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Abstract 
Correlation among traits is a fundamental feature of biological systems. From morphological characters, to 
transcriptional or metabolic networks, the correlations we routinely observe between traits reflect a shared regulation 
that remains poorly understood and difficult to study. To address this problem, we developed a new and flexible 
approach that allows us to identify factors associated with variation in correlation between individuals. Here, we use 
data from three large human cohorts to study the effects of genetic variation and environmental perturbation on 
correlations among mRNA transcripts and among NMR metabolites. We first show that environmental exposures 
(namely, infection and disease) lead to a systematic loss of correlation, which we define as 'decoherence'. Using 
longitudinal data, we show that decoherent metabolites are better predictors of whether someone will develop 
metabolic syndrome than metabolites commonly used as biomarkers of this disease. Finally, we show that 
correlation itself is a trait under genetic control: specifically, we mapped and replicated hundreds of 'correlation 
QTLs', which often involve transcription factors or their known target genes. Together, this work furthers our 
understanding of how and why coordinated biological processes break down, and highlights the role of decoherence 
in disease emergence. 
 
Keywords: co-expression, metabolic syndrome, NMR metabolites, correlation QTL, decanalization, decoherence

Introduction 
A major goal in evolutionary and medical genetics is to 

identify the coordinated regulatory processes that differ between 
individuals as a function of their disease state, environment, or 
genetic background. One powerful approach for doing so is to 
identify the effect of environmental or genetic perturbations on 
the degree to which genes are correlated at the mRNA level – a 
phenomenon known as ‘co-expression’. However, we still have 

a poor understanding of how genetic variation can modify 
correlations between genes, or how environmental perturbations 
alter essential patterns of co-regulation. From a medical 
perspective, identifying the factors associated with changes in 
co-expression between healthy and sick individuals should point 
toward key regulatory changes driving phenotypic differences 
between groups1–5 (and thus allow us to identify potential 
biomarkers of disease). From an evolutionary perspective, work 
on decanalization6–8 indicates that gene regulatory networks 
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evolve over many generations under stabilizing selection, and 
new mutations or novel environments may disrupt fine-tuned 
connections and breakdown co-regulation. Decanalization has 
been advanced as one of the most compelling explanations for 
the recent rise of non-communicable diseases in humans7,9, with 
the hypothesis being that major shifts in diet, lifestyle, or 
pathogen exposure lead to dysregulation of regulatory programs 
that evolved under different environmental conditions. However 
testing this hypothesis remains challenging in practice. 

Our ability to move forward in understanding how 
environmental and genetic perturbations affect molecular 
correlations is limited by the available methodology (reviewed 
in5,10,11). In particular, almost all studies of differential co-
expression to date have relied on two types of approaches: (i) 
building co-expression networks separately within each group of 
interest (e.g., diseased versus healthy) and contrasting the two 
with a network comparison tool; or (ii) asking whether 
predefined sets of genes are differentially co-expressed between 
groups. Almost universally, these approaches are only designed 
for comparisons between two groups, and none can 
accommodate continuous predictor variables. Further, these 
approaches are only designed for data sets in which no 
confounders or covariates may bias co-expression estimates, 
which could lead to false conclusions if not accounted for12. This 
limited flexibility has made it difficult to identify individual-
specific factors that predict co-expression in humans or other 
organism that are not amenable to controlled manipulations. 

To address this gap, we present a novel approach for 
asking whether the degree of correlation between two traits is 
predicted by a variable of interest. Importantly, it relies on the 
flexible linear modeling framework and can thus accommodate 
covariates and continuous predictor variables. Our approach is 
based on the fact that the correlation between two traits within a 
sample is equal to the average product of the two traits across 
individuals, after the data are mean centered and scaled. By 
extension, to obtain a measure of the degree of correlation 
between two traits for each individual in a sample, we can 
simply take the vector of products between the two traits after 
normalization. We call this approach ‘Correlation by Individual 
Level Product’ (CILP), because for each individual a product 
can be estimated and used to model correlation as we would any 
other continuous outcome variable (Figure 1).  

Leveraging this approach, we explore the effects of 
environmental and genetic variation on the degree to which two 
molecular traits are correlated. First, we test the hypothesis that 
stressful physiological conditions (here, bacterial infection or 
metabolic syndrome) lead to a loss of correlation among 
molecular traits that are correlated under normal conditions. We 
refer to this loss of correlation in an infected or diseased state, 
relative to a baseline or healthy state, as ‘decoherence’. We test 
for decoherence using gene expression data derived from 
monocytes at baseline or following stimulation with 
lipopolysaccharide13, a component of bacterial cells walls and a 

potent stimulant of the innate immune response13. We also test 
for this loss of regulatory homeostasis using blood-derived NMR 
metabolite data from the Young Finns Study (YFS)14. Strikingly, 
we find strong evidence for decoherence in both data sets. 
Finally, we use CILP to map ‘correlation QTL’, defined as SNPs 
that affect the magnitude of the correlation between two mRNA 
transcripts. Using genotype and whole blood-derived gene 
expression data from the Netherlands Study of Depression and 
Anxiety15, we identity and replicate hundreds of correlation 
QTLs. Together, our new approach allows us to identify genetic 
variant and environmental factors that disrupt molecular co-
regulation. Further, the flexible, robust approach we propose 
opens the door to future investigations of the causes and 
consequences of trait covariation in many contexts. 

Results 
Using Correlation by Individual Level Product (CILP) to 
test for sources of variance in correlation  

Figure 1. Illustration of decoherence and 'Correlation by Individual 
Level Product' (CILP). (a) Co-expression network in two different 
environments. Environment 1 represent normal (or control/baseline) 
conditions where the expression levels of gene 1 and gene 2 are highly 
correlated (co-regulated). (b) Environment 2 represents a stressful (or 
unhealthy) condition leading to lower correlation between the expression 
levels of gene 1 and gene 2. At the network level, this translates into a 
lower network degree (lower average correlation across genes or fewer 
connected nodes). We call this change in the correlation structure 
between genes 'decoherence'. This is what we could expect if stressful 
conditions lower transcriptional robustness and lead to dysregulation of 
gene expression. (c) Difference in correlation between the expression 
levels of gene 1 and gene 2 in cases versus controls or between 
genotypes, which translates into an average difference in CILP between 
these groups. 
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Let 𝑦",𝑦$ be two outcomes measured across a 
population sample, with means 𝑦"%%%,𝑦$%%%  and variances 𝜎"$, 𝜎$$, 
respectively. We wish to associate the correlation between these 
two variables: 𝐸[(𝑦" − 𝑦"%%%)(	𝑦$ − 𝑦"%%%)]//𝜎"$𝜎$$  with some 
random variable 𝑥. We propose the following statistical test. 
First, we calculate the demeaned product of the outcomes: 
[(𝑦" − 𝑦"%%%)(	𝑦$ − 𝑦"%%%)], and then normalize by the square root of 
the product of variances: [(𝑦" − 𝑦"%%%)(	𝑦$ − 𝑦"%%%)//𝜎"$𝜎$$] . The 
resulting vector of values represents the estimate of the 
correlation within each individual in the sample, which can 
subsequently be modeled using approaches appropriate for 
continuous outcome variables. In practice, we use linear 
regression or linear mixed effects models to test for associations 
between a given set of products and 𝑥  (controlling for 
covariates).  
 
Simulations reveal power to detect sources of variance in 
correlation across many scenarios 

To confirm that our approach does not result in biased 
p-value distributions, and to understand the power of CILP 
across a range of effect sizes and sample sizes, we first 
performed extensive simulations. We focused our simulations on 
the identification of ‘correlation QTL’, defined as SNPs that 
affect the magnitude of the correlation between two mRNA 
transcripts (however, we note that the results are generalizable 
other types of predictor variables). In each case, we simulated 
10,000 pairs of genes, such that samples originating from 
different groups (i.e., different genotypic classes) exhibited 
different levels of correlation for each gene pair. We did so 
using the multivariate normal distribution to simulate pairs of 
continuous distributions (but see Supplementary Figure 1 for 
results where count data were simulated from a negative 
binomial distribution). Following simulation, we CILP and 
linear models to detect differences in correlation as a function of 
group membership.  

With an effect size of 0.3 and n=1000, we detected 
98.19% of simulated true positive correlation QTLs at a 
threshold of p=0.05, and 56.57% of true positives after 
correcting for multiple testing (using Bonferroni correction; 
Supplementary Figure 1). Under the null, where the effect size 
was set to zero, we detect 4.54% of correlation QTLs at a 
threshold of p=0.05 and after no correlation QTL after correcting 
for multiple testing (Supplementary Figure 1). To ensure that 
changes in the mean and variance of the traits of interest do not 

increase our false positive rate, we assessed our power to detect 
correlation QTLs when: (i) the focal SNP also affected the mean 
expression levels of one or both genes (i.e., it was an eQTL) and 
(ii) the focal SNP also affected the variance in expression levels 
for one or both genes (i.e., it was a varQTL). Neither the 
presence of eQTLs nor varQTLs increased the proportion of 
false positive correlation QTL detected. As expected, the 
presence of strong varQTLs did decrease power to detect 
correlation QTLs (Table 1). We also found that including the 
expression levels of both genes as covariates in our models did 
not affect our power to detect correlation QTLs (Supplementary 

Figure 2. Simulated bacterial infection (i.e., treatment with LPS) 
leads to decoherence in primary monocyte gene expression. (a) 
Correlation changes have similar effect sizes in the 2-hour LPS 
stimulation and the 24-hour LPS stimulation. (b) Gene expression values 
for OAS1 and OAS3 at the baseline, LPS 2-hour, and LPS 24-hour 
conditions show higher correlation after LPS stimulation. (c) Expression 
values for PPBP and GNG11 indicate lower correlation after LPS 
stimulation. (d) Density plots for pairwise correlations at baseline, 2 
hours after LPS stimulation, and 24 hours LPS stimulation show that 
there is a shift towards less correlation upon stimulation. 

Table 1. Power to detect simulated 
correlation QTL when the focal genetic 
variant also affects the mean or variance of 
one or both of the correlated genes (n=1000 
for all simulations). 
 

	 24	

Table 1. Power to detect simulated correlation QTL when the genetic variant also affects 855 
the mean or variance of one or both of the correlated genes (n=1000 for all simulations). 856 
 857 

Simulation parameters         
Correlation QTL effect1 x x x x x x x x 

eQTL effect2 (gene 1)  x x   x   
eQTL effect2 (gene 2)   x     x 
vQTL effect3 (gene 1)    x x x x x 
vQTL effect3 (gene 2)     x    

         
Results         

Power (proportion of true 
positives with p<0.05) 0.9999 1 0.9998 0.3777 0.0795 0.3858 0.2901 0.2932 

False positive rate 
(proportion of true 

negatives with p<0.05) 
0.0527 0.0488 0.0495 0.0472 0.0492 0.0507 0.0501 0.0501 

 858 
Simulated effect sizes were as follows: correlation QTL1=0.3, expression QTL (eQTL)2=1, variance QTL 859 
(vQTL)3=10. 860 
  861 

Simulated effect sizes were as follows: correlation QTL1=0.3, expression QTL (eQTL)2=1, variance QTL (vQTL)3=10. 
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Figure 1).  
 
Immune challenges results in decreased co-regulation of gene 
expression 

Next, we used gene expression data collected from 
human monocytes, to ask whether patterns of co-expression 
differed between cells assayed at baseline versus following 
treatment with LPS for 2 or 24 hours (n=214 samples were 
assayed at baseline, as well as 2 and 24 hours post LPS 
stimulation). We focused our analyses on 1460 genes that were 
differentially expressed at the 2-hour time point (FDR<5%), and 
tested for differences in correlation between unexposed and 
LPS-exposed cells across 1063611 possible transcript pairs 
(equivalent to 1460 chose 2). We found 958 gene pairs with a 
significant change in correlation between the two conditions 
(uninfected/baseline versus 2 hours of LPS stimulation), 461 of 
which replicated at this threshold with similar effect sizes at the 
24-hour time point (note that 52 genes pairs replicated at a 
Bonferroni-corrected p<0.05; correlation between effect sizes at 
the two time points: R2=0.12, p<10-16; binomial test for 
concordance of effect size direction: p<10-16; Figure 2). We 
observed no relationship between the magnitude of the 
difference in mean expression levels between conditions and the 
magnitude of the difference in correlation between conditions, 
suggesting our results are not driven by statistical artifacts 
associated with large mean changes in gene expression 
following LPS stimulation (Supplementary Figure 2).   

In total, we identified and replicated gene pairs that are 
more highly correlated in cells assayed 2 hours post LPS 
stimulation versus at baseline, as well as gene pairs that lose 
correlation during bacterial infection. For example, OAS1 and 
OAS3 – two key genes in the type I interferon pathway16 – are 
more strongly positively correlated in the LPS condition relative 

to baseline (at both 2 and 24hrs post stimulation, p=1.19x10-7 

and p=1.20x10-23, respectively; Figure 2). Overall, however, we 
found greater support for the opposite pattern of correlation 
change: 61% (at the 2 hour time point) and 73% (at the 24 hour 
time point) of significant transcript pairs were more strongly 
correlated across individuals in uninfected versus LPS 
stimulated cells. Importantly, this represents a significant bias 
toward a loss of correlation (i.e. decoherence) following two 
hours of bacterial infection (p=1.05x10-7, log2 odds=0.503, 
Fisher’s exact test), with an even stronger bias toward 
dysregulation after 24 hours of immune challenge (p<10-16, log2 
odds=0.941, Fisher’s exact test).   
 
Metabolic syndrome disrupts metabolite co-regulation  
Identification of disease-associated variation in metabolite 
correlation   

We next applied our correlation test to whole blood-
derived NMR metabolite data collected from a population-based, 
longitudinal study of young Finnish individuals (the 
cardiovascular risk in young Finns study, abbreviated 
‘YFS’)14,17. Our dataset included 159 metabolite measures, and, 
after filtering (see Methods), we retained 11491 metabolite pairs 
for analysis. These metabolites were measured across three time 
points (2001: n=1564, 2007: n=1498, 2011: n=1501); however, 
our analyses did not focus on changes in correlation across time, 
but rather, changes in correlation between individuals that were 
healthy versus those that met the criteria for metabolic 
syndrome18. 

To test the hypothesis that disease disrupts homeostasis 
and perturbs molecular co-regulation, we asked whether specific 
pairs of metabolites were correlated in healthy individuals, but 
no longer correlated in those with metabolic syndrome. Across 
11491 unique metabolite pairs, the estimate of the correlation 
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Figure 3. Metabolic syndrome leads to 
decoherence among particular metabolite pairs. 
(a) Correlation matrices showing the magnitude of 
the Spearman correlation coefficient, for healthy 
individuals and those with metabolic syndrome. (b) 
Comparison of the Spearman correlation coefficient 
estimated in healthy individuals (x-axis) versus those 
with metabolic syndrome (y-axis). Overall, the 
magnitude of the correlation is similar between 
groups (R2=0.62, p<10-16); however, for a subset of 
metabolite pairs, we detect stronger correlations in 
the healthy (blue dots) or metabolic syndrome class 
(green dots). (c) Categorical enrichment of 
metabolites that exhibit stronger pairwise correlations 
in the healthy or metabolic syndrome class (x-axis: 
log2 odds ratio from a Fisher’s exact test; y-axis: 11 
functional classes tested (annotations taken from19). 
Asterisks indicate significant enrichment. (d) A 
composite measure of metabolites that are strongly 
decoherent at the first time point (i.e., that show 
decreases in correlation in individuals with metabolic 
syndrome) can predict an individual’s future health 
status. Y-axis: Principal component 1 of 34 
metabolites, measured at the first time point, with the 
strongest evidence for dysregulation. X-axis: values 
are stratified by whether an individual was healthy at 
the first (t0) and the last (t3) time point, had metabolic 
syndrome at t0 and t3, or developed metabolic 
syndrome between t0 and t3 (linear model, 
p=3.03x10-10).   
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coefficient in healthy people and in those with metabolic 
syndrome tended to be similar (R2=0.62, p<10-16; linear model 
controlling for age; Figure 3). However, for a subset of 
metabolite pairs, we found strong effects of health status on the 
magnitude of the correlation: 1528 (74.4%) metabolite pairs 
were more correlated in healthy individuals relative to those with 
metabolic syndrome, and 619 (25.6%) metabolite pairs showed 
the opposite pattern (FDR<5%; linear mixed model controlling 
for age, sex, year, and individual identity). This represents a 
2.20x enrichment of metabolite pairs that appear to become 
dysregulated (i.e., that lose correlation) following the onset of 
disease relative to chance expectations (p<10-16, Fisher’s exact 
test). Importantly, this set of 1528 metabolite pairs that become 
dysregulated includes metabolites that are both more highly 
expressed (n=93 metabolites, FDR<5%) and more lowly 
expressed (n=32) in individuals with metabolic syndrome, as 
well as metabolites that do not significantly differ between 
sample groups (n=4).  
 
Metabolic syndrome affects co-regulation of particular 
metabolite classes    

We found overall support for the hypothesis that 
metabolic syndrome disrupts the correlation structure that exists 
in healthy individuals. To identify the specific processes targeted 
by metabolic syndrome, we assigned each metabolite in our 
dataset to one of 11 functional classes (as in19; Supplementary 
Table 2), and asked whether each class was enriched for 
metabolites that exhibited decreases in correlation strength. 
Here, we found the strongest enrichment for apolipoproteins 
(hypergeometric test, odds ratio=1.94, p=2.34x10-13), measures 
of total cholesterol (odds ratio=1.39, p=1.58x10-15), and small 
molecules involved in energy metabolism (odds ratio=1.43, 
p=2.75x10-13). Among metabolite pairs that showed the opposite 
pattern (i.e., were more strongly correlated in individuals with 
metabolic syndrome), we found an enrichment of fatty acids 
(odds ratio=1.30, p=7.10x10-6), as well as HDL (odds 
ratio=1.18, p=1.53x10-5) and LDL (odds ratio=1.28, p=3.58x10-

6) lipoproteins (Figure 3). Together, these results suggest that 
metabolite co-regulation is strongly perturbed by disease, and 
further, that particular classes of metabolites are more sensitive 
and prone to dysregulation than others.    

Finally, because our dataset included metabolite data 
collected from the same individuals across multiple time points, 
we asked whether metabolite pairs that became dysregulated 
(i.e., lost correlation) following the onset of disease could be 
used to predict which individuals would develop metabolic 
syndrome at a later time point. To do so, we performed PCA on 
the 34 metabolites that displayed the strongest evidence for 
dysregulation at the first time point, and used the first principal 
component to predict an individual’s health status at the last time 
point (see Methods). Strikingly, we found that this measure was 
predictive of whether an individual would develop metabolic 
syndrome (R2=0.056, p=3.03x10-10, AIC=-448.40; Figure 3), 
more so than triglyceride levels at the first time point (a classic 
biomarker of metabolic syndrome; R2=0.046, p=6.32x10-9, AIC-
432.61) or than an index created from the 34 metabolites with 

the strongest mean differences between healthy and metabolic 
syndrome individuals at the first time point (R2=0.037, 
p=1.42x10-6, AIC=-422.08).  
 
Genetic variation impacts co-expression of metabolism-
related genes 
Detection and replication of hundreds of correlation QTL  

Next, we used our correlation test to identify genetic 
variants that control the degree of correlation between a pair of 
gene transcripts (a pattern we refer to as ‘correlation QTL’). 
Genotypic effects on co-expression could arise through several 
possible mechanisms. For example, a SNP that disrupts a 
transcription factor (TF) binding site in a promoter would lead to 
low levels of co-expression between the TF and the target gene, 
but only for individuals carrying the disrupting variant. In these 
individuals, increased expression of the TF would fail to 
increase expression of the target gene, leading to an association 
between SNP genotype and variation in co-expression. This is 
one mechanistic scenario that has been repeatedly proposed to 
generate variation in co-expression5,20, with some empirical 
support19. However, the relationship between genetic variation 
and co-expression is almost entirely unexplored, suggesting that 
alterative mechanisms may exist that have yet to be uncovered.  

To map SNPs that affect the magnitude or direction of 
pairwise gene expression correlations, we applied our correlation 
test to genotype and whole blood-derived gene expression data 
from the Netherlands Study of Depression and Anxiety 
(abbreviated 'NESDA' 15). We used a filtered set of 93,197 SNP 
genotypes and 33,302 gene expression measurements collected 
for n=2,477 individuals in our discovery dataset and n=1,337 
individuals in our replication dataset (see Methods). Because our 
dataset was not well-powered to test all possible pairwise 
combinations of gene expression measurements against all 
SNPs, and because we were interested in understanding co-
expression patterns among genes important to metabolic 
diseases, we focused on the 475 probes most strongly associated 
with BMI. In total, we identified 484 associations between a 
SNP and variation in co-expression in our NESDA discovery 
dataset (at a 10% FDR threshold, corresponding to p<4.6x10-9; 
linear model controlling for sex, age, smoking behavior, major 
depressive disorder, red blood cell counts, year of sample 
collection, study phase, and the first 5 principal components 
from a PCA on the filtered genotype call set). These 484 
associations involved 247 unique probe sets and 51 genotyped 
SNP, each of which was involved in 1-424 (mean ± s.d. = 3.91 ± 
26.9) and 1-173 (mean ± s.d. = 9.43 ± 34.1) correlation QTL, 
respectively (Figure 4; Supplementary Table 3).  

To confirm our results, and overcome any potential 
biases raised by sub-selection of the data, we replicated our 
correlation QTL in a separate set of NESDA participants. Here, 
we found that 304/484 correlation QTL replicated (at a 
Bonferroni corrected p=1.03x10-4, n=1337; 428/484 correlation 
QTL replicated at a 10% FDR; Figure 4). Further, in whole-
blood derived gene expression data from 1414 YFS participants, 
we found that 47/74 testable correlation QTL replicated at a 10% 
FDR (0 replicated at a Bonferroni corrected p=6.76x10-4, but the 
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direction of the effects consistently agreed across datasets 
(binomial test, p<10-16); see Methods).  

 
 
Correlation QTLs reveal transcription factor biology 

For the list of 484 correlation QTLs we identified, we 
performed several follow-up analyses to gain biological and 
mechanistic insight. First, we asked whether the set of genes 
involved in significant correlation QTLs were enriched for (i) 
particular biological processes and pathways, (ii) known TFs, or 
(iii) known targets of TFs compared to the background set of all 
genes tested for correlation QTLs (using publicly available 
databases of gene ontologies and transcription factor-gene target 
associations 21,22). We strongly expected genes involved in 
correlation QTLs to be enriched for TFs or known targets of 
TFs, given that the mechanisms that have been proposed to 
generate genetic effects on variation in correlation almost 
universally involve genotype-dependent TF activity or 
disruption of TF binding sites5,20. In support of these ideas, genes 
involved in significant correlation QTLs were 1.90x more likely 
to be TFs (hypergeometric test, p=1.7x10-3) and 1.52x more 
likely to be known targets of transcription factors (p=6.7x10-4) 

relative to the background set of all genes tested. Additionally, 
genes involved in significant correlation QTLs were enriched for 
biological processes known to be involved in metabolism and 

metabolic disease23,24 such as cellular response to oxidative 
stress (hypergeometric test, odds ratio=2.21, p<10-16), 
intracellular signal transduction (log2 odds ratio=1.44, p<10-16), 
and mitophagy (the selective degradation of mitochondria; log2 
odds ratio=0.82, p=0.018; Supplementary Table 4). 

 
Genetic variation affects the co-regulation of RAP1 targets 

Strikingly, many of the correlation QTL we uncovered 
involved three SNPs (rs1384673, rs333170, and rs829373), 
which had strong effects on the degree of co-expression between 
one gene, RAP1GAP, and an additional 105 genes. These SNPs 
were also strong cis eQTL for RAP1GAP (Supplementary Figure 
4). The function of RAP1GAP is to convert the transcription 
factor RAP1 – a master regulator of T and B-cell activation, cell 
adhesion, and neuronal differentiation –  from its active GTP-
bound form to its inactive GDP-bound form. Intriguingly, recent 
work has implicated this RAP1GAP-facilitated ‘switch’ 
(between the active and inactive forms of RAP1) as important in 
metabolic disease: mice fed a high fat diet exhibit increases in 
the proportion of neuronal RAP1 that is active, and this increase 
is sufficient to produce multisystem effects including insulin 
resistance, inflammation, and obesity25.  
Given the strong links between RAP1 and metabolic disease, as 
well as the known functional relationship between RAP1 and 
RAP1GAP, we hypothesized that BMI-associated genes involved 
in correlation QTL with RAP1GAP were directly regulated by 
RAP1. In support of this hypothesis, genes involved in 
correlation QTL with RAP1GAP tended to be closer to RAP1 
binding sites (two-sided Wilcoxon-signed rank test, p=0.04), and 
were more likely to be directly bound by RAP1 (Fisher’s exact 
test, odds ratio=2.14, p=0.03; ChIP-seq data are from mouse 
embryonic fibroblasts26). Together, these data point toward the 
mechanistic scenario depicted in Supplementary Figure 5: RAP1 
exists in a constitutively active or inactive form depending on 
the genetic variation each individual harbors near RAP1GAP, 
and intra-genotypic variation in RAP1 activity levels is only 
meaningful for the low activity genotype. In contrast, for 
individuals with one of the high activity genotypes, the targets of 
RAP1 are constitutively repressed in all individuals 
(Supplementary Figure 5), and increasing or decreasing RAP1 
activity levels has little effect. Together, these results help to 
identify an under appreciated mechanism that can generate 
genetic effects on gene co-expression: cases where the targets of 
a given TF are always ‘on’ (or ‘off’) in one genotypic class, but 
dynamically regulated in another. 
 

Discussion 
Patterns of transcriptional correlation are widely 

considered to arise from co-regulation between genes. The 
analysis of co-expression has become an essential tool for the 
functional interpretation of transcriptional variation5,20, with 
increasing relevance for medical diagnosis10,27,28. However, we 
still have a primitive understanding of the factors that shape 
correlations between genes. Specifically, how do environmental 

Figure 4. CILP approach reveals hundreds of correlation QTLs. (a) 
Example of a correlation QTL, where the SNP rs10953329 controls the 
magnitude of the correlation between the mRNA expression levels of 
POC1B and RIOK3. (b) Gene pairs involved in significant (FDR<10%) 
correlation QTL. Each black segment represents a gene, and each line 
connecting two segments represents a significant correlation QTL. Lines 
are colored by the identity of the SNP controlling the magnitude of the 
correlation between the gene pair. (c) Many correlation QTL identified in 
the NESDA discovery set (n=2477) replicate in a second set of NESDA 
participants (n=1337). Plot shows effect sizes for each correlation QTL, 
estimated in the discovery or replication cohort (effect sizes are derived 
from in matrixEQTL50). Points are colored to indicate whether a given 
correlation QTL passed Bonferroni correction in the replication dataset. 
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perturbations alter essential patterns of co-regulation? And, to 
what degree are some genotypes better than others at buffering 
these disruptive effects? To address these fundamental 
questions, we developed a novel, generalizable approach to test 
whether any predictor variable (e.g., environment, genotype, or 
another variable of interest) affects the degree of correlation 
between a pair of measured variables. This simple approach, 
which relies on calculating the product between two variables 
after normalization, allows us to produce an individual level 
estimate, rather than a summary statistic for a population sample 
(Figure 1). Consequently, we are able to study correlation as a 
bona fide trait, and leverage the flexibility of statistical linear 
modeling approaches to identify factors associated with variation 
in correlation between individuals.  
 We begin by investigating the influence of two 
environmental perturbations on molecular co-regulation. First, 
we use data from a controlled experiment, where human 
monocytes were challenged ex vivo with bacterial infection13. 
Second, we draw on a dataset of 159 blood NMR metabolites 
collected from a population-based, longitudinal study of Finnish 
individuals (the YFS study14), and contrast correlation patterns 
between healthy individuals versus those suffering from 
metabolic syndrome. In both instances, we find that stressful 
environmental exposures (infection and disease) lead to 
decoherence, manifested as a widespread decrease in the 
magnitude of pairwise correlation coefficients between mRNA 
transcripts or metabolites (Figure 3).  

 Although we expect the relationship between mRNA 
transcripts and metabolites to change following an 
environmental perturbation (e.g., both LPS stimulation and 
metabolic syndrome clearly affect mean gene expression or 
metabolite levels13,19), the consistent direction of effects we 
observe on the correlation is striking. Specifically, of all 
metabolite and gene transcript pairs that are significantly 
differentially correlated, there is a strong directional bias toward 
a decrease in correlation following the environmental 
perturbation: 61-74% of significant pairs follow this pattern. In 
other words, under stress, some genes and metabolites that are 
typically co-regulated no longer are. Similar biased loses in 
correlation have also been observed in miRNA pairs measured in 
the plasma of patients suffering from cognitive impairment 
versus healthy controls29, as well as in gene expression data 
collected from aging versus young mice30 and in a wide range of 
cancers31. However, as this pattern has generally not been tested 
for explicitly, the degree to which it commonly characterizes 
disease, aging, or environmental perturbations remains to be 
seen.      
 The loss of transcriptional robustness we observe is an 
intuitive extension of decanalization models7. Decanalization 
models posit that, through many generations of stabilizing 
selection, biological systems evolve to maintain homeostasis 
under a certain range of environmental (or genetic) 
perturbations, and changing the environment beyond this range 
will result in homeostatic breakdown and disease6,7. Here, we are 
potentially seeing this process play out at the molecular level, 
where formally co-regulated processes become decoherent 

following a dramatic shift in the environment. Importantly, the 
longitudinal nature of the YFS dataset allowed us to track the 
health status of the same individuals over time and test the 
hypothesis that decoherence at the molecular level leads to 
disease. In support of decanalization models, we found that 
variation in metabolite pairs that showed the strongest evidence 
for decoherence at the first-time point could be used to predict 
which individuals would develop metabolic syndrome at a later 
time point. This set of metabolites are particularly interesting 
from a clinical perspective, as they appear to be especially 
sensitive to the homeostatic breakdown associated with 
metabolic syndrome, and could thus potentially serve as 
biomarkers. 

Lastly, we investigated the role of genetic variation in 
driving variation in gene co-expression. To date, work on 
differential co-expression has largely focused on contrasts 
between cases and controls5,10,32, between tissues33,34, or between 
individuals inhabiting different environments5,35, while the 
genetic basis of differential co-expression has received much 
less attention. Our ability to map correlation QTL directly using 
CILP fills this gap, and reveals that the degree of correlation 
between transcripts is under genetic control. Our analyses build 
on three recent studies that came to similar conclusions using 
more indirect approaches and/or much smaller sample sizes. 
First, Nath et al. identified highly correlated groups of mRNA 
transcripts and metabolites (termed ‘modules’), and performed 
genome-wide scans to associate specific SNPs with variation in 
each module19. In a related analysis, Lukowski et al. 
demonstrated that mRNA transcripts with evidence for genetic 
correlations were more likely to be regulated by the same 
expression quantitative trait loci (eQTL)36. Finally, van der Wijst 
recently leveraged single-cell mRNA-seq data from 45 
individuals to build personalized co-expression networks, and 
used these data to identify genetic variants that predicted inter-
individual variation in correlation structure37. Together, these 
studies point toward pervasive genetic control of gene co-
expression, and CILP provides the tools to probe this form of 
regulation even further. In particular, mapping correlation QTL 
across different environments, and compiling a more 
mechanistic picture of how genetic variation affects correlation 
dynamics (e.g., using ChIP-seq or ATAC-seq data integrated 
with correlation QTL scans) are major priorities for future work. 

We performed extensive simulations to show that the 
framework we propose can detect sources of variance in 
correlation across a wide range of scenarios. Critically, neither 
the presence of mean effects (e.g. eQTL) or variance 
heterogeneity (e.g. varQTL) increases the false positive rate 
(Table 1). With respect to statistical power, an additional benefit 
to this approach is that the power to detect an association 
between variation in correlation and any predictor variable will 
increase directly with sample size. This would not be the case 
with other currently available methods, which largely focus on 
comparing co-expression networks constructed in one sample 
group versus another5,10; in these cases, increasing sample size 
would increase the precision of the estimated correlation, but not 
directly the power. 
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While we have focused here on mapping correlation 
QTL and environmental effects on correlation between 
molecular traits, our approach could be paired with many 
additional statistical tools and data types. For example, given a 
sufficiently large dataset, this approach could be used to study 
how genotype x environment interactions affect correlations 
between traits, or to investigate genetic variation in co-morbidity 
for a ranges of diseases. Moving beyond genetics, this approach 
could be used to identify the drivers of community level 
correlations in ecological datasets, tradeoffs (that manifest as 
negative correlations) between different fitness components or 
life history traits, and much more. In essence, questions of how 
and why correlations between molecular or organism-level 
phenotypes vary is at the heart of many fields, and we anticipate 
that our approach will thus be widely applicable. 
 
 
Materials and Methods 
Simulations 

To empirically evaluate the statistical tests proposed 
above we performed a series of experiments on simulated data 
sets. We first simulated genotypes for a single locus with a 
major and minor allele, and with a minor allele frequency of 0.5. 
We then simulated gene expression data (across n=1000 
individuals) for 10000 sets of gene pairs with correlated gene 
expression levels according to the following model: 

𝑦1~𝑁(4
𝑚1 + 𝑏1 ∗ 𝑔
𝑚2 + 𝑏2 ∗ 𝑔

< , =𝜎"
$ + 𝑣1 ∗ 𝑔 𝑏 ∗ 𝑔
𝑏 ∗ 𝑔 𝜎$$ + 𝑣2 ∗ 𝑔

?	) 

For each genotype g (which can take the values 0 (homozygous 
major), 1 (heterozygous), or 2 (homozygous minor)), we 
simulated gene expression values for the two focal genes with 
covariance b*g. True positives were simulated with b ranging 
from 0.05 to 0.5, and null correlation QTLs were simulated with 
b =0. The two focal genes had mean expression levels of m1 and 
m2, respectively. b1 and b2 model the expression changes with 
respect to genotype (i.e., the effect size of the eQTL), and v1 and 
v2 model changes in variance with respect to genotype (i.e., the 
effect size of the varQTL).  
 
The cardiovascular risk in young Finns study (YFS) 
Study subjects 

We used phenotype, genotype, gene expression, and 
NMR metabolite data derived from a previously described study 
of unrelated Finnish young adults. The YFS is a longitudinal 
prospective cohort study initiated in 1980, with follow-ups 
carried out every 3 years. The study was designed to monitor 
cardiovascular disease risk factors in children and adolescents 
recruited from five regions in Finland: Helsinki, Kuopio, Oulu, 
Tampere, and Turku14,17. Our analyses focus on individuals for 
whom NMR metabolite data were generated from whole blood 
samples collected at the 2001 (n=2248), 2007 (n=2161), and 
2011 (n=2040) follow-ups. Additionally, we replicate our 
correlation QTL findings from NESDA using paired genotype 
and whole blood-derived gene expression data available for a 
subset of individuals sampled at the 2011 follow-up (n=1414). 

 
Metabolite data and metabolic syndrome classification 

Metabolite concentrations were quantified from whole 
blood-derived serum samples collected in 2001 (n=2248), 2007 
(n=2161), and 2011 (n=2040) using the procedures described 
in38. We focused on a set of 159 metabolite measures 
(following19), of which 148 were directly measured and 11 were 
derived (Supplementary Table 1). The 148 measures included 
molecules from 14 lipoprotein subclasses, two apolipoproteins, 
eight fatty acids, eight glycerides and phospholipids, nine 
cholesterols, nine amino acids, and ten small molecules 
(involved in glycolysis, as well as the citric acid and urea cycle). 
Annotations for each metabolite measurement were derived 
from19 (Supplementary Table 1). Measurements that failed 
quality control filters38 were treated as missing, and 
measurements of zero were set to the minimum detectable value 
for the particular metabolite19.  

We removed individuals from our analyses that had 
type I or II diabetes, or who were reported to be on statin 
medications at the 2011 time point (these data were unavailable 
for the other two time points). For the remaining dataset, we 
classified individuals as healthy or having a metabolic 
syndrome-like phenotype at a given time point using a random 
forests approach implemented in the R package ‘party’39,40. We 
did so because only a subset of the five data types required to 
diagnose metabolic syndrome18 were available for all samples 
and time points. Specifically, fasting serum triglyceride levels, 
high-density lipoprotein (HDL) cholesterol levels, and blood 
glucose levels were available for all samples, but waist 
circumference and blood pressure were only available for a 
subset of 2011 samples (n=1414; for details on how these traits 
were measured, see14,17). We therefore trained a random forests 
classifier on the subset of the 2011 dataset that could be 
identified as having metabolic syndrome or not based on 
standard criteria18 and used the trained model to predict health 
status for the remaining samples. We used the follow features to 
generate the random forests: triglyceride levels, HDL cholesterol 
levels, blood glucose levels, BMI, and sex. We removed 
individuals from the dataset that were not confidently assigned 
to either class (i.e., individuals for whom the probability of 
assignment to either class did not exceed 2/3) leaving us with the 
following sample sizes: n=1564 in 2001, 1498 in 2007, and 1501 
in 2011. Using data from the 2011 time point (where we have all 
information necessary to diagnose metabolic syndrome 
following the American Heart Association’s criteria18), we 
estimate that our healthy class includes 95% true positives and 
our metabolic syndrome class includes 84% true positives 
(Supplementary Table 5). 

 
Genotype and gene expression data  

While our analyses of YFS participants focused 
primarily on metabolite data, we used paired genotype and 
gene expression data collected from 1414 participants in 2011 
to replicate correlation QTL discovered in NESDA. Whole 
blood was collected from each individual in PAXgene Blood 
RNA tubes and was used to perform genome-wide genotyping 
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on a custom Illumina Human 670k BeadChip array and genome-
wide mRNA quantification on the Illumina HumanHT-12 v4 
Expression BeadChip (information on microarray experimental 
and quality control procedures are provided in detail 
elsewhere41).  

Genotype data were filtered prior to analysis, and SNPs 
that met at least one of the following criteria were excluded from 
downstream analyses: (i) evidence that the SNP was not in 
Hardy-Weinberg equilibrium (p<10-6), (ii) data missing for >5% 
of all individuals, (iii) minor allele frequency <5%. Gene 
expression data were log2 transformed prior to analysis and 
filtered to remove probe sets that overlapped known SNPs, as 
well as those that measured lowly expressed transcripts. 
Additional details on genotype and gene expression quality 
control and filtering procedures are described elsewhere42. 

 
Testing for effects of metabolic syndrome on variation in 
correlation 
Implementing the correlation test 

To understand how differences in health status 
(‘healthy’ or exhibiting a metabolic-syndrome like phenotype) 
impact correlation structure, we applied our correlation test to a 
set of 159 NMR metabolite measures collected across three time 
points in the YFS. To do so, we first computed the Spearman 
rank correlation within each year for all pairs of metabolites 
(n=12561, equivalent to 159 chose 2), and excluded pairs from 
our analysis that were very highly correlated in any year 
(rho>0.9). For the remaining 11491 metabolite pairs, we 
computed the product after z-score transforming each metabolite 
measure, within year and within each set of healthy and 
metabolic syndrome-like individuals separately (using the 
‘scale’ function in R). This normalization step is essential to 
ensure that mean or variance effects of year or health status on 
multiple metabolite measurements do not masquerade as 
variation in correlation. 

Using the set of products computed for all filtered pairs 
of metabolites, we constructed linear mixed effects models in the 
R package ‘nlme’ 43. Specifically, we tested the degree to which 
each set of products was predicted by age and health status 
(healthy/metabolic syndrome-like), controlling for follow-up 
year (as a factor), sex, age, and individual identity as a random 
effect. We extracted the p-values associated with the health 
status effect, and corrected for multiple hypothesis testing. 
Importantly, we also conducted parallel analyses in which we 
permuted health status (metabolic syndrome/healthy) prior to (i) 
data normalization, correlation computation, and linear mixed 
model analyses or (ii) prior to linear mixed model analyses only; 
in both cases, our permutation results suggest that the null 
distribution approximates the expected uniform distribution 
(Supplementary Figure 5).  
 
Enrichment of differentially correlated metabolite pairs 
 To understand whether particular classes of metabolites 
are more likely to increase or decrease in correlation as a 
function of health status, we used annotations for each 
metabolite measurement19 (Supplementary Table 1) coupled 

with hypergeometric tests. Specifically, we asked whether pairs 
of metabolites significantly affected by health status were more 
likely to come from each annotation category, relative to the 
background set of all tested metabolite pairs. We performed 
these enrichment tests separately for two groups of metabolite 
pairs, namely (i) those that exhibited stronger correlations in 
healthy people relative to individuals with metabolic syndrome 
and (ii) those that showed the opposite pattern. We corrected 
multiple hypothesis testing using a Bonferroni approach, and 
report the results in Figure 3 and Supplementary Table 2. 
 
Predictive power of metabolite pairs that lose correlation 
following the onset of disease 

Because our dataset included metabolite data collected 
from the same individuals across multiple time points (sample 
sizes: n=1564 in 2001, 1498 in 2007, and 1501 in 2011), we 
asked whether metabolite pairs that became dysregulated (i.e., 
lost correlation) following the onset of disease could be used to 
predict which individuals would develop metabolic syndrome at 
a later time point. To do so, we first identified metabolites with 
the strongest evidence for dysregulation in our dataset (strongly 
correlated in healthy people but uncorrelated in those with 
metabolic syndrome). Specifically, we identified 34 metabolites 
for which >0.25 of all tested pairs (involving the focal 
metabolite and any other metabolite) were significantly different 
between the healthy and metabolic syndrome classes in the 
expected direction. We performed PCA on these 34 metabolites 
(using data from first time point), and used the first principal 
component to predict an individual’s health status at the last time 
point. To do so, we used a linear model controlling for age and 
sex at the first time point. For comparison, we performed 
parallel analyses using the 34 metabolites with the strongest 
mean differences between the healthy and metabolic syndrome 
classes. 
 
The Netherlands study of depression and anxiety (NESDA) 
Study subjects and sample collection 

Our correlation QTL analyses focused on phenotype, 
genotype, and gene expression data derived from the 
Netherlands Study of Depression and Anxiety (NESDA; n=5339 
participants). NESDA is a previously described cohort study 
designed to investigate the long-term consequences of 
depressive and anxiety disorders15. Briefly, whole blood was 
collected in PAXgene Blood RNA tubes from each NESDA 
participant, and the Affymetrix Genome-Wide Human SNP 
Array 6.0 and Human Genome U219 Array were used for 
genotyping and mRNA quantification, respectively. A number of 
additional health, demographic, and biochemical traits were also 
recorded for each participant as described in44. Complete white 
blood counts, consisting of lymphocytes, neutrophils, basophils, 
monocytes, and eosinophils counts were measured for a subset 
of blood samples.  

NESDA contains twin pairs and families discordant for 
depressive and anxiety disorders, as well as unrelated 
individuals. To generate a discovery dataset of unrelated 
individuals for correlation QTL analysis, we removed all 
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members of a given family except for one randomly selected 
member (leaving us with n=2477 unrelated individuals). For 
each family, we then randomly assigned one of the remaining 
individuals to our replication cohort (leaving us with n=1337 
individuals).  

 
Genotype and gene expression data  

Information on genotype and gene expression 
microarray data generation and quality control are described in 
detail elsewhere44. We filtered the genotype data from our 
discovery sample set using the following criteria: >5% minor 
allele frequency (MAF), >5% of individuals exhibit the 
homozygous minor genotype, and the focal SNP is not in linkage 
disequilibrium (LD; r2<0.5) with other genotyped SNPs within 
50kb. LD filtering was performed using the ‘snpgdsLDpruning’ 
function in the R package SNPRelate45. This filtering left us with 
93197 SNPs for analysis.  

Gene expression data were first log2 transformed and 
filtered to remove probe sets measuring lowly expressed 
transcripts. Specifically, we calculated the mean expression level 
in our discovery cohort for every probe set, and excluded probe 
sets if this value exceeded the maximum value obtained for any 
control probe set (which should all theoretically have an 
expression level of 0). Probe sets were also removed if they 
overlapped a genotyped, polymorphic SNP in the NESDA 
cohort or a SNP at >5% MAF in whole genome-sequencing data 
from 769 Dutch individuals46. To identify the genomic location 
of each probe set for this purpose, we downloaded all 25bp 
probe sequences for the Human Genome U219 array, mapped 
these sequences with STAR47 to the human reference genome 
(hg19), and extracted a set of genomic location coordinates for 
each probe set from the alignment file. We performed 
intersections of these genomic location coordinates with known 
SNP locations (downloaded from the Affymetrix website) using 
bedtools 48. 

 
Testing for genetic effects on variation in correlation 
Mapping correlation QTL in NESDA 

We used the filtered set of SNPs and expression probes 
measured in NESDA to identify associations between individual 
SNPs and variation in correlation between the expression levels 
of two transcripts (referred to here as ‘correlation QTL’). 
Because our dataset is not well-powered to test all possible 
pairwise combinations of gene expression probes against all 
genotyped SNPs, we explored several ways to reduce the search 
space (i.e., to reduce the number of SNPs and/or genes to test for 
correlation QTL). Specifically, we attempted analyses focusing 
on: (i) pairs of known transcription factors and their target 
genes21, tested against SNPs within 1MB of either gene; (ii) 
pairs of genes known to be involved in the same biological 
pathway49; and (iii) pairs of genes associated with a trait of 
interest (specifically, BMI, age, or smoking behavior 
(smoker/non smoker)). In the main text, we report results for 
analyses that tested for correlation QTL at BMI-associated 
genes, as this is the approach that produced the strongest signal.     

To identify BMI-associated genes, we constructed a 
linear model for each filtered probe set measured in the NESDA 
discovery set. Specifically, we tested for an association between 
log2 transformed expression levels and BMI, controlling for sex, 
age, smoking behavior (smoker/non smoker), diagnosis with 
major depressive disorder (yes/no), red blood cell counts, year of 
sample collection, study phase, and the first 5 principal 
components from a PCA on the filtered genotype call set 
(obtained from the ‘prcomp’ function in R). We extracted the p-
value associated with the BMI effect from each model, and rank 
ordered probe sets according to this statistic. We retained the top 
300 unique genes for downstream analyses, which corresponded 
to 475 unique probe sets (because multiple probe sets, in most 
cases tagging different exons, exist on the array for a given 
gene).  

To calculate correlation among the set of 475 gene 
expression measurements associated with BMI, we used a 
slightly modified version of the approach described for our 
metabolite analyses (see Comparison of approaches for 
quantifying correlation). Specifically, we first removed any 
mean effects of the following major covariates by running a 
linear model on the log2 transformed expression values and 
extracting the residuals: BMI, sex, age, smoking behavior, 
diagnosis with major depressive disorder, red blood cell counts, 
year of sample collection, and study phase. We further 
normalized the residuals for each probe set to mean 0 and unit 
variance using the ‘scale’ function in R, and computed the 
product of all possible pairwise probe set combinations 
(n=112575 combinations, equivalent to 475 chose 2). We used 
this matrix of products as the input for our QTL analysis. To 
map genetic effects on variation in correlation, we used 
matrixEQTL50 to test for an association between each SNP 
passing filters (n=93197) and each vector of products, 
controlling for BMI, sex, age, smoking behavior, diagnosis with 
major depressive disorder, and the first 5 principal components 
from a PCA on the filtered genotype call set. We considered a 
given SNP to be associated with variation in correlation if it 
passed a 10% FDR threshold51. 

 
Annotation and analyses of correlation QTL  

We identified 484 associations between a given SNP 
and variation in correlation between two probe sets in our 
NESDA discovery dataset. For this list of 484 associations, we 
performed several follow-up analyses to gain biological insight. 
First, we asked whether the set of genes involved in significant 
correlation QTL were enriched for (i) known transcription 
factors or (ii) known targets of transcription factors compared to 
the background set of all genes tested for correlation QTL. To do 
so, we used a database of transcription factor-gene target 
associations and hypergeometric tests21.  

Second, we asked whether the set of genes involved in 
significant correlation QTL were enriched for specific gene 
ontology categories22 compared to the background set of all 300 
genes tested (Supplementary Table 4). To do so, we used the R 
package ‘mygene’ and hypergeometric tests. 

Third, many of the correlation QTL involved one gene, 
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RAP1GAP, whose primary function is to switch the transcription 
factor RAP1 from its active GTP-bound form to its inactive 
GDP-bound form. Therefore, we asked whether genes involved 
in correlation QTL with RAP1GAP were more likely to be 
bound by RAP1, using ChIP-seq data from mouse embryonic 
fibroblasts26. To do so, we lifted over coordinates for 30398 
RAP1 binding sites from the mouse genome (mm9) to the human 
genome (hg19) using the UCSC Genome Browser liftOver 
tool52. We then tested (using Fisher’s Exact tests) whether genes 
involved in correlation QTL with RAP1GAP were more likely to 
be bound by RAP1, compared to genes not involved in any 
significant correlation QTL (n=139 genes). We also assigned 
each gene to its nearest RAP1 ChIP-seq peak, and tested whether 
the absolute distance to the nearest peak (from the gene’s 
annotated transcription start or end site52) significantly differed 
for either of the two comparisons sets described above. If the 
nearest RAP1 ChIP-seq peak was within the gene, the distance 
was coded as 0. We used Wilcoxon signed-rank tests to perform 
these comparisons.  

 
Replication of correlation QTL in NESDA and YFS 
 For the list of 484 correlation QTL identified in our 
NESDA discovery set, we performed association tests in the 
NESDA replication group (n=1337) following the same 
procedures described in Mapping correlation QTL in NESDA.  

For each of the 484 correlation QTL, we also 
implemented parallel association testing in the YFS (n=1414) for 
probe-SNP combinations that met the following criteria: (i) 
probes that measured both of the focal genes passed all quality 
control and expression level filters in YFS and (ii) the focal 
correlation SNP was also typed in YFS. This filtering criteria left 
us with 74 associations to potentially replicate in YFS. To do so, 
we first removed mean effects of BMI, sex, age, smoking 
behavior, and sampling location using linear models applied to 
log2 transformed expression values. We normalized these 
residuals using the ‘scale’ function in R, and computed the 
product for each of the 74 focal probe pairs. We used these 
products to test for an effect of each focal SNP, controlling for 
BMI, sex, age, smoking behavior, and the first 5 principal 
components from a PCA on the filtered genotype call set. 
 
Comparison of approaches for quantifying correlation 

Our analyses of metabolic syndrome effects on 
variation in correlation focused on metabolite data that were z-
score normalized within each health status group (metabolic 
syndrome versus healthy). The parallel of this approach for 
mapping correlation QTL would be to z-score normalize each 
transcript within each genotypic class before computing the 
product between two focal transcripts. Such an approach has the 
advantage of removing any mean or variance effects of the 
predictor variable (e.g., health status or genotype) on the 
outcome variables (e.g., metabolite or gene expression levels). 
However, this specific pipeline is infeasible for genome-wide 
QTL mapping, as it would require us to recalculate the outcome 
variable for every association test we performed (i.e., we would 
need to re-normalize each transcript pair and re-calculate the 

product every time we tested a new SNP for an association with 
correlation). This would be extremely computationally costly, 
and would preclude us from using the efficient tools for QTL 
mapping that made our genome-wide genetic screen feasible50.  

As an alternative, we therefore regressed out mean 
effects of many major covariates from our gene expression data, 
and normalized the resulting residuals, before computing the 
product between two transcripts. This approach is different than 
normalizing each transcript within each genotypic class, but 
attempts to circumvent the same set of potential issues and has 
the advantage of only needing to be performed once. For 
comparison, we present the effects size estimates and p-values 
from the two approaches for the set of 484 significant correlation 
QTL we identified (Supplementary Figure 6). 
 
Cell type heterogeneity-related confounds  
 Our correlation QTL analyses focused on gene 
expression levels measured in whole blood, which is composed 
of several cell types with distinct transcription profiles. All of 
our analyses conducted with NESDA data controlled for one 
measure of cell type heterogeneity – the proportion of red blood 
cells in a given sample. However, this crude measure may not 
capture the full spectrum of potential confounding effects of cell 
type heterogeneity. In particular, we consider two possible 
scenarios: (i) BMI is associated with finer-grained measures of 
cell type heterogeneity, such that the genes we tested for 
correlation QTL are actually only associated with cell type 
composition (and not BMI) and (ii) genotypes at the correlation 
QTL we identified are associated with finer-grained measures of 
cell type heterogeneity and thus produce a false positive signal. 
Under this scenario, individuals of a given genotype would have 
high expression levels of two focal genes (and thus high values 
of their product) because of variation in cell composition, rather 
than genotypic effects on correlation. We note that scenario (i) 
would complicate the biological interpretation of our results, but 
would not produce the strong type I error expected under 
scenario (ii). 
 To investigate the evidence for scenario (i), we used 
data on the number of eosinophils, basophils, neutrophils, 
lymphocytes, and monocytes in each whole blood sample, which 
were available for a subset of our NESDA discovery set 
(n=594). We used these data to test (using linear models) for an 
association between each measure of cell type composition and 
BMI, controlling for the covariates we included in all analyses 
(namely, sex, age, smoking behavior, diagnosis with major 
depressive disorder, red blood cell counts, year of sample 
collection, and study phase). We found weak or no associations 
between most cell measures and BMI (p<0.01, percent variance 
explained by BMI<1%) except neutrophil composition.  Here, 
BMI explained 4.7% of the variance (p=1.88x10-8). We note that 
these modest effects may indicate that our set of BMI-associated 
genes are somewhat ‘noisy’, but given the magnitude of the 
BMI-neutrophil association we expect the impact of these effects 
on our results to be minimal. 
  Under scenario (ii), we would expect genotype to be 
significantly associated with the mean expression levels of the 
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two focal genes involved in the correlation QTL. We note that 
we have already explored the contribution of this scenario to the 
signal we observe (see Simulations; Table 1 and Supplementary 
Figure 1).  
 
 
Data and code availability 

The NESDA dataset was accessed through dbGaP 
(study accession: phs000486.v1.p1). The YFS dataset is 
available to the scientific community based on a written 
application, and further information can be found at 
www.utu.fi/med/cardio/youngfinnsstudy. Code for 
implementing the test for differential correlation we describe 
here can be found at 
https://github.com/AmandaJLea/differential_correlation. 
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