Speed breeding in growth chambers and glasshouses for crop breeding and model plant research

3

*Sreya Ghosh, *Amy Watson, Oscar E. Gonzalez-Navarro, Ricardo H. Ramirez-Gonzalez, Luis Yanes,
Marcela Mendoza-Suárez, James Simmonds, Rachel Wells, Tracey Rayner, Phon Green, Amber
Hafeez, Sadiye Hayta, Rachel E. Melton, Andrew Steed, Abhimanyu Sarkar, Jeremy Carter, Lionel
Perkins, John Lord, Mark Tester, Anne Osbourn, Matthew J. Moscou, Paul Nicholson, Wendy
Harwood, Cathie Martin, Claire Domoney, Cristobal Uauy, Brittany Hazard, Brande B. H. Wulff, Lee T.
Hickey

10 **1.** Abstract

11 To meet the challenge of feeding a growing population, breeders and scientists are continuously 12 looking for ways to increase genetic gain in crop breeding. One way this can be achieved is through 13 'speed breeding' (SB), which shortens the breeding cycle and accelerates research studies through 14 rapid generation advancement. The SB method can be carried out in a number of ways, one of which 15 involves extending the duration of a plant's daily exposure to light (photoperiod) combined with early 16 seed harvest in order to cycle quickly from seed to seed, thereby reducing the generation times for 17 some long-day (LD) or day-neutral crops. Here we present glasshouse and growth chamber-based SB 18 protocols with supporting data from experimentation with several crop species. These protocols 19 describe the growing conditions, including soil media composition, lighting, temperature and spacing, 20 which promote rapid growth of spring and winter bread wheat, durum wheat, barley, oat, various 21 members of the Brassica family, chickpea, pea, grasspea, quinoa and the model grass Brachypodium 22 distachyon. Points of flexibility within the protocols are highlighted, including how plant density can 23 be increased to efficiently scale-up plant numbers for single seed descent (SSD) purposes. Conversely, 24 instructions on how to perform SB on a small-scale by creating a benchtop SB growth cabinet that 25 enables optimization of parameters at a low cost are provided. We also outline the procedure for 26 harvesting and germinating premature wheat, barley and pea seed to reduce generation time. Finally, 27 we provide troubleshooting suggestions to avoid potential pitfalls. 28

- 29 Key words: Speed breeding, Rapid generation advancement, Photoperiod, Glasshouse, Growth
- 30 chamber, Growth cabinet, Wheat, Barley, Pea, *Brachypodium*, Quinoa, Oat, Brassica.

31 **2.** Introduction

32 To improve the productivity and stability of crops there is pressure to fast-track research and 33 increase the rate of variety development. The generation time of most plant species represents a 34 bottleneck in applied research programs and breeding, creating the need for technologies that 35 accelerate plant development and generation turnover. Recently we reported protocols for 'speed 36 breeding' (SB), which involve extending the photoperiod using supplementary lighting and 37 temperature control, enabling rapid generation advancement in glasshouses with sodium vapour 38 lamps (SVL) or growth chambers fitted with a mixture of metal halide and light-emitting diode (LED) 39 lighting¹. By adopting a 22-hour photoperiod and controlled temperature regime, generation times 40 were significantly reduced for spring bread wheat (*Triticum aestivum*), durum wheat (*T. durum*), 41 barley (Hordeum vulgare), chickpea (Cicer arietinum), pea (Pisum sativum), canola (Brassica napus), 42 the model grass, Brachypodium distachyon and the model legume, Medicago truncatula, in 43 comparison to the field or a glasshouse with no supplementary light. Under the rapid growth 44 conditions, plant development was normal, plants could be easily crossed (wheat and barley), and 45 seed germination rates were high. We also demonstrated that SB can be used to accelerate gene 46 transformation pipelines and adult plant phenotyping could be performed under SB conditions for 47 traits such as flowering time, plant height, and disease resistance in wheat, leaf sheath glaucousness 48 in barley, and pod shattering in canola¹.

49

50 The use of extended photoperiod to hasten plant growth is not novel. Sysoeva et al. $(2010)^2$ provides 51 an extensive review of the literature surrounding this subject, published within the last 90 years, 52 which outlines successful attempts using spring wheat, barley, pea, chickpea, radish (Raphanus 53 sativus), alfalfa (Medicago sativa), canola, flax (Linum usitatissimum), arabidopsis (Arabidopsis 54 thaliana), apple (Malus domestica) and rose (Rosa x hybrida), among others. More recent examples 55 of photoperiod manipulation to hasten flowering time of crop species include lentil (Lens 56 culinaris)^{3,4}, pea (*P. sativum*), chickpea (*C. arietinum*), faba bean (*Vicia faba*), lupin (*Lupinus* 57 angustifolius)⁵ and clover (*Trifolium subterraneum*)⁶.

58

Here, we provide a standardised SB protocol for use in a glasshouse, or a growth chamber with additional data-supported modifications. We provide details for scaling-up plant numbers in the glasshouse, suitable for single seed descent (SSD) to generate large populations. Since plant species, indeed even cultivars within a species, are highly diverse in their response to photoperiod, a universal protocol for all plant species and traits is not possible. We therefore provide instructions for building a low-cost benchtop SB cabinet with controlled lighting and humidity monitoring, suitable for small-scale research projects and trailling SB parameters. Notwithstanding, we have observed that the protocols are flexible and can be tailored to fit a wide range of breeding or
research objectives and crop species. By sharing these protocols, we aim to provide a pathway for
accelerating crop research and breeding challenges.

69

70 Overview of the procedure

71 In this protocol, we describe how to implement SB in temperature-controlled glasshouses using 72 supplementary LED lighting, which provides significant cost savings over traditional SVLs. The 73 protocols have been tested in the UK and Australia, with lights from the same company, but with 74 slightly different models. We also outline compatible soil mixes for various crops when growing 75 them under these lighting regimes, along with advice for early harvest to reduce generation time 76 further. We provide supporting data to demonstrate the suitability of these setups to significantly 77 decrease the number of days to flowering and overall generation advancement for spring wheat, 78 barley, canola, chickpea, pea, B. distachyon, M. truncatula, oat (Avena strigosa), grasspea (Lathyrus 79 sativus) and quinoa (Chenopodium quinoa). We also include the design, step-by-step construction 80 protocol, and operation of a small growth cabinet, which allows control over the light quality, 81 intensity and photoperiod to help optimize the SB recipe for different crops and cultivars before 82 implementing a large-scale glasshouse experiment.

83

84 Crop breeding programs commonly use SSD for several generations, on large numbers of 85 segregating plants, to generate homozygous lines with fixed traits⁷. A glasshouse is often preferred 86 for SSD because plant populations can be grown year-round. This process involves both a large 87 investment in time as well as space within the glasshouse. Following the crossing of two 88 homozygous lines, six generations of self-pollination are required to produce progeny that are 98.4% 89 homozygous, which, at a rate of two generations per year, would take three years to complete. 90 While only one or two seeds are needed from each plant to begin the next generation, plant 91 researchers and breeders seek to maximise the number of plants within a restricted space. Plant 92 density can be scaled-up under SB to enable concurrent rapid cycling of large plant populations, 93 which is ideal for SSD programs. To demonstrate this, we evaluated spring wheat and barley sown at 94 different plant densities in a glasshouse fitted with LED supplementary lighting. By comparing the 95 physiological, morphological and yield parameters, we illustrate the normal development of these 96 plants and highlight how this SB approach can save time and resources for SSD programs.

98 **Development of the protocols**

99 The SB concept was inspired by the efforts of NASA to grow crops in space, using an enclosed 100 chamber and extended photoperiod⁸. In recognising the opportunity to more rapidly produce adult 101 wheat and barley plants and allow faster selection and population development, SB became the 102 norm in cereal research activities at the University of Queensland (UQ), Australia, thanks to Dr Ian 103 Delacy and Dr Mark Dieters. The original protocol was first described and implemented for wheat⁹ 104 and peanut (Arachis hypogaea)¹⁰. Variations of this protocol have been demonstrated to be an 105 efficient system for rapid screening of wheat germplasm for adult plant resistance to various diseases¹¹⁻¹⁴ and also for pyramiding multiple disease resistance in barley¹⁵. The protocol has also 106 107 been adapted for high-density plant production systems for SSD programs. The current SB protocol 108 described in this paper was developed from the initial implementation described for wheat to 109 include a two-hour dark period that improved plant health¹. This change was made following 110 experiments in a controlled environment chamber at the John Innes Centre (JIC), UK, and was 111 demonstrated to be suitable for accelerating research activities involving adult plant phenotyping, 112 genetic structuring, and molecular studies like gene transformation in wheat and barley. It was 113 further demonstrated to be suitable for rapid generation advancement for durum wheat (T. durum), 114 pea, the model grass, B. distachyon and the model legume, M. truncatula, and could be scaled up in 115 the SB glasshouse system at UQ, to be made suitable for rapid generation advancement of wheat,

116 barley, canola and chickpea.

117

118 Comparison with other approaches

- 119 Perhaps the most well-known strategy to increase generation turnover is 'shuttle breeding',
- 120 introduced by Dr Norman Borlaug in the 1950s at the international Centre for Maize and Wheat
- 121 Improvement (CIMMYT), which enabled growing two generations per year by sowing wheat
- 122 populations at field locations differing in altitude, latitude, and climate in Mexico¹⁶. There is also a
- 123 long history of extensive efforts to accelerate plant growth of many species by manipulating
- 124 photoperiod under artificial conditions, as briefly outlined above.
- 125 Supplementary lighting is not the only basis for rapid generation advance in plants. A common
- 126 approach involves exerting physiological stress to trigger flowering and earlier setting of seed. This
- 127 involves restricting plant growth area (by growing plants at high densities) or nutrient and water
- 128 access¹⁷, accompanied by thinning of the plant canopy. Such a method is well-established and
- documented for rice¹⁸ and has also been demonstrated for pea (Supplementary Figure 1). Embryo
- 130 rescue is another common feature in many rapid cycling methods where immature seed is harvested
- 131 and induced to germinate on culture media, with or without the addition of plant growth regulators

132 (PGR), to negate the waiting time for seed to mature. Bermejo et al. (2016)¹⁹ used PGR in embryo 133 culture media to promote germination of immature lentil seed to achieve 4 generations annually. Mobini et al. (2015)²⁰ sprayed lentil and faba bean plants with PGR to promote early flowering and 134 135 applied embryo rescue with PGR-enriched agar media to achieve up to 8 and 6.8 generations per 136 year, respectively. Application of PGR is not required for SB, which may be desirable considering the 137 additional time and effort required for handling these and working out the logistics of their 138 application at specific times. In addition, if a species-specific protocol is not available, extensive 139 testing would be needed to optimise such applications. There are also examples of embryo rescue 140 without PGR to shorten generation time. Zheng et al. (2013)²¹ and Yao et al. (2017)²² reported up to 141 8 generations per year for wheat and Zheng et al. (2013)²¹ reported up to 9 generations per year for 142 barley. Both Ochatt et al. (2002)²³ and Mobini and Warkentin (2016)⁵ reported up to 6.9 and 5.3 143 generations of pea per year respectively, and Roumet and Morin (1997)²⁴ reported 5 cycles per year 144 in soybean (Glycine max L.), all with embryo rescue without PGRs. On the other hand, SB conditions 145 without embryo rescue is capable of producing 6 generations per year for spring wheat, barley, 146 chickpea and pea, and 4 generations per year for canola¹. Testing is needed for any plant species 147 prior to implementation, but this approach is promising for other cereal, pulse and legume crops. 148 Seed of wheat and barley produced under SB conditions can be harvested prematurely at two weeks 149 post-anthesis, followed by a short period of drying and chilling to achieve high and uniform 150 germination rates and healthy plants¹. Protocols involving embryo rescue are important and useful 151 for breeding and research programs if the required infrastructure is available²⁵, particularly for 152 species that are recalcitrant to other parameters used to accelerate generation advancement such 153 as temperature or photoperiod manipulation²⁶⁻²⁸. In comparison, the SB protocols outlined here are 154 less labour intensive, especially with large populations, and laboratory facilities are not required, 155 making the protocols more accessible.

156

Plant growth can also be promoted by increasing the CO₂ concentration. For example, for C₃ plants like rice and wheat, photosynthetic efficiency increases with increasing CO₂ levels, leading to an increase in biomass and early flowering. In fact, there are documented methods for rapid generation advance in rice that combine restricted root growth and canopy thinning with high CO₂ concentration, followed by early harvest and embryo rescue to cut down generation times of many rice varieties²⁹.

163

164 Doubled haploid (DH) technology, where haploid (*n*) embryos are rescued and undergo chromosome 165 doubling (2*n*), is extensively and routinely used in the breeding of several crop species, thus reducing

- 166 the number of generations required to achieve homozygous lines from six or more to just two
- 167 generations³⁰. Despite this, DH technology has some disadvantages: it can be expensive, requires
- 168 specialist skills, restricts recombination to a single round of meiosis, and has a variable success rate
- 169 that may be genotype-dependant³¹. The approach can also be labour intensive for large populations,
- 170 especially those requiring removal of the embryos from the seed coat. Notably, there is the potential
- 171 for SB to further accelerate the production of DH lines by speeding up the crossing, plant
- 172 regeneration and seed multiplication steps.
- 173
- 174 We have presented a design for building a low-cost benchtop growth cabinet to trial SB. Compared
- 175 to other published protocols for self-made growth chambers^{32,33}, our design makes use of a more
- 176 widely available control system using a Raspberry Pi and compatible sensors, with codes for the user
- 177 interface (UI) freely available from GitHub (https://github.com/PhenoTIPI/SpeedSeed3/wiki). The
- 178 cabinet was trialled for the 22-hour SB lighting, temperature and photoperiod regime (22 °C/17 °C
- 179 (22 hours/2 hours)), and successfully reproduced the accelerated development of one rapid-cycling
- 180 variety of each of wheat and pea (Supplementary Tables 1, 2). The component costs for constructing
- 181 such a cabinet are provided in Supplementary Table 3).
- 182

183 Limitations of the approach

184 Different plant species can have markedly different responses when exposed to extended 185 photoperiods. For long-day (LD) plants, time to flowering is often accelerated under extended 186 photoperiods since the critical day length is generally exceeded. This is also the case with day-187 neutral plants, where flowering will occur regardless of the photoperiod. In contrast, short-day (SD) 188 plants require the photoperiod to be below the critical daylength to flower³⁴, which could be at odds 189 with SB conditions. However, there are exceptions and some species show a facultative response 190 where, although flowering is promoted by a particular photoperiod, flowering will still occur in the 191 opposite photoperiod. Furthermore, the time difference between being a SD or LD plant can be a 192 matter of minutes³⁵. These factors highlight both a limitation of SB and a point of flexibility. In cases 193 where the photoperiod response is unknown or complex in nature, experimentation of light and 194 temperature parameters is required to optimise a SB strategy, for example, by using the benchtop 195 growth cabinet. For instance, applying extended light prior to and following a shortened 196 photoperiod to induce flowering, could hasten initial vegetative growth and accelerate maturity, 197 respectively, thus producing an overall shorter generation time. Such an approach has been 198 successfully applied to amaranth (Amaranthus spp. L), a SD species, where a 16-hour LD photoperiod 199 was used to initiate strong vegetative growth after which plants were transferred to an 8-hour SD

200 photoperiod to induce flowering³⁶. The overall effect was a shorter lifecycle and ability to produce 201 eight generations per year rather than two in the field. The need for vernalisation, such as in winter 202 wheat, creates a situation similar to above. Young plants require chilling for a number of weeks to 203 trigger the transition to flowering. Once the vernalisation requirement is met in winter wheat, 204 exposing the plants to extended photoperiod is likely to accelerate growth^{37,38}. Overall, the 'SB 205 recipe' is more straight forward and easier to implement for LD and day neutral species which do 206 not require vernalisation. Experimentation and optimisation of parameters are highly recommended 207 for each species.

208

209 The SB protocols presented here take place in an enclosed, artificial environment, which differs 210 significantly from the field where eventual crop production may occur. While this is acceptable for 211 many activities, such as crossing, SSD and screening for some simple traits¹, other activities, such as 212 selection for adaptation in the target environment must still occur in the field. Nevertheless, 213 programs alternating between SB and the field save time overall. The ability to shorten generation 214 time further through early harvest of immature seed can interfere with the phenotyping of some 215 seed traits. For this reason, in spring wheat breeding programs where dormant and non-dormant 216 genotypes need differentiating, phenotyping grain dormancy under SB conditions is limited to only 217 four generations per year⁹.

218

219 The initial investment to build a glasshouse or purchase a growth chamber with appropriate 220 supplementary lighting and temperature control capabilities is substantial if these facilities are not 221 already available. However, depending on the budget of the research or breeding program, the 222 benefits may outweigh the costs. For instance, an economic analysis performed by Collard et al. 223 (2017)³⁹ compared the rapid generation advance (i.e., no phenotypic selection at each generation) 224 with the pedigree-based breeding method (i.e., with phenotypic selection at each generation) for 225 rice and determined that rapid generation (achieved through restricted soil access and canopy 226 thinning) was more cost-effective and advantages would be realized after one year even if new 227 facilities were constructed. Nevertheless, most breeding programs have pre-existing glasshouse 228 facilities that can be converted for SB applications, but careful selection of energy efficient lighting 229 and temperature control systems are needed to minimise operating costs. Research activities often 230 do not require the high plant numbers needed in breeding, so growth chambers are common. The 231 cost of these start at tens of thousands of dollars, making them inaccessible for many projects and a 232 barrier for implementing SB. In addition, the energy to provide extended supplementary lighting is 233 significant. A cost-benefit analysis should be carried out to determine feasibility although there are

224		
234		as where cost-savings can be made. Supplemental LED lighting provides more efficient power
235		ge and reduced heat than other lighting types, such as SVLs. An estimate of the maintenance and
236	ene	ergy costs associated with LED lighting is provided in the supplementary material of Watson and
237	Gho	osh et al. (2018) ¹ . Investing in solar panels is another strategy to offset the increased energy
238	COS	ts, depending on availability and location.
239		
240	The	investment in SB needs to be weighed in terms of the potential benefits to variety development
241	anc	research output. As with most technologies, determining the optimal way to integrate SB in a
242	cro	p improvement program needs careful consideration and may require significant re-design or
243	res	tructure to the overall program. Prior to implementing such changes, computer simulations are a
244	goo	od way to evaluate the different breeding programs incorporating SB.
245		
246	Ехр	erimental Design
247	To	set-up an effective SB system, certain factors require careful consideration. These include:
248		
249	a)	Lighting requirements: Many lighting sources are appropriate for SB, including SVLs and LEDs ¹ .
250		Even incandescent lighting has been shown to accelerate flowering in clover ⁶ . However,
251		selection should be based on the space available, plant species and energy resources. For
252		example, LED lighting may be preferred due to its energy efficiency although simple
253		incandescent lighting may be suitable within a smaller area, with sufficient cooling to
254		counteract the higher heat output. Plant species may also differ in their response to the
255		different spectra of wavelengths emitted by different lighting sources so this should be carefully
256		considered. The lighting setup for glasshouses and growth chambers detailed in this protocol
257		can act as a starting point but is by no means the final conditions that may be optimum for
258		another situation. The protocols outlined here have been successful for the species trialled but
259		a modified approach may be more suitable for another crop. We recommend mining existing
260		literature and studies on suitable light spectra (particularly with regard to blue to red ratios, red
261		to far-red ratios, and the proportional level of UV light that may be introduced into the system)
262		for the crop and trait of interest.
263	b)	Initial light calibrations: Requirements in terms of light quality and intensity for a particular
264		species, cultivar of that species, and desired phenotype, should be determined prior to
265		application on a large scale or use within an experiment. Several 'dummy' or 'test' growth

- 266 cycles are recommended to initially assess the rate of growth and quality of the plants so that
- alterations can be made to enable optimal outcomes. For this purpose, we recommend starting

with the benchtop growth cabinet option – the costs of which are low enough to build several
 and trial, in parallel, different light-combinations, photoperiods and temperatures to determine
 the optimal conditions to implement on a larger scale, such as a glasshouse, for your crop and
 trait.

c) Germplasm: As detailed above, not all plant species (or indeed cultivars within a species) are
 amenable to extended photoperiod. Care should therefore be exercised in selection of the
 germplasm to be grown under SB and appropriate modifications implemented to ensure
 optimal conditions for each species.

- d) End-use requirements: The intended end-use of the resultant plants can affect all aspects of
 the initial set-up of the SB protocol, such as glasshouse space and sowing density. For example,
 within an SSD program large numbers of plants are grown within a defined space, so an
 appropriate sowing density needs to be determined. Conversely, a small number of plants
 needed for a research experiment under variable lighting parameters is more appropriate for a
 small growth chamber experiment with flexible settings.
- e) Control conditions: Before beginning a SB experiment, it is important to have replicates of your
 germplasm growing under the conditions you would normally use in your breeding program or
 institute. This will allow you to directly compare plant growth parameters (including generation
 time), operational costs (e.g. electricity) and plant quality. For popular varieties grown for many
 generations in the field or glasshouses, the control data may be readily available.

bioRxiv preprint doi: https://doi.org/10.1101/369512; this version posted July 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

288 **3.** Materials

- 289 Reagents
- 290 a) Soil
- 291 Soil mixtures which have previously been shown to work for certain crops in SB conditions are
- 292 provided in <u>Table 1</u>. Details of the soil mixture composition can be found in <u>Supplementary</u>
- 293 Tables 4, 5 and 6.
- 294

Table 1 | List of soil mixes that have been demonstrated to be compatible for speed

296

breeding using our protocols.

Species	Compatible soil mixes
Bread wheat (T. aestivum)	JIC Cereal Compost Mix, UQ Compost Mix
Durum wheat (T. durum)	JIC Cereal Compost Mix, UQ Compost Mix
Barley (<i>H. vulgare</i>)	JIC Cereal Compost Mix, UQ Compost Mix
Pea (P. sativum)	JIC Cereal Compost Mix
Chickpea (<i>C. arietinum</i>)	UQ Compost Mix
Brassica rapa	JIC Cereal Compost Mix
Brassica oleracea	JIC Cereal Compost Mix
Canola (Brassica napus)	JIC Cereal Compost Mix, UQ Compost Mix
Quinoa (<i>C. quinoa</i>)	JIC Peat and Sand Mix
Oat (A. strigosa)	JIC Cereal Compost Mix
Grasspea (<i>L. sativus</i>)	JIC Cereal Compost Mix
Brachypodium distachyon	JIC Cereal Compost Mix, 50% JIC Cereal Compost Mix
	+ 50% JIC Peat and Sand Mix
Medicago	JIC Cereal Compost Mix

297 298

b) Nutrient feed

300Depending on the size of the pots and the type of soil, the plants may need a nutrient feed.301If the pots are small (~100 ml), a single or fortnightly application of a liquid nutrient feed302should be considered to prevent the plant leaves from turning yellow prematurely with303concomitant reduced vigour and seed set. In the JIC glasshouses and growth chambers, we304have successfully used Solufeed 1-1-1 from Vitax305(http://www.vitaxgrower.co.uk/product/vitafeeds/) for wheat growing in high density trays.

306 Critical: Due to the rapid growth of plants under SB, fertiliser application and swift 307 amelioration of nutrient deficiencies are of utmost importance. Appropriate slow-release 308 fertiliser within the soil media is recommended for growth to maturity, and maintenance of 309 soil pH is important to avoid restriction of nutrient absorption; e.g. a pH that is too acidic can 310 inhibit calcium uptake. Foliar fertiliser applications may be required for rapid access of 311 nutrients to the leaves although some level of calcium deficiency is common. See 312 Supplementary Figure 2 for common symptoms of calcium deficiency. In our experience, for 313 wheat, barley and Brachypodium, symptoms are more common at early growth stages 314 during the period of prolific vegetative growth and are relieved at later growth stages. See 315 Troubleshooting (Section 6) for specific suggestions on calcium applications. 316

317 Equipment

318 The sections below describe the equipment needed for different SB purposes:

- 319 Section a: Provides information to set up SB in an existing plant growth chamber or controlled
- 320 environment room (CER). This section outlines the core "recipe" for programing an existing growth
- 321 room to set up SB conditions.
- 322 Section b: Provides details for the design and construction of a small benchtop cabinet for SB, which
- 323 may be used for small-scale pilot trials before investing in a larger system, such as a glasshouse. The
- 324 cabinet has a footprint of 0.225 m² and comfortably accomodates eight 1 L square pots.
- 325 Section c: Provides details for setting up SB in a glasshouse using LED lamps for supplementary
- 326 lighting. Its efficacy is demonstrated for a range of crop species, along with some examples of how
- 327 single-seed descent for wheat and barley can be carried out. The LED supplemental lighting within
- 328 glasshouses at JIC (UK) and UQ (Australia), were supplied by the same company, Heliospectra
- 329 (Göteborg, Sweden). Details of both setups are provided, along with the results of experiments
- 330 carried out at both locations.

331 Section a) Speed breeding setup

Lights: We have shown in our previous studies¹, that any light that produces a spectrum which
 reasonably covers the photosynthetically active radiation (PAR) region (400-700 nm), with

- 334 particular focus on the blue, red and far-red ranges, is suitable to use for SB. The referenced
- 335 study has several examples of these spectra, and similar examples of possible SB spectra are
- provided here. An appropriate spectral range can be achieved through LEDs, or a combination of
- 337 LEDs and other lighting sources (e.g. halogen lamps), or in the case of a glasshouse, by simply
- 338 supplementing the ambient lighting with LEDs or SVLs. We highly recommend that
- 339 measurements of the light spectrum are taken prior to commencement of the SB experiment.

340 In addition to controlling the light quality, we recommend a photosynthetic photon flux density

- 341 (PPFD) of approximately 450-500 μ mol·m⁻²·s⁻¹ at plant canopy height. Slightly lower or higher
- 342 PPFD levels are also suitable. Crops species vary in their response to high irradiance. However,
- 343 the suggested level of 450-500 μ mol·m⁻²·s⁻¹ has been demonstrated to be effective for a range of 344 crop species¹.
- 345 ii) *Photoperiod*: We recommend a photoperiod of 22 hours with 2 hours of darkness in a 24-hour
 346 diurnal cycle. Continuous light is another option, but our experience has shown that the dark
 347 period slightly improves plant health. Gradually increasing light intensity to mimic dawn and dusk
 348 states should be done, if possible, but is not vital. In our previous paper, we have also provided
 349 an example where an 18-hour photoperiod was sufficient to achieve faster generation times for
 350 wheat, barley, oat and triticale¹.
- 351 iii) **Temperature**: The optimal temperature regime (maximum and minimum temperatures) should 352 be applied for each crop. A higher temperature should be maintained during the photoperiod, 353 while a fall in temperature during the dark period can aid in stress recovery. At UQ, a 12 hour 22 354 °C / 17 °C temperature cycling regime with the 2 hours of darkness occurring within the 12 hours 355 of 17 °C has proven successful (Speed breeding II)¹. In contrast, a temperature cycling regime of 356 22 °C / 17 °C for 22 hours light and 2 hours dark, respectively, is used at JIC (Speed breeding I)¹. In 357 both scenarios, the generation times of all crops were successfully accelerated and comparable. 358 In the controlled environment chamber in which this was demonstrated, the temperature was 359 ramped up and down similarly to the lights, but this was subsequently found to not be of 360 particular importance. 361 iv) Humidity: Most controlled environment chambers have limited control over humidity but a 362 reasonable range of 60-70% is ideal. For crops that are more adapted to drier conditions, a lower
- humidity level may be advisable.
- 364

365	Se	ction b) Benchtop growth cabinet
366		To construct your low cost growth cabinet the following components are required.
367		Hardware
368	•	12 V, 50 A DC power supply 600 W (Amazon, cat. no. B072M7P7QJ)
369	•	12 V to 5 V, 3 A DC/DC converter module (Amazon, cat. no. B00G890MIC)
370	•	USB extension cable – 30 cm (Amazon, cat. no. B002M8RVKA)
371	•	Ethernet extension cable – 30 cm (Amazon, cat. no. B077V421QH)
372	٠	Arduino UNO (Amazon, cat. no. B00CGU1VOG)
373	•	Raspberry Pi 3 model B (CPC, cat. no. 2525225)
374	•	Raspberry Pi display 7 inch touchscreen (CPC, cat. no. 2473872)
375	•	Arduino base shield v2 – SeeedStudio (CPC, cat. no. SC13822)
376		Cabinet structure
377	٠	Aluminium composite panel, 757 X 307 X 3 mm, quantity = 6 (Cut Plastics, cat. no. CP027-03)
378	•	Aluminium composite panel, 757 X 357 X 3 mm (Cut Plastics, cat. no. CP027-03)
379	٠	Aluminium composite panel, 757 X 107 X 3 mm (Cut Plastics, cat. no. CP027-03)
380	٠	Aluminium composite panel, 757 X 757 X 3 mm (Cut Plastics, cat. no. CP027-03)
381	•	PVC foam board, 757 X 157 X 3 mm, quantity = 2 (Cut Plastics, cat. no. CP015-03)
382	•	PVC foam board, 757 X 141 X 3 mm (Cut Plastics, cat. no. CP015-03)
383	•	PVC foam board, 757 X 307 X 3 mm, quantity = 2 (Cut Plastics, cat. no. CP015-03)
384	٠	Perspex clear acrylic sheet, 757 X 307 X 3 mm (Cut Plastics, cat. no. CP001-03)
385	•	OpenBeam, 1000 mm, quantity = 4 (Technobots Online, cat. no. 4451-900)
386	•	OpenBeam, 750 mm, quantity = 13 (Technobots Online, cat. no. 4451-750)
387	٠	OpenBeam, 300 mm, quantity = 10 (Technobots Online, cat. no. 4451-300)
388	•	Corner bracket – MakerBeam, quantity = 4 (Technobots Online, cat. no. 4446-013)
389	•	L-joining plate – OpenBeam, quantity = 36 (Technobots Online, cat. no. 4450-003)
390	•	T-joining plate – OpenBeam, quantity = 2 (Technobots Online, cat. no. 4450-004)
391		Lighting system
392	•	Full spectrum grow light LED bulb, quantity = 16 (Amazon, cat. no. 071J3BC1W)
393	•	E27 lamp holder, quantity = 16 (Sinolec Components, cat. no. E27-SD04-2)
394	•	Solid state relay – grove SeedStudio (Mouser, cat. no. 713-103020004)
395		Temperature and humidity control system
396	٠	12 V, 10 A thermoelectric cooler, quantity = 3 (Amazon, cat. no. B01M2ZBBVM)
397	٠	Temperature and humidity sensor pro-grove SeeedStudio (CPC, cat. no. MK00343)
398	•	Relay – grove SeedStudio, quantity = 4 (CPC, cat. no. MK00330)

399	•	12 V cooling fan, 50 mm (Amazon, cat. no. B00HPKC5MO)
400		Software
401	•	Arduino IDE (v1.8.5, <u>https://www.arduino.cc/en/Main/Software</u>)
402		
403 404	Sec	ction c) LED-supplemented glasshouse setup
405	i.	Glasshouse: A well-located glasshouse with the required space and sufficient ambient
406		lighting. We recommend fitting a temperature control system and programmable lights.
407		Controllable blinds are also optional if blocking out high irradiance on very sunny days is
408		required.
409	ii.	LED lamps: While any kind of lighting system can be used to supplement the ambient
410		lighting in the glasshouse, we recommend LED lamps above all because of the significant
411		savings these provide in terms of maintenance and energy consumption. The glasshouse-
412		based SB experiments detailed in our previous paper ¹ were based on SVLs, but we have
413		obtained similar results with LED-lighting at both UQ and JIC. The lighting system
414		configuration, make and model of the lights for both locations are provided in Equipment
415		setup.
416	iii.	SSD trays: For demonstration, at UQ, three seedling tray types with increasing sowing
417		densities were used. The dimensions and volumes are given in Supplementary Table 7. The
418		soil media composition is given in Supplementary Table 4.
419		
420		Caution: Energy tariffs can vary according to the time of day, depending on peak energy
421		usage patterns in the location. Substantial savings can be achieved by programming the dark
422		period to coincide with the energy tariff imposed during peak electricity consumption.
423		
424		Additional equipment needed:
425	i.	PAR meter: The PAR is measured in either PPFD or Lux. Any off-the-shelf PAR meter can be
426		used, as long as it provides PPFD levels and relative wavelength composition. We used the
427		MK350S Spectrometer from UPRtek and the Spectrum Genius Essence Lighting Passport light
428		sensor from AsenseTek Inc. (Taiwan) at JIC and UQ, respectively.
429	ii.	Energy meter: This allows measuring the energy consumption for lighting and temperature
430		maintenance thereby providing insight into SB operational costs. Any off-the-shelf energy
431		meter can be used for this purpose. To obtain energy consumption data for both the lights
432		employed and the Controlled Environment Rooms (CERs) at JIC, we utilised a clamp-on

433	Current Transformer meter with the capacity to store and download data. The instrument
434	provided half hourly readings and as such was highly accurate in determining energy costs
435	
436	
437	Equipment setup
438	In this section, we provide detailed protocols for the SB setups discussed in the previous section.
439	a) Benchtop growth cabinet
440	• Hardware: Connect the display to the Raspberry Pi using the provided cables as instructed
441	by the manufacturer. The Arduino connects to the Raspberry Pi via USB ports. Sensors and
442	relay modules are connected using the Grove system (SeedStudio).
443	• Cabinet structure: Assemble the beam profile using the joining plates. Slide the panels,
444	boards and sheets before fully assembling each side.
445	• Lighting system: The photoperiod with the full-spectrum LED light bulbs is controlled by a
446	solid-state relay connected to the Arduino microcontroller. Sixteen 57 mm diameter holes
447	need to be drilled in one of the 757 x 307 x 3 mm aluminium composite panels, to fit the E27
448	lamp holders. The lamp holders are then inserted and wired in parallel.
449	Temperature and humidity system: Pre-assembled thermoelectric cooling modules are used
450	to simplify the construction of the benchtop growth cabinet. These are composed of fans,
451	aluminium heat sinks, and Peltier elements. The cooling modules are controlled by relays
452	connected to the Arduino. Airflow is used to control the humidity, <i>i.e.</i> the humidity sensor
453	will trigger the 12 V fan to circulate air from outside the cabinet in order to reduce the
454	humidity inside.
455	• Software installation and setup: The speed breeding cabinet is controlled by three main
456	subsystems: The arduino micro controller that monitors and controls the environment
457	according to a desired optimal; a python daemon that stores the current conditions and
458	reads the expected conditions from a MongoDB database and; a graphical interface written
459	in ReactJS that allows the users to set up the expected conditions in a 24-hour range.
460	The circuit diagram for making the connections are provided in Supplementary Figure 3 and a
461	photograph of the assembled cabinet is provided in Supplementary Figure 4. The cabinet has an
462	available area of 0.225 m^2 . For the lamps we have used, the spectrum is provided in
463	Supplementary Figure 5, with the light levels in PPFD (Photosynthetic Photon Flux Density) being
464	on an average about 120 μ mol m ⁻² s ⁻¹ at 16 cm above the base where the pots are kept, and
465	about 320 μ mol·m ⁻² ·s ⁻¹ and 220 μ mol·m ⁻² ·s ⁻¹ from a 10 cm and 20 cm distance respectively from
466	the top of the cabinet where the lights are situated. The energy consumption of the mini cabinet
467	is 6.24 kWh per day.

468	
469	NOTE: A step-by-step guide for constructing the cabinet and installing the software is
470	available at https://github.com/PhenoTIPI/SpeedSeed3/wiki, along with troubleshooting
471	tips.
472	
473	Caution: The construction of the cabinet requires the use of sharp cutting and drilling tools
474	that may cause physical injury if handled improperly. Many steps involve electrical
475	components, which can cause fire if operated without being earthed. Ensure all necessary
476	safety steps are followed and use personal protective equipment when constructing the
477	cabinet.

478 b) LED-supplemented glasshouse

- 479 Table 2 provides the lighting arrangement in two glasshouse configurations. Both setups have
- 480 been demonstrated to successfully support SB for the species listed.
- 481

Table 2 | LED-Supplemented Glasshouse setups for speed breeding at JIC and UQ

	John Innes Centre,		University of Queensland,		
	United Kingdom		Australia		
LED lamp make	LX602C LED Grov	w Lights from	E602G LED Grow Lights from		
and model	Heliospectra (Gö	iteborg, Sweden).	Heliospectra (Göteborg, Sweden).		
	More informatio	on can be found at:	More information can be found at:		
	https://www.he	liospectra.com/led-	https://www.he	https://www.heliospectra.com/led-	
	grow-lights/lx60	L	grow-lights/e60/		
Glasshouse area	66.4 m ²		30 m ²		
No. of fitted	No. of lights in	25 Heliospectra	No. of lights in	8 Heliospectra	
lights and	the given area	LX602C lights	the given area	E602G lights	
arrangement	Distance	244 cm	Distance	155 cm	
	between lights		between lights		
	and bench		and bench		
	Distance	144 cm (LICOR	Distance	95 cm from	
	between lights	sensor, kept	between lights	approximately	
	and plant	approximately at	and plant	the spike-height	
	canopy/ sensor	plant canopy	canopy/ sensor	of a tall, adult	
		height)		wheat plant.	

	Approximate	100 cm	Approximate	60 cm
	distance of		distance of	
	canopy from		canopy from	
	bench surface		bench surface	
	Schematic	Supplementary	Schematic	Supplementary
		Figure 6		Figure 7
Light level	These fixtures ca	n be programmed	These fixtures a	re not
monitoring and	to emit custom s	pectra and light	programmable a	and have a fixed
programmability	intensities.		spectrum and in	tensity.
Lighting regime	Two similar com	partments within	Photoperiod of 2	22 hours, followed
and PPFD levels	the same glasshe	ouse were set up	by 2 hours of da	rkness.
	with two different photoperiod		The PPFD values and spectrum at	
	regimes:		various distances from the lights	
	i) 22 hours of light, followed by		are provided in Supplementary	
	2 hours of darkness		Table 9 and Supplementary Figure	
	ii) 16 hours of light, followed by		9.	
	8 hours of darkness			
	The PPFD values and spectrum at			
	various distances from the lights			
	are provided in Supplementary			
	Table 8 and Supp	plementary Figure		
	8.			
Temperature	20 °C as the max	kimum	22 °C as the max	kimum
Regime	temperature to I	be operative during	temperature to be operative for 12	
	the photoperiod	(16 or 22 hours	hours during the photoperiod.	
	depending on the photoperiod			
	regime, see above).			
	15 °C as the min	imum temperature	17 °C as the min	imum temperature
	to be operative of	during the dark	to be operative	during the dark
	period (8 or 2 ho	ours depending on	period (2 hours)	
	photoperiod reg	ime, <i>see above</i>).		

Heating/Cooling	Heating: gas-fired central heating	Heating and cooling: a 240 kW
system	Cooling: Cooling fans that go off	chilled water system that uses
	when the temperature goes above	insulated aspirated temperature
	a set-point.	controller sensors with air handling
		units to each room with heaters
	Temperature monitoring and	and chilled water valves.
	control: Glasshouse temperature	
	monitoring is carried out through	Temperature monitoring and
	TomTech (TomTech UK Ltd) which	control: Glasshouse temperature
	is a glasshouse specific business	automatically controlled using a
	management system.	business management system
		running on an Innotech system
		using Magellan Builder (Brisbane,
		Australia). The temperatures are
		controlled to ± 1 °C.

Critical: Weather and ambient light varies by location and season, especially at higher latitudes. Thus, for the glasshouse setups listed here, the light spectrum is determined not just by the presence of the LED lights but also by the ambient light. To ensure reproducibility, consider setting up your experiment in a way that mitigates these environmental variables. For example, use programmable lights that allow intensity modification based on sensor feedback, or controllable blinds to regulate photoperiod. Provision of a short dark-period is recommended for optimum plant health. We highly recommend setting up a temperature monitoring and control system.

A summary of the crops for which we have successfully demonstrated a shortening of
 generation time using SB, including information on which specific SB setups were used, and
 where the reader can find more information on the key growth stages and other growth
 parameters of the crop grown under those conditions is provided in <u>Table 3</u>.

501 Table 3 | A list of speed breeding protocols that have been demonstrated for different

502 species along with pointers for locating the associated data.

	Demonstrated SB conditions and associated data			
Species	This protocol	Watson and Ghosh et	Other	
		al., 2018	Other	
Spring wheat	JIC-GH-LED ¹	UQ-GH-SVL ³		
T. aestivum	(Supplementary Tables	(Supplementary Tables		
	10 - 18)	11, 15, 21, 28, 30, 31)		
	UQ-GH-LED ²	CER-JIC ⁴		
	(Supplementary Tables	(Supplementary Tables		
	19 and 20)	2, 5-8, 19, 27, 34-36)		
Winter wheat	JIC-GH-LED			
T. aestivum	(Supplementary Tables			
	21 - 23)			
Durum wheat	JIC-GH-LED		Alahmad et al.,	
T. durum	(Supplementary Tables		2018	
	14 - 18)			
Spring barley	JIC-GH-LED	UQ-GH-SVL		
H. vulgare	(Supplementary Tables	(Supplementary Tables		
	24 - 26)	12, 16, 20, 22, 29, 30,		
	UQ-GH-LED	32)		
	(Supplementary Tables	CER-JIC		
	27 and 28)	(Supplementary Tables		
		3, 6, 37, 38)		
Canola	JIC-GH-LED	UQ-GH-SVL		
Brassica napus	(Supplementary Tables	(Supplementary Tables		
	29 - 33)	13, 17, 23, 25, 30, 39)		
Brassica rapa	JIC-GH-LED			
	(Supplementary Tables			
	29 - 33)			
Brassica oleracea	JIC-GH-LED			
	(Supplementary Tables			
	29 - 33)			
Реа	JIC-GH-LED	CER-JIC		

bioRxiv preprint doi: https://doi.org/10.1101/369512; this version posted July 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

P. sativum	(Supplementary Tables	(Supplementary Table	
	34 and 35)	10)	
Grasspea	JIC-GH-LED		
L. sativus	(Supplementary Tables		
	36 - 38)		
Medicago		CER-JIC	
		(Supplementary Table	
		9)	
Brachypodium	JIC-GH-LED	CER-JIC	
distachyon	(Supplementary Tables	(Supplementary Table	
	39, 40)	4)	
Quinoa	JIC-GH-LED		
C. quinoa	(Supplementary Tables		
	41 - <u>43</u>)		
Oat	JIC-GH-LED		
A. strigosa	(Supplementary Tables		
	44 - 46)		
Chickpea		UQ-GH-SVL	
C. arietinum		(Supplementary Tables	
		14, 18, 24, 26, 30)	
Peanut			O'Connor et al.,
A. hypogaea			2013 ¹⁰
Amaranth			Stetter et al.,
Amaranthus spp.			2016 ³⁶

503

¹ JIC-GH-LED: LED-Supplemented Glasshouse setup, JIC, UK (described in this paper,

504 Equipment Setup Section c).

505 ² **UQ-GH-LED**: LED-Supplemented Glasshouse setup, UQ, Australia (described in this paper,

- 506 Equipment Setup Section c).
- ³ UQ-GH-SVL: SVL-Supplemented Glasshouse setup, UQ, Australia (described in Methods
 section: Speed Breeding II¹).
- 509 ⁴ **CER-JIC**: Controlled Environment Room, JIC, UK (described in Methods section: Speed
- 510 Breeding I¹).

511 **4. Procedure**

a) Preparing seed for sowing:

513 To increase germination efficiency some seeds may need a pre-treatment either by cold 514 stratification (prolonged imbibition in the cold) or scarification (physical or chemical 515 weakening of the seed coat). The requirements for germination pre-treatments are specific 516 for each species, and accessions of that species, and should be determined on an individual 517 basis. Dormant spring wheat and barley seed can be imbibed on moistened filter paper in a 518 Petri dish for 24 hours and then chilled at 4 °C for approximately three days (longer times 519 may be required depending on the level of dormancy). The seeds can then be left at room 520 temperature for one to three days to germinate prior to transferring to soil. If pre-treatment 521 is not required, the seed can be germinated in a Petri dish on moistened filter paper before 522 transferring to soil. In a large-scale scenario, seeds can be directly sown into high density 523 trays and placed in a cold-room, then trays can be moved to the growing environment in the 524 glasshouse. If a pre-treatment is not required, seed may be sown directly into soil in the 525 glasshouse/growth chamber.

526

527 Caution: If seeds germinate in a Petri dish and become too well established (i.e. develop 528 green leaves) before transplanting to soil, the shift to SB conditions, especially the presence 529 of intense light, can shock the plants, resulting in a strong hypersensitive response and 530 possibly death. Take care to prick them out early, or if they are already established, transfer 531 them to soil and place a mesh over the plants to reduce light intensity while they adapt to the 532 new environmental conditions.

533

534

b) Monitoring key growth stages, growth parameters, and phenotyping:

535To enable comparison to normal development, monitor the key growth stages of the plants.536For many crops, defined growth stages have been published; for example, cereal crops⁴⁰,537canola⁴¹, quinoa⁴² and legumes⁴³. Take note of the heading times and earliest time point to538harvest viable seeds. We also advise monitoring the height and general physiology of the539plants.

540

541NOTE: Experiments performed in Section c, LED-supplemented glasshouse setup at the JIC,542UK, involved a SB glasshouse compartment as detailed above (i.e. 22 h day length), and a543twin compartment with a 16 h day length to measure the effect and value of increased day544length. Growth parameters and harvest times are provided for both lighting regimes where545available.

bioRxiv preprint doi: https://doi.org/10.1101/369512; this version posted July 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 546 For wheat and barley, we have also previously demonstrated how SB conditions do not
- 547 interfere with the phenotyping of a number of key traits¹, and how variations of the SB
- 548 protocol can be used to rapidly screen wheat and barley for resistance to a number of major
- 549 diseases or disorders (<u>Table 4</u>).
- 550

551 Table 4 | Protocols for phenotyping diseases and disorders under speed breeding

- 552 conditions.
- 553

Disease / disorder	Species	Reference
Stripe rust	Spring wheat	Pretorius et al. (2000). Acta Phytopathologica et
(<i>Puccinia striiformis</i> f. sp.	(T. aestivum)	Entomologica Hungarica, 35(1-4), 359-364 ⁴⁴
tritici)		
		Hickey <i>et al.</i> (2012). <i>Plant Breeding, 131</i> (1), 54-61 ¹⁴
Leaf rust	Spring wheat	Pretorius <i>et al.</i> (2000). <i>Acta Phytopathologica et</i>
(Puccinia recondita f. sp.	(T. aestivum)	Entomologica Hungarica, 35(1-4), 359-36444
<i>tritici, "</i> brown rust")		
(<i>Puccinia triticina,</i> "black		Riaz et al. (2016). Plant Methods, 12, 1714
rust")		
Yellow spot / Tan spot	Spring wheat	Dinglasan et al. (2016). Euphytica, 209(3), 693-
(Pyrenophora tritici-	(T. aestivum)	707 ¹²
repentis)		
Leaf rust	Barley	Hickey et al. (2017). Euphytica, 213(3), 64 ¹⁵
(Puccinia hordei)	(H. vulgare)	
Net form net blotch		
(Pyrenophora teres f. sp.		
teres)		
Spot form net blotch		
(Puccinia teres f. sp.		
maculate)		
Spot blotch		
(Cochliobolus sativus)		

bioRxiv preprint doi: https://doi.org/10.1101/369512; this version posted July 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Stem rust	Spring wheat	Riaz and Hickey (2017). Wheat Rust Diseases:
(Puccinia graminis f. sp.	(T. aestivum)	<i>Methods and Protocols</i> (Vol. 1659, pp. 183-196) ⁴⁵
tritici)		
Crown rot	Durum wheat	Alahmad et al. (2018). Plant Methods, 14(1), 36 ¹¹
(Fusarium	(T. durum)	
pseudograminearum)		
Pre-harvest sprouting	Spring wheat	Hickey <i>et al.</i> (2009). <i>Euphytica 168,</i> 303-310 ⁹
	(T. aestivum)	
Pod shattering	Canola	Watson and Ghosh et al. (2018). Nature Plants,
	(B. napus)	<i>4</i> (1), 23-29 ¹

554

555

556 c) Seed harvesting:

557 Shortened generation times can also be achieved in some species by harvesting premature 558 seed. This usually involves waiting until the seeds have set in the plant (indicated by filled 559 seed in spikes for wheat, or filled pods for legumes), then either increasing the temperature 560 or withholding water from the plant to hasten seed ripening and drying. After a week of this 561 stress application, seeds may be harvested.

562

563NOTE: For experiments performed in the third protocol setup (Section c, LED-supplemented564glasshouse) at the JIC, UK, early harvest times are provided for both lighting regimes where565available. If not indicated, the harvest time outlined is for harvest at physiological maturity.

566 567

Caution: Freshly harvested seed may display dormancy. See troubleshooting (Section 5) for more details on how to overcome this issue.

569

570

568

d) Monitoring energy use:

571At the end of one cycle, review the energy costs for your SB system. This is particularly572useful to evaluate the generation time vs cost trade-off where multiple conditions have573been tested concurrently (e.g. different day lengths). For the LED-Supplemented glasshouse574setup in JIC, there were two rooms set up concurrently with 16-hour and 22-hour575photoperiods. The energy calculations for running each of these setups per month is given in576Supplementary Table 47, along with a comparison of how much it would cost to run a similar577setup with Sodium Vapour Lamps.

578 5. Troubleshooting

579

580 Table 5 | Suggested solutions to common issues under speed breeding.

581

ProblemPossible ReasonSolutionPlants exhibit tip-burnCalcium deficiency – commonApply a liquid fertilisernecrosis. The leaves curlin accelerated growth.containing calcium as ainward or outward, and mayspray early in growth to

necrosis. The leaves curl	in accelerated growth.	containing calcium as a foliar
inward or outward, and may		spray early in growth to
have small, circular		control any developing
depressions or "bubbles"		deficiency. This may be a 1%
(Supplementary Figure 2).		calcium nitrate solution
		applied 2-3 times per week or
		as part of another broad-
		spectrum fertiliser.
		Acidic soil can interfere with
		calcium uptake – adding
		dolomite to the soil can reduce
		acidity if the base soil mix
		tends to a lower pH.
Initially curling and death of	Copper deficiency – common	Apply a liquid fertiliser
young leaf-tips and down the	in accelerated growth.	containing copper as a foliar
leaf blade. Young leaves may		spray early in growth to
also not emerge properly and		control any developing
form loops or twists. Later,		deficiency.
spike top can wither, turn		
white and fail to produce		Alkaline or waterlogged soil
grain. Spikes may also become		can affect copper uptake – do
twisted into curls		not over-water or add
(Supplementary Figure 10).		excessive dolomite when
		ameliorating calcium
		deficiency as described above.
Young leaves appear striped	Iron deficiency.	Apply a liquid fertiliser
with interveinal yellowing		containing iron as a foliar
(Supplementary Figure 11).		spray early in growth to

		control any developing
		deficiency.
Plants are weak and spindly or	These are possible symptoms	Apply a liquid fertiliser with a
suffering chlorosis.	of a range of nutrient	broad range of nutrients to the
	deficiencies.	soil and as a foliar spray.
Seeds do not germinate.	Seed harvested too early and	Harvest seed slightly later.
	are not viable.	
	Seeds are dormant.	Store the seeds for a few
		additional days or weeks
		before trying again.
		Alternatively, cold stratify the
		seed at 4-5 °C for several days
		and/or treat with a low
		concentration (~0.5 ppm) of
		gibberellic acid (GA3) by
		dipping the seeds into the
		solution or spraying.
Plants did not cycle much	The optimum conditions for	Make adjustments for
faster than in the glasshouse	rapid generation advancement	temperature, light intensity,
with no supplemental lights	have not been reached for the	light quality and/or day length.
and/or in field conditions,	crop.	
even though they are LD or		
day neutral plants.	The particular genotype may	Try other genotypes to explore
	be recalcitrant to SB.	if it is a genotype- or species-
		specific issue.
LD or day neutral plants do not	Vernalisation needed.	Depending on the species,
flower.		vernalise the plants for up to 8
		weeks at 4 to 10 °C.

584 6. Anticipated Results

585 As demonstrated in our previous study, under SB conditions with a 22-hour photoperiod, it should 586 be possible to produce up to 6 generations per year in spring wheat and barley and up to 4 and 4.5 587 generations per year in canola and chickpea, respectively¹. However, it is important to remember 588 that results are highly dependent on the crop species and can vary greatly between cultivars. The 589 light quality, duration of the photoperiod and temperature regime also impact the extent to which 590 the generation time is reduced. It should also be noted that ambient sunlight strength and duration 591 will vary with location and season, thus resulting in differences in rate of development. These 592 factors, in addition to basic growing conditions, such as soil type, can be manipulated to obtain the 593 optimal parameters for the crop of interest. The various protocols outlined above are designed to 594 facilitate this process. 595 The self-made, bench-top speed breeding cabinet will facilitate identification of conditions that

596 enable rapid-cycling of wheat and pea, and by extension, the other crops listed (Supplementary

597 Figure 4). We demonstrated the efficacy of this cabinet design by growing rapid-cycling varieties of

598 pea (*P. sativum* cv. JI 2822) and wheat (*T. aestivum* cv. USU Apogee) and showing the shortened

time from seed to seed, without compromising the viability of early harvested seed (Supplementary

600 Tables 1, 2). This is comparable with data from our previous study¹ where we evaluated the same

601 pea variety (JI 2822) under SB conditions using a commercial CER.

602The time taken for reproductive development to occur for a range of crop species under the LED-603fitted, SB glasshouse (JIC, UK) is provided in Table 6. Two extended photoperiods are represented to604give an approximate expectation of the rapid development of these species under SB, and to give605the reader an idea of what a 6-hour difference in photoperiod can produce in a range of crops and

606 cultivars. The much slower rate of development under control or regular glasshouse conditions

607 without supplemental lighting was reported for some of these species in our previous study¹.

608 Plants grown under SB can be expected to look healthy (Figure 1) with minor reductions in seed set

609 (refer to <u>Table 3</u> in order to view the related data for the crop of interest) and spike size

610 (Supplementary Figure 12) or pod size (Supplementary Figures 13 and 14). In some crop species, the

611 SB conditions can produce a slight reduction in height and/or internode length. In our experience,

612 while working on *M. truncatula* and *P. sativum*, we found the plants grown under SB produced

613 leaves with much smaller surface areas. Occasionally, micronutrient deficiencies manifest

614 themselves because of the rapid growth and change in soil pH – some of these issues (particularly

615 for wheat and barley) are highlighted in the Troubleshooting section. Despite efforts to optimise soil

616 composition, there may be a cultivar that responds very poorly to the long-photoperiod and high

617 irradiance.

- 619 We have previously demonstrated that wheat, barley and canola plants grown under SB are suitable
- 620 for crossing and phenotyping a range of adult plant traits¹. That said, complex phenotypes such as
- 621 yield and abiotic stress resilience (heat or drought stress) are best evaluated in the field, particularly
- 622 for breeding objectives. We have also demonstrated how SB can be combined with transformation
- 623 of barley to speed up the process of obtaining transformed seeds¹.
- 624

625 Table 6 | Mean days to anthesis¹ under speed breeding using LED-supplemented glasshouses at

- 626 JIC, UK. All plants had a temperature cycle regime of 22 hours at 22 °C and 2 hours at 17 °C to
- 627 coincide with the light and dark period, respectively.

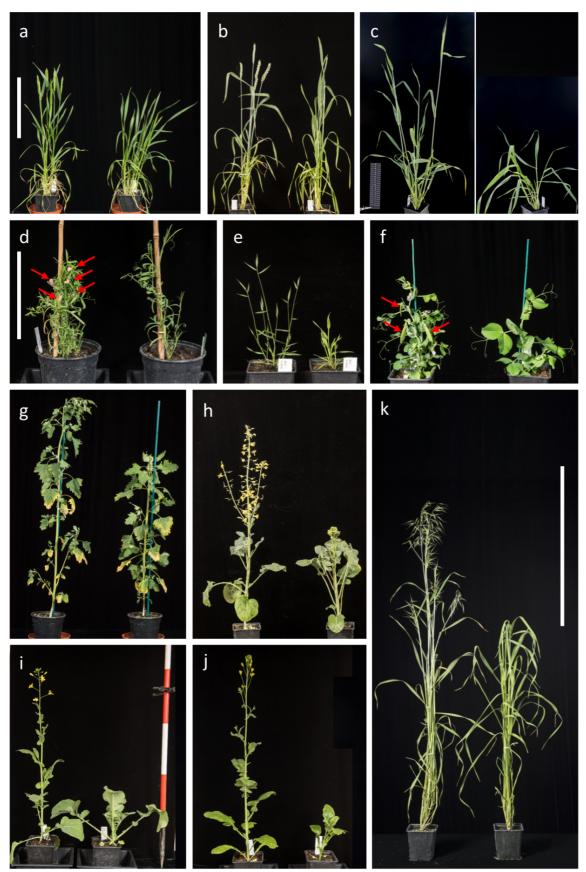
Spacias	Associated data	Photoperiod	Mean days to
Species	Associated data	Photoperiod	flowering ¹
Spring wheat	Supplementary Tables 10-18, 19, 20	22 h	49.6 ± 5.0
T. aestivum	Supplementary rables 10-10, 19, 20	16 h	62.5 ± 4.3
Winter wheat	Supplementary Tables 21 - 23	22 h	105.4 ± 1.7
T. aestivum		16 h	115.4 ± 1.9
Durum wheat	Supplementary Tables 14 - 18	22 h	46 ± 1.9 ²
T. durum	Supplementary fusies 14 10	16 h	53.7 ± 1.0^2
Spring barley	Supplementary Tables 24 - 28	22 h	38.4 ± 13.9
H. vulgare		16 h	46.6 ± 12.1
Canola	Supplementary Tables 29 - 33	22 h	34.5 ± 0.7^3
Brassica napus	Supplementally Tables 25 - 55	16 h	45.0 ± 0.0
Brassica rapa	Supplementary Tables 29 - 33	22 h	36.5 ± 2.5^3
Drussicu rupu	Supplementary Tubles 25 - 55	16 h	41.0 ± 3.7
Brassica oleracea	Supplementary Tables 29 - 33	22 h	49.2 ± 1.8^3
		16 h	61.2 ± 2.3
Реа	Supplementary Tables 34, 35	22 h	32.2 ± 5.3^4
P. sativum	Supplementary rubles 54, 55	16 h	42.9 ± 5.3
Grasspea	Supplementary Tables 36 - 38	22 h	31 ³ ±
L. sativus	Supplementary rubles 50 50	16 h	ND
Brachypodium	Supplementary Tables 39, 40	22 h	31.5 ± 5.2
distachyon	Supplementary rubies 55, 40	16 h	44.0 ± 5.2
Quinoa	Supplementary Tables 41 - 43	22 h	54.6 ⁵ ± 0.6
C. quinoa	Supplementary fubics 41 45	16 h	61.1 ± 4.6
Oat	Supplementary Tables 44 - 46	22 h	52 ± 0.0

	A. sativa		16 h	66 ± 0.0
628	¹ Davs to flowering/a	Inthesis (GS65) from sowing ⁴⁰ .		

- 629 ²Days to 50% ear emergence from sowing (GS55).
- 630 ³Days to first flower opening from sowing.
- 631 ⁴Days to the first flower bud from sowing.
- 632 ⁵Days to anthesis (growth stage 6 according to BBCH scale⁴²).
- 633
- 634 In breeding programs, SSD is often an important step in cultivar development that requires high-635 density plantings. The SB protocols provided for glasshouses are ideal for SSD programs, particularly 636 cereal crops. Increasing sowing density under SB can enable rapid cycling of many lines with healthy 637 plants and viable seed. Figure 2 shows an example of the plant condition, spike lengths and seed 638 sizes that could be expected at various sowing densities in SB. Under the UQ-GH-LED protocol, at a 639 density of 1000 plants/m², up to 6 generations of wheat and barley can be expected per year 640 (Supplementary Table D and E). At higher densities, plant height and seed numbers can be reduced 641 due to the greater competition and low soil volume. Despite this, even at the highest sowing density 642 shown here, all plants produced a spike with at least enough seed to perform SSD, and in most cases 643 many more. Large differences in the speed of development can be achieved by extending the 644 photoperiod from 16 to 22 hours. Under the JIC-GH-LED protocol, spring and durum wheat were 645 over ten days faster in development with an additional 6 hours of photoperiod. Table 7 provides the 646 approximate development times for several cereal crops at a range of sowing densities, appropriate 647 for intensive SSD. The SSD SB protocol was performed under two extended photoperiod and 648 temperature regimes at either JIC, UK, or UQ, Australia. These results demonstrate that plants can 649 be grown at high densities under SB conditions to produce plants suitable for effective and resource-650 efficient generation turnover in SSD programs. 651
-
- 652

bioRxiv preprint doi: https://doi.org/10.1101/369512; this version posted July 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

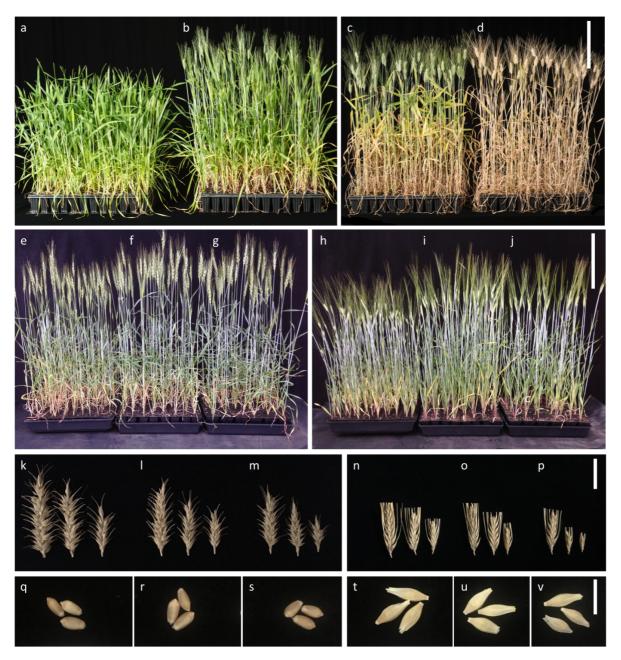
Table 7 | Mean days to reproductive stages³⁻⁵ of single seed descent (SSD) sowing densities under


654 speed breeding using the JIC-GH-LED¹ or UQ-GH-LED² protocol. JIC-GH-LED protocol used a

- 655 temperature cycle regime of 22 h at 22 °C and 2 h at 17 °C to coincide with light and dark times,
- respectively. The UQ-GH-LED protocol used a temperature cycle regime of 12 h at 22 °C and 12 h at
- 657 17 °C.

Species	Protocol	Sowing density	Photoperiod	Mean days to reproductive stage
	JIC-GH-LED ¹	96-cell (560 plants/m²)	22 h	45.0 ± 0.0^3
		96-cell (560 plants/m²)	16 h	58.0 ± 0.0^3
Spring wheat T. aestivum	UQ-GH-LED ²	30-cell (300 plants/m²)	22 h	31.3 ± 0.7 ⁴
		64-cell (640 plants/m ²)	22 h	30.0 ± 0.0^4
		100-cell (1000 plants/m²)	22 h	31.0 ± 0.0^4
Tetraploid wheat	JIC-GH-LED	96-cell (560 plants/m²)	22 h	42.0 ± 0.0^3
T. durum		96-cell (560 plants/m²)	16 h	50.0 ± 0.0^3
Spring barley <i>H. vulgare</i>	UQ-GH-LED	30-cell (300 plants/m²)	22 h	27.3 ± 1.2 ⁵

64-cell (640 plants/m²)	22 h	24.7 ± 0.3⁵
100-cell (1000 plants/m²)	22 h	24.0 ± 0.6⁵


- 658 ¹ JIC-GH-LED: LED-Supplemented Glasshouse setup, JIC, UK (described in this paper, Equipment
- 659 Setup Section c).
- 660 ² **UQ-GH-LED**: LED-Supplemented Glasshouse setup, UQ, Australia (described in this paper,
- 661 Equipment Setup Section c).
- 662 ³ Days to 50% ear emergence from sowing (GS55)⁴⁰.
- ⁴ Days to mid-anthesis (GS65) from sowing.
- 664 ⁵ Days to awn-peep (GS49) from sowing.
- 665

667

Figure 1. Accelerated plant growth and development under speed breeding (22 hour photoperiod
 conditions) (left) compared to standard long-day conditions (16 hour photoperiod) (right) in LED-

- 670 supplemented glasshouses at John Innes Centre, UK. a, Winter growth-habit wheat (*T. aestivum* cv.
- 671 Crusoe) at 112 days after sowing (DAS), including 12 days of growth under 16-hour photoperiod
- 672 conditions followed by 56 days of vernalisation at 6 °C with 8 hour photoperiod; **b**, Spring wheat (*T*.
- 673 *aestivum* cv. Cadenza) at 57 DAS; **c**, Spring barley (*H. vulgare* cv. Manchuria) at 35 DAS; (scalebar is
- 674 20 cm for a, b, c) **d**, Grasspea (*L. sativus* cv. Mahateora) at 35 DAS (red arrows indicate position of
- 675 flowers); **e**, *B. distachyon* (accession Bd21) at 34 DAS; **f**, Pea (*P. sativum* accession JI 2822) at 34 DAS;
- 676 (scalebar is 20 cm for d, e, f) g, Quinoa (*C. quinoa* accession QQ74) at 58 DAS; h, *Brassica oleracea*
- 677 (line DH1012) at 108 DAS; i, Brassica napus (line RV31) at 87 DAS; j, Brassica rapa (line R-0-18 87) at
- 678 87 DAS; **k**, Diploid Oat (*A. strigosa* accession S75) at 52 DAS (scalebar is 60 cm for g, h, i, j). All plants
- 679 were sown in October or November 2017, except for the quinoa, which was sown in February 2018.
- 680
- 681

683 Figure 2 | Single seed descent sowing densities of wheat (spring and durum) and barley under LED-684 Supplemented Glasshouse setup at JIC, UK and UQ, Australia. Durum wheat (T. durum cv. Kronos) 685 grown under the LED-Supplemented Glasshouse setup, JIC, UK, in 96-cell trays: **a**, Forty-three days 686 after sowing under 16-hour photoperiod; **b**, Forty-three days after sowing under 22-hour 687 photoperiod; **c**, Seventy-nine days under 16-hour photoperiod; **d**, Seventy-nine days under 22-hour 688 photoperiod. Scale bar is 20 cm. Spring wheat (T. aestivum cv. Suntop) grown under LED-689 Supplemented Glasshouse setup, UQ, Australia, at 37 days after sowing: e, plants in a 30-cell tray; f, 690 plants in a 64-cell tray; g, plants in a 100-cell. Barley (H. vulgare cv. Commander) grown under LED-691 Supplemented glasshouse setup, UQ, Australia, at 34 days after sowing: h, plants in a 30-cell tray; i, 692 plants in a 64-cell tray; j, plants in a 100-cell. Scale bar is 20 cm. Mature spikes of spring wheat (T.

693	aestivum cv. Suntop) grown under LED-Supplemented glasshouse setup, UQ, Australia: k, plants in a
694	30-cell tray; I, plants in a 64-cell tray; m, plants in a 100-cell. Mature spikes of barley (H. vulgare cv.
695	Commander) grown under LED-Supplemented glasshouse setup, UQ, Australia: n, plants in a 30-cell
696	tray; o, plants in a 64-cell tray; p, plants in a 100-cell. Scalebar is 3 cm. Mature seeds of spring wheat
697	(<i>T. aestivum</i> cv. Suntop) grown under LED-Supplemented glasshouse setup, UQ, Australia: q , plants in
698	a 30-cell tray; r, plants in a 64-cell tray; s, plants in a 100-cell. Mature seeds of barley (H. vulgare cv.
699	Commander) grown under LED-Supplemented glasshouse setup, UQ, Australia: t, plants in a 30-cell
700	tray; u , plants in a 64-cell tray; v , plants in a 100-cell. Scalebar is 1 cm.
701	
702	
703	
704	
705	
706	
707	
708	

709	7. R	eferences
710	1.	Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and
711		breeding. Nature Plants, 1 (2018).
712	2.	Sysoeva, M.I., Markovskaya, E.F. & Shibaeva, T.G. Plants under continuous light: a review.
713		Plant Stress 4, 5-17 (2010).
714	3.	Croser, J.S. et al. Time to flowering of temperate pulses in vivo and generation turnover in
715		vivo-in vitro of narrow-leaf lupin accelerated by low red to far-red ratio and high intensity in
716		the far-red region. Plant Cell, Tissue and Organ Culture (PCTOC) 127, 591-599 (2016).
717	4.	Mobini, S.H., Lulsdorf, M., Warkentin, T.D. & Vandenberg, A. Low red: Far-red light ratio
718		causes faster in vitro flowering in lentil. Canadian Journal of Plant Science 96, 908-918
719		(2016).
720	5.	Mobini, S.H. & Warkentin, T.D. A simple and efficient method of in vivo rapid generation
721		technology in pea (Pisum sativum L.). In Vitro Cellular & Developmental Biology - Plant 52,
722		530-536 (2016).
723	6.	Pazos-Navarro, M., Castello, M., Bennett, R.G., Nichols, P. & Croser, J. In vitro-assisted single-
724		seed descent for breeding-cycle compression in subterranean clover (Trifolium
725		subterraneum L.). Crop and Pasture Science 68, 958-966 (2017).
726	7.	Knott, D. & Kumar, J. Comparison of early generation yield testing and a single seed descent
727		procedure in wheat breeding. Crop Science 15, 295-299 (1975).
728	8.	Wheeler, R. et al. NASA's biomass production chamber: a testbed for bioregenerative life
729		support studies. Advances in Space Research 18, 215-224 (1996).
730	9.	Hickey, L.T. et al. Grain dormancy in fixed lines of white-grained wheat (<i>Triticum aestivum</i> L.)
731		grown under controlled environmental conditions. Euphytica 168, 303-310 (2009).
732	10.	O'Connor, D. et al. Development and application of speed breeding technologies in a
733		commercial peanut breeding program. Peanut Science 40, 107-114 (2013).
734	11.	Alahmad, S. et al. Speed breeding for multiple quantitative traits in durum wheat. Plant
735		Methods 14, 36 (2018).
736	12.	Dinglasan, E., Godwin, I.D., Mortlock, M.Y. & Hickey, L.T. Resistance to yellow spot in wheat
737		grown under accelerated growth conditions. Euphytica 209, 693-707 (2016).
738	13.	Riaz, A., Periyannan, S., Aitken, E. & Hickey, L. A rapid phenotyping method for adult plant
739		resistance to leaf rust in wheat. Plant Methods 12 (2016).
740	14.	Hickey, L.T. et al. Rapid phenotyping for adult-plant resistance to stripe rust in wheat. Plant
741		Breeding 131, 54-61 (2012).
742	15.	Hickey, L.T. et al. Speed breeding for multiple disease resistance in barley. Euphytica 213
743		(2017).

744	16.	Ortiz, R. et al. High yield potential, shuttle breeding, genetic diversity, and a new
745		international wheat improvement strategy. Euphytica 157, 365-384 (2007).
746	17.	Wada, K.C. & Takeno, K. Stress-induced flowering. Plant Signaling & Behavior 5, 944-947
747		(2010).
748	18.	Beredo, J. et al. Use of a rapid generation advance (RGA) system for IRRI's irrigated breeding
749		pipeline. (2016).
750	19.	Bermejo, C., Gatti, I. & Cointry, E. In vitro embryo culture to shorten the breeding cycle in
751		lentil (Lens culinaris Medik). Plant Cell, Tissue and Organ Culture (PCTOC) 127, 585-590
752		(2016).
753	20.	Mobini, S.H., Lulsdorf, M., Warkentin, T.D. & Vandenberg, A. Plant growth regulators
754		improve in vitro flowering and rapid generation advancement in lentil and faba bean. In
755		Vitro Cellular & Developmental Biology - Plant 51, 71-79 (2015).
756	21.	Zheng, Z., Wang, H., Chen, G., Yan, G. & Liu, C. A procedure allowing up to eight generations
757		of wheat and nine generations of barley per annum. Euphytica 191, 311-316 (2013).
758	22.	Yao, Y., Zhang, P., Liu, H., Lu, Z. & Yan, G. A fully <i>in vitro</i> protocol towards large scale
759		production of recombinant inbred lines in wheat (Triticum aestivum L.). Plant Cell, Tissue
760		and Organ Culture (PCTOC) 128, 655-661 (2017).
761	23.	Ochatt, S. et al. New approaches towards the shortening of generation cycles for faster
762		breeding of protein legumes. Plant Breeding 121, 436-440 (2002).
763	24.	Roumet, P. & Morin, F. Germination of immature soybean seeds to shorten reproductive
764		cycle duration. Crop science 37, 521-525 (1997).
765	25.	Wang, X., Wang, Y., Zhang, G. & Ma, Z. An integrated breeding technology for accelerating
766		generation advancement and trait introgression in cotton. Plant breeding 130, 569-573
767		(2011).
768	26.	Velez-Ramirez, A.I. et al. A single locus confers tolerance to continuous light and allows
769		substantial yield increase in tomato. Nature communications 5, 4549 (2014).
770	27.	Gebologlu, N., Bozmaz, S., Aydin, M. & Çakmak, P. The role of growth regulators, embryo
771		age and genotypes on immature embryo germination and rapid generation advancement in
772		tomato (Lycopersicon esculentum Mill.). African Journal of Biotechnology 10, 4895-4900
773		(2011).
774	28.	Bhattarai, S.P., de la Pena, R.C., Midmore, D.J. & Palchamy, K. <i>In vitro</i> culture of immature
775		seed for rapid generation advancement in tomato. Euphytica 167, 23-30 (2009).
776	29.	Tanaka, J., Hayashi, T. & Iwata, H. A practical, rapid generation-advancement system for rice
777		breeding using simplified biotron breeding system. Breeding Science 66, 542-551 (2016).

778	30.	De La Fuente, G.N., Frei, U.K. & Lubberstedt, T. Accelerating plant breeding. Trends in Plant
779		Science 18, 667-672 (2013).
780	31.	Dwivedi, S.L. et al. Haploids: Constraints and opportunities in plant breeding. Biotechnology
781		Advances 33, 812-829 (2015).
782	32.	Katagiri, F. et al. Design and construction of an inexpensive homemade plant growth
783		chamber. PloS One 10, e0126826 (2015).
784	33.	Tran, T.M. & Braun, D.M. An inexpensive, easy-to-use, and highly customizable growth
785		chamber optimized for growing large plants. Current Protocols in Plant Biology, 299-317
786		(2017).
787	34.	Thomas, B. & Vince-Prue, D. Photoperiodism in plants. (Academic Press, 1996).
788	35.	Jackson, S.D. Plant responses to photoperiod. New Phytologist 181, 517-531 (2009).
789	36.	Stetter, M.G. et al. Crossing methods and cultivation conditions for rapid production of
790		segregating populations in three grain amaranth species. Frontiers in plant science 7, 816
791		(2016).
792	37.	Evans, L. Short day induction of inflorescence initiation in some winter wheat varieties.
793		Functional Plant Biology 14, 277-286 (1987).
794	38.	Davidson, J., Christian, K., Jones, D. & Bremner, P. Responses of wheat to vernalization and
795		photoperiod. Crop and Pasture Science 36, 347-359 (1985).
796	39.	Collard, B.C. et al. Revisiting rice breeding methods-evaluating the use of rapid generation
797		advance (RGA) for routine rice breeding. Plant Production Science 20, 337-352 (2017).
798	40.	Zadoks, J.C., Chang, T.T. & Konzak, C.F. A decimal code for the growth stages of cereals.
799		Weed Research 14, 415-421 (1974).
800	41.	Sylvester-Bradley, R. A code for stages of development in oilseed rape (Brassica napus L.).
801		Asp Appl Biol 6, 399-418 (1984).
802	42.	Sosa-Zuniga, V., Brito, V., Fuentes, F. & Steinfort, U. Phenological growth stages of quinoa
803		(Chenopodium quinoa) based on the BBCH scale. Annals of Applied Biology 171, 117-124
804		(2017).
805	43.	Fehr, W.R., Caviness, C.E., Burmood, D.T. & Pennington, J.S. Stage of development
806		descriptions for soybeans, <i>Glycine max</i> (L.) Merrill. Crop Science 11, 929-931 (1971).
807	44.	Pretorius, Z.A., Park, R.F. & Wellings, C.R. An accelerated method for evaluating adult-plant
808		resistance to leaf and stripe rust in spring wheat. Acta Phytopathologica et Entomologica
809		Hungarica 35, 359-364 (2000).
810	45.	Riaz, A. & Hickey, L.T. in Wheat Rust Diseases: Methods and Protocols, Vol. 1659. (ed. S.
811		Periyannan) 183-196 (2017).

bioRxiv preprint doi: https://doi.org/10.1101/369512; this version posted July 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

812 8. Acknowledgements

813

814 We wish to acknowledge the support of the Biotechnology and Biological Sciences Research Council 815 (BBSRC) strategic programmes Designing Future Wheat (BB/P016855/1), Molecules from Nature 816 (BB/P012523/1), Understanding and Exploiting Plant and Microbial Metabolism (BB/J004561/1), 817 Food and Health (BB/J004545/1); and Food Innovation and Health (BB/R012512/1), and also support 818 from the Gatsby Charitable Foundation. The benchtop cabinet was supported by an OpenPlant Fund 819 grant from the joint Engineering and Physical Sciences Research Council/ BBSRC-funded OpenPlant 820 Synthetic Biology Research Centre grant BB/L014130/1. SG was supported by a Monsanto Beachell-821 Borlaug International Scholarship and the 2Blades Foundation, AS by the BBSRC Detox Grasspea 822 project (BB/L011719/1) and the John Innes Foundation, AW by an Australian Post-graduate Award 823 and the Grains Research and Development Corporation (GRDC) Industry Top-up Scholarship (project 824 code GRS11008), MMS by CONACYT-I2T2 Nuevo León (grant code 266954 / 399852), LTH by an 825 Australian Research Council Early Career Discovery Research Award (project code DE170101296). 826 We acknowledge Matthew Grantham and David Napier from Heliospectra for their help in the 827 choice of LED lights, Luis Hernan and Carolina Ramírez from Newcastle University for their support 828 and advice in the design of the benchtop cabinet, Carol Moreau from the John Innes Centre and Jaya 829 Ghosh from the University of Bedfordshire for help with the pea and grasspea experiments, 830 respectively, and the JIC and UQ Horticulture Services for plant husbandry and their support in 831 scaling up SB in glasshouses.

832	9. Author Information
833	Authors that contributed equally – Sreya Ghosh and Amy Watson
834	Affiliations –
835	Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, University of
836	Queensland, Brisbane, Australia - Amy Watson, Lee T. Hickey
837	
838	John Innes Centre, Norwich Research Park, Norwich, United Kingdom - Sreya Ghosh, Ricardo H.
839	Ramirez-Gonzalez, James Simmonds, Rachel Wells, Tracey Raynor, Amber Hafeez, Sadiye Hayta,
840	Rachel E. Melton, Andrew Steed, Abhimanyu Sarkar, Jeremy Carter, Lionel Perkins, John Lord, Paul
841	Nicholson, Wendy Harwood, Anne Osbourn, Cathie Martin, Claire Domoney, Cristobal Uauy, Brande
842	B. H. Wulff
843	
844	Earlham Institute, Norwich Research Park, Norwich, United Kingdom - Luis Yanes
845	
846	The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom - Phon Green, Matthew
847	J. Moscou
848	
849	King Abdullah University of Science and Technology, Biological and Environmental Science and
850	Engineering Division, Kingdom of Saudi Arabia - Mark Tester
851	
852	Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom - Oscar E. Gonzalez-
853	Navarro, Brittany Hazard
854	
855 856 857	Department of Plant Sciences, University of Oxford, Oxford, United Kingdom - Marcela Mendoza- Suárez

- 858 **Contributions –** SG and AW drafted the manuscript and oversaw many of the experiments. LTH and
- 859 BBHW contributed to design of experiments and manuscript writing. AW designed and implemented
- 860 the SSD protocol for wheat and barley in the LED-supplemented glasshouse at UQ. SG, OEGN, RHRG,
- 861 LY and MMS designed, constructed, programmed and tested the benchtop growth cabinet. JC
- 862 performed the energy consumption calculations for the LED-supplemented glasshouse at JIC. For the
- 863 LED-supplemented glasshouse at JIC, JS performed the experiments for wheat including the SSDs,
- 864 RW for brassicas, REM for oats, SH for additional wheat cultivars, PG for barley, TR for pea, AH for
- quinoa, AS (Sarkar) for grasspea and AS (Steed) for *Brachypodium*. JL, LP, CD, MJM, WH, AO, CM, CU,
- 866 BH, MT, PN, BBHW and LTH contributed intellectually to the experiments and/or the writing of the
- 867 manuscript. All authors reviewed and approved the final manuscript prior to submission.
- 868
- 869 Competing Interests All the authors declare that they have no competing financial interests.
- 870

$871 \qquad \text{Corresponding author}-\text{All correspondence should be addressed to Brande Wulff}$

- 872 (brande.wulff@jic.ac.uk) or Lee Hickey (l.hickey@uq.edu.au).
- 873