–e, Values of stomatal apertures relative to those following 

DMSO treatment. Asterisks indicate significant differences to the DMSO treatment (Student’s t-test, p < 

0.05). Two compounds that caused more than a 50% inhibition of stomatal opening (SCL1 and SCL1-2; p 

< 0.05) are coloured dark blue, while eight compounds that caused more than a 20% inhibition of stomatal 

opening (p < 0.05) are coloured light blue. e, Manually and automatically measured stomatal apertures of 

plants treated with SCL1 and SCL1-2. Means ± SE (n ≥ 60 stomata). f, Comparison of the time required to 

quantify the 715 images in this analysis using either DeepStomata (Automation) or manual quantification 

(Manual). For the manual quantification, the time was estimated from the average time taken to analyse 10 

images multiplied by the number of images in the dataset. 

Supplementary Figure 1 | Details of the histogram of oriented gradient (HOG)-based stomatal 

detection. a, The trained HOG detector (left) was used to locate the coordinates of the stomata within the 

image (right) using a sliding window (red box). The detected stomata are marked with black boxes. b, 

Example of images retrieved by the HOG detector, including two regions that do not contain stomata (false 

positives). c, Precision and recall values of the HOG detector against the training and test data. Training 

data were used to construct the detector, while the test data were independently prepared to evaluate the 

detector’s accuracy. 

Supplementary Figure 2 | Details of convolutional neural network (CNN)-based object classification. 

a, Architecture of the convolutional neural network (CNN) classifier used in this study. Here, one image is 

processed through the CNN classifier, resulting in a four-vector variable in layer No. 11. The softmax 

function is next applied to truncate the sum of the values to 1, which represents the probability values that 
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DeepStomata 

10 

the image contains an open, closed, or partially open stoma, or a false positive. In this example, the input 

image is converted to [1,0,0,0], indicating that the input image is most probably an open stoma. In each of 

the convolutional layers, input images are convoluted using a weight with a kernel size of 3 × 3 px and a 

stride of 1 × 1 px, bias addition, followed by truncation using a rectified linear unit function. Max pooling 

was performed using a stride of 2 × 2 px and a kernel size of 3 × 3 px. The input image, intermediate 

images, and the variables produced within the CNN are displayed. Layer No. and Layer Type [Conv, 

convolutional layer; Max Pool, max pooling layer; Dense, fully connected layer] are displayed above each 

image. The pixel size of the input image, the intermediate data, and the number of weights or variables 

used in each layer are displayed below each image. b, Example of images classified using the CNN. c, 

Multi-class confusion matrix for the classification results obtained with CNN in the test dataset. 

Supplementary Figure 3 | Summary of chemical screen to identify compounds that inhibit light-

induced stomatal opening. Annotation follows that of Fig. 3d and 3e. 
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Figure 1 | Automatic quantification of stomatal aperture by DeepStomata. 

a b
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Figure 2 | Workflow of automatic stomatal aperture quantification 
and its processing accuracy.
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Figure 3 | Application examples in characterization and 
screening of compounds that control stomatal movements.
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Train
Data

Test
Data

Total No. of Images analyzed 43 32

Total No. of Stomata evaluated 567 329

Precision 99.8% 95.4%

Recall 90.9% 94.0%

c
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b

Supplementary Figure 1 | Details of histogram of oriented 
gradient (HOG) based stomatal detection.
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neural network (CNN) based object classification.
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Supplementary Figure 3 | Summary of chemical screen to 
identify compounds that inhibit light induced stomatal opening.
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