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ABSTRACT 48	
 49	
Many everyday tasks require us to flexibly map incoming sensory information onto behavioral 50	
responses based on context. One example is the act of searching for a specific object, which 51	
requires our brain to compare the items in view with a remembered representation of a sought 52	
target to determine whether a target match is present. During object search, this comparison is 53	
thought to be implemented, in part, via the combination of top-down modulations reflecting 54	
target identity with feed-forward visual representations. However, it remains unclear whether 55	
these top-down signals are integrated at a single locus within the ventral visual pathway (e.g. 56	
V4) or at multiple stages (e.g. both V4 and inferotemporal cortex, IT). To investigate, we 57	
compared neural responses in V4 and IT recorded as rhesus monkeys performed a task that 58	
required them to identify when a target object appeared across variation in position, size and 59	
background context. We found non-visual, task-specific signals in both V4 and IT. To evaluate 60	
the plausibility that V4 was the only locus for the integration of top-down signals, we evaluated a 61	
number of feed-forward accounts of processing from V4 to IT, including a model in which IT 62	
preferentially sampled from the best V4 units, as well as a model that allowed for nonlinear IT 63	
computation. IT task-specific modulation could not be accounted for by any of these feed-64	
forward descriptions, suggesting that during object search, top-down signals are integrated 65	
directly within IT itself. 66	
 67	
 68	
 69	
SIGNIFICANCE 70	
 71	
To find specific visual objects, the brain must combine top-down information reflecting the 72	
identity of a sought target with visual information about objects in view. While top-down signals 73	
are known to exist at multiple stages along the ventral visual pathway, the route with which they 74	
arrive in each brain area is unclear. Here we present evidence that task-relevant signals in one 75	
high-level visual brain area, IT, cannot be described as simply being inherited from an earlier 76	
stage of processing, V4, and thus must be integrated directly within IT itself. This study is the 77	
first to systematically compare the responses of V4 and IT during an object search task in which 78	
objects can appear in different real-world configurations, and it provides important constraints on 79	
the neural computations responsible for finding visual targets. 80	

 81	
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INTRODUCTION 83	
 84	
Finding a sought object, such as our car keys, requires our brains to perform at least two non-85	
trivial computations. First, we must determine the identities of the objects in view, across 86	
variation in details such as their position, size, and background context. Second, we must 87	
compare this visual representation (of what we are looking at) with a remembered 88	
representation (of what we are looking for) to determine whether our target is in view. 89	
Considerable evidence suggests that computations in the primate ventral visual pathway, 90	
including brain areas V1, V2, V4 and IT, support the process of invariant object recognition 91	
(reviewed by DiCarlo et al. 2012). Within V4 and IT, many neurons are also modulated by 92	
information about target identity as well as whether an image is a target match (Haenny et al. 93	
1988; Maunsell et al. 1991; Eskandar et al. 1992; Leuschow et al. 1994; Gibson and Maunsell 94	
1997; Chelazzi et al. 1998; Chelazzi et al. 2001; Bichot et al. 2005; Pagan et al. 2013; Kosai et 95	
al. 2014; Roth and Rust 2018). However, the route by which these signals arrive in V4 and IT 96	
remains unclear.  97	
 98	
Here we present two classes of proposals describing how top-down signals reflecting the 99	
identity of a sought target and/or whether the object in view is a target match might arrive within 100	
V4 and IT during target search. In the first (Fig 1a), V4 serves as the sole locus of the 101	
combination of visual and top-down information, and IT receives this information via feed-102	
forward propagation from V4. In the second (Fig 1b), top-down information is integrated directly 103	
in IT. This class includes proposals in which top-down information is integrated in both V4 and 104	
IT (Fig 1b, left) as well as proposals in which IT serves as the sole locus for the integration of 105	
top-down information, and V4 receives this information from IT through feedback (Fig 1b, right). 106	
 107	
 108	
 109	
Figure 1. Proposals for how top-down target and/or target match information might arrive within 110	
V4 and IT during object search. a) The class of “IT: inherited” proposals predict that top-down 111	
information is integrated only in V4, and this information is then inherited by IT via feed-forward 112	
propagation. b) The class of “IT: integrated” proposals predict that top-down information is 113	
integrated directly in IT. This class includes proposals in which top-down information is 114	
integrated in both V4 and IT (left) as well as proposals in which top-down information is 115	
integrated exclusively in IT but is then fed-back to V4 (right). 116	

 117	
 118	
 119	
At least some evidence exists to support all of the proposals presented in Figure 1, albeit 120	
sometimes indirect. Support for multi-locus descriptions (Fig 1b, left) comes from studies 121	
reporting that non-visual, task-relevant signals increase in a gradient-like fashion across the 122	
early visual hierarchy (i.e. V1, V2 and V4) during covert spatial attention and feature-based 123	
attention tasks (reviewed by Noudoost et al. 2010), consistent with the integration of top-down 124	
signals at multiple stages. By extension, top-down signals could be integrated in both V4 and IT 125	
during visual target search. Importantly, if a gradient of top-down modulation were to exist 126	
between V4 and IT, this would not necessarily imply multiple stages of top-down integration, as 127	
a gradient is also consistent with top-down integration in IT followed by feedback to V4 (Fig 1b, 128	
right). Evidence supports this scheme in V1, V2 and V4 (Buffalo et al. 2010).  129	
 130	
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In contrast to the proposals presented in Fig 1b, proposals in which V4 serves as the sole locus 131	
of top-down integration (Fig 1a) predict matched amounts of non-visual, task-relevant 132	
modulation between V4 and IT, and the few studies that have measured it are most consistent 133	
with this prediction, both during visual target search (Chelazzi et al. 1998; Chelazzi et al. 2001) 134	
as well as one covert spatial attention task (Moran and Desimone 1985). Additional support for 135	
a single locus of top-down integration within the ventral visual pathway comes from 136	
comparisons of target match signals in IT and a stage of processing just beyond it, perirhinal 137	
cortex, where perirhinal target match information is reported to be well-accounted for via purely 138	
feed-forward input from IT (Pagan et al. 2013; Pagan and Rust 2014; Pagan et al. 2016). 139	
 140	
Here we focus on differentiating between the proposals presented in Figure 1 by probing the 141	
responses of V4 and IT neurons during a visual object search task that capitalizes on 142	
differences in how V4 and IT represent object identity across identity-preserving 143	
transformations.  144	
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METHODS 145	
	146	

Experimental Design 147	
 148	
Experiments were performed on two adult male rhesus macaque monkeys (Macaca mulatta) 149	
with implanted head posts and recording chambers. All procedures were performed in 150	
accordance with the guidelines of the University of Pennsylvania Institutional Animal Care and 151	
Use Committee. A portion of the data recorded in one brain area (IT) was presented in an earlier 152	
report (Roth and Rust 2018). 153	
 154	
The invariant delayed-match-to-sample (IDMS) task 155	
 156	
Monkey behavioral training and testing utilized standard operant conditioning, head stabilization 157	
and infrared video eye tracking. Custom software (http://mworks-project.org) was used to 158	
present stimuli on an LCD monitor with an 85 Hz refresh rate.  159	
 160	
The monkeys performed an invariant delayed-match-to-sample task (Fig 2). As an overview, the 161	
task required the monkeys to make a saccade when a target object appeared within a sequence 162	
of distractor images (Fig 2a). Objects were presented at differing positions, sizes and 163	
background contexts (Fig 2b). Stimuli consisted of a fixed set of 20 images that included 4 target 164	
objects, each presented at 5 different identity-preserving transformations (Fig 2c). Each short 165	
block (~3 min) was run with a fixed target object before another target was pseudorandomly 166	
selected. Our design included two types of trials: cue trials and test trials (Fig 2a). Only test 167	
trials were analyzed for this report. 168	
 169	
A trial began when the monkey fixated on a red dot (0.15°) in the center of a gray screen, within 170	
a square window of ±1.5°. Fixation was followed by a 250 ms delay before a stimulus appeared. 171	
Cue trials, which indicated the current target object, were presented at the beginning of each 172	
short block or after three subsequent error trials. To minimize confusion, cue trials were 173	
designed to be distinct from test trials and began with the presentation of an image of each 174	
object that was distinct from the images used on test trials (a large version of the object 175	
presented at the center of gaze on a gray background; Fig 2a). Test trials began with a 176	
distractor image, and neural responses to the first distractor were discarded to minimize non-177	
stationarities such as stimulus onset effects. During the DMS task, all images were presented at 178	
the center of gaze, in a circular aperture that blended into a gray background (Fig 2b).  179	
 180	
In each block, 5 images were presented as target matches and the other 15 as distractors.  181	
Distractor images were drawn randomly without replacement until each distractor was presented 182	
once on a correct trial, and the images were then re-randomized. On most test trials, a target 183	
match followed the presentation of a random number of 1-6 distractors (Fig 2a). On a small 184	
fraction of trials, 7 distractors were shown, and the monkeys were rewarded for fixating through 185	
all distractors. Each image was presented for 400 ms (or until the monkeys’ eyes left the fixation 186	
window) and was immediately followed by the presentation of the next stimulus. Monkeys were 187	
rewarded for making a saccade to a response target within a window of 75 – 600 ms after the 188	
target match onset. In monkey 1, the response target was positioned 10 degrees below fixation; 189	
in monkey 2 it was 10 degrees above fixation. If the monkeys had not yet moved their eyes after 190	
400 ms following target onset, a distractor stimulus was immediately presented. A trial was 191	
classified as a ‘false alarm’ if the eyes left the fixation window via the top (monkey 1) or bottom 192	
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(monkey 2) outside the allowable correct response period and travelled more than 0.5 degrees. 193	
In contrast, all other instances in which the eyes left the fixation window during the presentation 194	
of distractors were characterized as fixation breaks. A trial was classified as a ‘miss’ when the 195	
monkey continued fixating beyond 600 ms following the onset of the target match. Within each 196	
block, 4 repeated presentations of each of the 20 images were collected, and a new target 197	
object was then pseudorandomly selected. Following the presentation of all 4 objects as targets, 198	
the targets were re-randomized. At least 10 repeats of each condition were collected on correct 199	
trials. When more than 10 repeats were collected, the first 10 were used for analysis. Overall, 200	
monkeys performed this task with high accuracy. Disregarding fixation breaks (monkey 1: 8% of 201	
trials, monkey 2: 11% of trials), percent correct on the remaining trials was: monkey 1: 94% 202	
correct, 2% false alarms, and 4% misses; monkey 2: 98% correct, ~1% false alarms, and ~1% 203	
misses. Behavioral performance was comparable for the sessions corresponding to recordings 204	
from the two areas (V4 percent correct overall  = 96.5%; IT percent correct overall = 91.4%). 205	
 206	
V4 receptive fields at and near the center of gaze are small: on average they have radii of 0.56 207	
degrees at the fovea, extending to radii of 1.4 at an eccentricity of 2.5 degrees (Desimone and 208	
Schein 1987; Gattass et al. 1988).  We thus took considerable care to ensure that that the 209	
images were approximately placed in the same region of these receptive fields across repeated 210	
trials. In one monkey, fixational control was good after training (on average 85 and 97% of 211	
presentations occurred within a radius of 0.56 and 1.4 degrees respectively). In a second 212	
monkey, adequate fixational control could not be achieved through training. We thus applied a 213	
procedure in which we shifted each image at stimulus onset 25% toward the center of gaze (e.g. 214	
if the eyes were displaced 0.5 degrees to the left, the image was repositioned 0.125 degrees to 215	
the left and thus 0.375 degrees from fixation). Image position then remained fixed until the onset 216	
of the next stimulus. The resulting deviation across trials, measured relative to the mean 217	
position across trials, was comparable to monkey 1: on average, 95, and 99% of presentations 218	
occurred within windows with a radius of 0.56 and 1.4 degrees, respectively.  219	

 220	
Neural recording 221	
 222	
The activity of neurons in V4 and IT was recorded via a single recording chamber for each brain 223	
area in each monkey. In both monkeys, chamber implantation and recording in IT preceded V4, 224	
and the IT recording chamber was implanted on the right hemisphere whereas the V4 recording 225	
chamber was implanted on the left hemisphere. While IT receptive fields span the vertical 226	
meridian, thus allowing us to access the visual representation of both sides with a single 227	
chamber, V4 receptive fields are confined to the contralateral hemifield. To simulate V4 228	
coverage of the ipsilateral visual field, on roughly half of the V4 recording sessions, (n = 7/15 229	
sessions in Monkey 1, n = 11/20 sessions in Monkey 2), we presented the images reflected 230	
across the vertical axis. We then treated all V4 units recorded during these sessions as if they 231	
were in the left hemisphere (and thus as receptive fields that were located in the right visual 232	
field). 233	
 234	
Chamber placement for the IT chambers was guided by anatomical magnetic resonance images 235	
in both monkeys, and in one monkey, Brainsight neuronavigation (https://www.rogue-236	
research.com/). Both V4 chambers were guided by Brainsight neuronavigation. The region of IT 237	
recorded was located on the ventral surface of the brain, over an area that spanned 4 mm 238	
lateral to the anterior middle temporal sulcus and 15-19 mm anterior to the ear canals. Both V4 239	
chambers were centered 1 mm posterior to the ear canals and 29 mm lateral to the midline, 240	
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positioned at a 30 degree angle. V4 recording sites were confirmed by a combination of 241	
receptive field location and position in the chamber, corresponding to results reported previously 242	
(Gattass et al. 1988). Specifically, we recorded from units within and around the inferior occipital 243	
sulcus, between the lunate sulcus and superior temporal sulcus. V4 units in lower visual field 244	
were confirmed as having receptive field centers that traversed from the vertical to horizontal 245	
meridian as recordings shifted from posterior to anterior. As expected, V4 units in the fovea and 246	
near the upper visual field were found lateral to those in the lower visual field, and had receptive 247	
field centers that traversed from the horizontal meridian to the vertical meridian as recordings 248	
traversed medial to lateral and increased in depth.   249	
 250	
Neural activity was recorded with 24-channel U-probes and V-probes (Plexon, Inc) with linearly 251	
arranged recording sites spaced with 100 mm intervals. Continuous, wideband neural signals 252	
were amplified, digitized at 40 kHz and stored using the OmniPlex Data Acquisition System 253	
(Plexon, Inc.). Spike sorting was done manually offline (Plexon Offline Sorter). At least one 254	
candidate unit was identified on each recording channel, and 2-3 units were occasionally 255	
identified on the same channel. Spike sorting was performed blind to any experimental 256	
conditions to avoid bias. A multi-channel recording session was included in the analysis if the 257	
animal performed the task until the completion of at least 10 correct trials per stimulus condition, 258	
there was no external noise source confounding the detection of spike waveforms, and the 259	
session included a threshold number of task-modulated units (>4 on 24 channels). The sample 260	
size for IT (number of units recorded) was chosen to approximately match our previous work 261	
(Pagan et al. 2013; Pagan and Rust 2014). The sample size for V4, was selected to be 3-fold 262	
that number, to match the ratio between numbers of units estimated in V4 as compared to IT 263	
(DiCarlo et al. 2012). 264	
 265	
For many of the analyses presented in this paper, we measured neural responses by counting 266	
spikes in a window that began 40 ms after stimulus onset in V4 and 80 ms after stimulus onset 267	
in IT. We counted spikes in a 170 ms window in both areas, such that the spike counting 268	
windows were of equal length. Counting windows always preceded the monkeys’ reaction times. 269	
On 7.7% of all correct target match presentations, the monkeys had reaction times faster than 270	
250 ms, and those instances were excluded from analysis to ensure that spikes in both V4 and 271	
IT were only counted during periods of fixation.  272	
 273	
In IT, we recorded neural responses across 20 experimental sessions (Monkey 1: 10 sessions, 274	
and Monkey 2: 10 sessions). In V4, we recorded neural responses across 35 experimental 275	
sessions (Monkey 1: 15 sessions, and Monkey 2: 20 sessions). When combining the units 276	
recorded across sessions into a larger pseudopopulation, we began by screening for units that 277	
met three criteria. First, units needed to be modulated by our task, as quantified by a one-way 278	
ANOVA applied to our neural responses (80 conditions * 10 repeats, p < 0.01). Second, units 279	
needed to pass a loose criterion on recording stability, as quantified by calculating the variance-280	
to-mean ratio (Fano factor) for each unit, computed by fitting the relationship between the mean 281	
and variance of spike count across the 80 conditions (Fano factor < 2.5).  Finally, units needed 282	
to pass a loose criterion on unit recording isolation, quantified by calculating the signal-to-noise 283	
ratio (SNR) of the waveform as the difference between the maximum and minimum points of the 284	
average waveform, divided by twice the standard deviation across the differences between each 285	
waveform and the mean waveform (SNR > 2). In IT, this yielded a pseudopopulation of 193 286	
units (of 563 possible units), including 98 units from monkey 1 and 95 units from monkey 2. In 287	
V4, this yielded a pseudopopulation of 598 units (of 970 possible units), including 345 units from 288	
monkey 1 and 253 units from monkey 2.  289	
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 290	
 291	
V4 receptive field mapping 292	
 293	
To measure the location and extent of V4 receptive fields, bars were presented for 500 ms, one 294	
per trial, centered on a 5 x 5 invisible grid. Bar orientation, length, and width as well as the grid 295	
center and extent were adjusted for each recording session based on preliminary hand 296	
mapping. On each trial, the monkey was required to maintain fixation on a small response dot 297	
(0.125°) to receive a reward. The responses to at least five repeats were collected at each 298	
position for each recording session. Only those units that produced clear visually evoked 299	
responses at a minimum of one position were considered for receptive field position analysis. 300	
The center of the receptive field was estimated by the maximum of the response across the 5x5 301	
grid of oriented bar stimuli and confirmed by visual inspection. 302	
 303	
 304	
Quantifying single-unit modulations 305	
 306	
To quantify the degree to which individual V4 and IT units were modulated by task-relevant 307	
variables (Figs 4, 7, 8), such as changes in visual and target identity, we applied a bias-308	
corrected, ANOVA-like procedure described in detail by (Pagan and Rust 2014) and 309	
summarized here. As an overview, this procedure is designed to parse each unit’s total 310	
response variance into variance that can be attributed to each type of experimental parameter 311	
as well as variance that can be attributed to trial variability. Total variance is computed across 312	
the spike count responses for each unit across 16 conditions (4 images * 4 targets for each 313	
transformation) and 10 trials. Variances are then transformed into measures of spike count 314	
modulation (in the units of standard deviation around each unit’s grand mean spike count) via a 315	
procedure that includes bias correction for over-estimates in modulation due to noise.   316	
 317	
To capture all types of modulation with intuitive groupings, the procedure begins by developing 318	
an orthonormal basis of 16 vectors. The number of basis vectors for each type of modulation is 319	
imposed by the experimental design. In particular, this basis 𝒃 included vectors 𝒃! that reflected 320	
1) the grand mean spike count across all conditions, 2) whether the object in view was a target 321	
or a distractor (‘target match’), 3) visual image identity (‘visual’), 4) target object identity (‘target 322	
identity’), and 5) nonlinear interactions between target and object identity not captured by target 323	
match modulation (‘residual’). The initially designed set of vectors is converted into an 324	
orthonormal basis via a Gram-Schmidt orthogonalization process.  325	
 326	
The resulting basis spans the space of all possible responses for our task. Consequently, we 327	
can re-express each trial-averaged vector of spike count responses to the 16 experimental 328	
conditions for each transformation, 𝑹, as a weighted sum of these basis vectors. The weight 329	
corresponding to a basis vector for each unit reflect modulation of that unit’s responses by that 330	
experimental parameter. To quantify the amounts of each type of modulation reflected by each 331	
unit, we began by computing the squared projection of each basis vector 𝒃!  and 𝑹. To correct 332	
for bias caused by over-estimates in modulation due to noise, an analytical bias correction, 333	
described and verified in (Pagan and Rust 2014), was then subtracted from this value. The 334	
squared weight for each basis vector 𝒃!  is calculated as:  335	

 (1) 𝑤!! = (𝑹 ∙ 𝒃!!)! −
!!! ∙(𝒃𝒊

𝑻)𝟐

!
 336	
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where 𝜎!! indicates the trial variance, averaged across conditions (n=16), and m indicates the 337	
number of trials (m=10). If more than one dimension existed for a type of modulation, we 338	
summed values of the same type (eq. 2). Next, we applied a normalization factor (1/(n-1)) where 339	
n=16) to convert these summed values into variances. As a final step, we computed the square 340	
root of these quantities to convert them into modulation measures that reflected the number of 341	
spike count standard deviations around each unit’s grand mean spike count. Modulation for 342	
each parameter type X was thus computed as: 343	

(2) 𝜎! = !
!!!

∙ 𝑤!!!
!!!  344	

for the weights 𝑤!  through 𝑤!   corresponding to basis vectors 𝒃! through 𝒃! for that parameter 345	
type, where the number of basis vectors corresponding to each parameter type were: target 346	
match = 1; visual = 3; target identity = 3; residual = 8.    347	

When estimating modulation for individual units, (Fig 4), the bias-corrected squared values were 348	
rectified for each unit before taking the square root. When estimating modulation population 349	
means (Fig 7b-e, Fig 8), the bias-corrected squared values were averaged across units before 350	
taking the square root. Because these measures were not normally distributed, standard error 351	
about the mean was computed via a bootstrap procedure. On each iteration of the bootstrap 352	
(across 1000 iterations), we randomly sampled values from the modulation values for each unit 353	
in the population, with replacement. Standard error was computed as the standard deviation 354	
across the means of these resampled populations. 355	

 356	
Population performance: Visual object invariance 357	
 358	
To determine performance of the V4 and IT populations at classifying visual object identity (Fig 359	
5), we computed 4-way object discrimination performance. As an overview, we formulated the 360	
problem as four one-versus-rest linear classifications, and then took the maximum of these 361	
classifications as a population’s decision (Hung et al. 2005). Here we begin by describing the 362	
general form of linear classifier that we used, a Fisher Linear Discriminant (FLD), and we then 363	
describe the training and testing scheme for measuring cross-validated performance.  364	
 365	
The general form of a linear decoding axis is:  366	

(3)  𝑓 𝒙 =  𝒘!𝒙 + 𝑏,  367	

where w is an N-dimensional vector containing the linear weights applied to each of N units, and 368	
b is a scalar value. We fit these parameters using an FLD, where the vector of linear weights 369	
was calculated as: 370	

(4) 𝒘 = Σ!𝟏(𝜇! − 𝜇!) 371	

and b was calculated as: 372	

 (5) 𝑏 = 𝒘 ∙ !
!
(𝜇! + 𝜇!) = !

!
𝜇!!Σ!𝟏𝜇! −  !

!
𝜇!!Σ!𝟏𝜇! 373	

Here 𝜇! 𝑎𝑛𝑑 𝜇! are the means of two classes (e.g. two object classes, respectively) and the 374	
mean covariance matrix is calculated as: 375	
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 (6) Σ = !!!!!
!

 376	

where Σ! and Σ! are the regularized covariance matrices of the two classes. These covariance 377	
matrices were computed using a regularized estimate equal to a linear combination of the 378	
sample covariance and the identity matrix 𝐼 (Pagan and Rust 2014): 379	

(7) Σ! =  𝛾 Σ! + (1 − 𝛾) ∙ 𝐼 380	

We determined 𝛾 by exploring a range of values from 0.01 to 0.99, and we selected the value 381	
that maximized average performance across all iterations, measured with the cross-validation 382	
“regularization” trials set aside for this purpose (see below). We then computed performance for 383	
that value of  𝛾 with separately measured “test” trials, to ensure a fully cross-validated measure. 384	
Because this calculation of the FLD parameters incorporates the off-diagonal terms of the 385	
covariance matrix, FLD weights are optimized for both the information conveyed by individual 386	
units as well as their pairwise interactions.    387	

To classify which of four objects was in view, we used a standard “one-versus-rest” 388	
classification scheme. Specifically, one linear classifier was determined for each object based 389	
on the training data. To determine the population decision about which object was presented, a 390	
response vector x, corresponding to the population response of one of the four objects, was 391	
then applied to each of the classifiers, and the classifier with the largest output (the classifier 392	
with the largest, positive f(x)) was taken as the population decision. To train the classifiers, we 393	
used an iterative resampling procedure. On each iteration of the resampling, we randomly 394	
shuffled the trials for each condition and for each unit, and (for numbers of units less than the 395	
full population size) randomly selected units. On each iteration, 8 trials from each condition were 396	
used for training the decoder, 1 trial from each condition was used to determine a value for 397	
regularization, and 1 trial from each condition was used for cross-validated measurement of 398	
performance.  399	
  400	
We compared classifier performance for the “reference” cases (when cross-validated test trials 401	
were selected from the same transformation used to train the classifier; Fig 5a-b, black) versus 402	
the “generalization” cases (when test trials were selected from transformations different than the 403	
one used for training, Fig 5a-b, cyan). To summarize the results for a given transformation, 404	
reference and generalization performance was compared for the same test data: e.g. In the 405	
case of the transformation “Up”, reference performance was computed by training and cross-406	
validated testing on “Up” and generalization performance was computed as the average of 407	
training on all other transformations and testing on “Up”.  408	
 409	
To ensure that visual classification performance was not biased by the target match signal, we 410	
computed performance for targets and distractors separately and averaged their results. 411	
Specifically, we computed visual classification performance for the four objects presented as 412	
target matches or for different combinations of the four objects presented as distractors. Each 413	
set of 4 distractors was selected to span all possible combinations of mismatched object and 414	
target identities (e.g. objects 1, 2, 3, 4 paired with targets 4, 3, 2, 1), of which there are 9 415	
possible sets. As a final measure of visual classification performance, we averaged across 10 416	
performance values (1 target match and 9 distractor combinations) as well as, when relevant, 417	
multiple transformations. One performance value was computed on each iteration of the 418	
resampling procedure, and mean and standard error of performance was computed as the 419	
mean and standard deviation of performance across 1000 resampling iterations. Standard error 420	
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thus reflected the variability due to the specific trials assigned to training and testing and, for 421	
populations smaller than the full size, the specific units chosen. Finally, generalization capacity 422	
was computed on each resampling iteration by taking the ratio of the chance-subtracted 423	
reference performance and the chance-subtracted generalization performance (where chance = 424	
25%).  425	
 426	
Population performance: Target match information 427	
 428	
To determine the ability of the V4 and IT populations to classify target matches versus 429	
distractors (Figs 9 & 10), we applied two types of decoders: a linear classifier (an FLD, 430	
described above) and a Maximum Likelihood decoder (a decoder that can classify based on 431	
linear as well as nonlinearly formatted target match information). Both decoders were cross-432	
validated with the same resampling procedure. On each iteration of the resampling, we 433	
randomly shuffled the trials for each condition and for each unit, and (for numbers of units less 434	
than the full population size) randomly selected units (with the exception of Fig 9c, cyan, where 435	
we selected the ‘best’ units, as described below). On each iteration, 8 trials from each condition 436	
were used for training the decoder, 1 trial from each condition was used to determine a value for 437	
regularization of the FLD linear classifier (see below) and 1 trial from each condition was used 438	
for a cross-validated measurement of performance.  439	
 440	
To circumvent issues related to the format of visual information, classifier analyses were 441	
performed per transformation (“Big”, “Up”, “Left” and “Small”). The data for each transformation 442	
consisted of 16 conditions (4 visual objects viewed under 4 different target contexts). To ensure 443	
that decoder performance relied only on target match information and not on other factors, such 444	
as differences in the numbers of each class, each classification was computed for 4 target 445	
matches versus 4 (of 12 possible) distractors. Each set of 4 distractors was selected to span all 446	
possible combinations of mismatched object and target identities (e.g. objects 1, 2, 3, 4 paired 447	
with targets 4, 3, 2, 1), of which there are 9 possible sets. Performance was computed on each 448	
resampling iteration by averaging the binary performance outcomes across the 9 possible sets 449	
of target matches and distractors, each which contained 8 cross-validated test trials, and across 450	
the four transformations used. For both types of classifiers, mean and standard error of 451	
performance was computed as the mean and standard deviation of performance across 1000 452	
resampling iterations. Standard error thus reflected the variability due to the specific trials 453	
assigned to training and testing and, for populations smaller than the full size, the specific units 454	
chosen.   455	
 456	
To compute linear classifier performance (Fig 9), we used a 2-way Fisher Linear Discriminant, 457	
described as in the general form above. In this case, the classes described in eqs. 4-6 458	
correspond to target matches and distractors. To compute neural population performance, we 459	
began by computing the dot product of the test data and the linear weights w, adjusted by b (Eq. 460	
5). Each test trial was then assigned to one class, and proportion correct was then computed as 461	
the fraction of test trials that were correctly assigned, according to their true labels. To compute 462	
linear classifier performance for the best V4 units (Fig 9c, cyan), we ranked units by their d’ 463	
based on the training data and sub-selected top-ranked units to measure cross-validated 464	
performance. Unit d’ was computed as:  465	
 466	

(8)  𝑑! = !!"#$!! !!"#$%&'$(%
!!""#$%

,  467	
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where 𝜇!"#$! and 𝜇!"#$%&'$(% correspond to the mean across the set of target match and 468	

distractors, 𝜎!""#$% =  !!"#$!
! !!!"#$%&'$(%

!

!
, and 𝜎!"#$! and 𝜎!"#$%&'$(% correspond to the standard 469	

deviation across the set of target matches and distractors, respectively. 470	

 471	

As a measure of total target match information (Fig 10; combined linear and nonlinear), we 472	
implemented a maximum likelihood decoder (Pagan et al. 2013; Pagan et al. 2016). We began 473	
by using the set of training trials to compute the average response ruc of each unit u to each of 474	
the 2 conditions c (target matches versus distractors). We then computed the likelihood that a 475	
test response k was generated from a particular condition as a Poisson-distributed variable: 476	

 (9) 𝑙𝑖𝑘!,!(𝑘) =
(!!")!∙!!!!"

!!
 477	

The likelihood that a population response vector was generated in response to each condition 478	
was then computed as the product of the likelihoods of the individual units. We assigned the 479	
population response to the category with the maximum likelihood, and we computed 480	
performance as the fraction of trials in which the classification was correct based on the true 481	
labels of the test data. 482	
 483	
 484	
Statistical analysis 485	
	486	
Because our measures were not normally distributed, we computed P values via resampling 487	
procedures. When comparing the magnitudes of single unit modulation values between V4 and 488	
IT (Fig 4, Fig 7b-e, Fig 8), a bootstrap procedure was applied in which values were randomly 489	
sampled from the values for each unit, with replacement, across many iterations. We calculated 490	
P values as the fraction of resampling iterations on which the difference was flipped in sign 491	
relative to the actual difference between the means of the full data set (for example, if the mean 492	
of visual modulation in V4 was larger than the mean of visual modulation in IT, the fraction of 493	
iterations in which the mean of visual modulation in IT was larger than the mean of visual 494	
modulation in V4).  495	
 496	
When comparing generalization capacity between the V4 and IT populations (Fig 5d), we began 497	
by computing generalization capacity for each of 1000 resampling iterations of the reference 498	
and generalization classifiers. We calculated P values as the fraction of resampling iterations on 499	
which the difference was flipped in sign relative to the actual difference between the means of 500	
the full data set (for example, if the mean of generalization capacity in IT was larger than the 501	
mean of generalization capacity in V4, the fraction of iterations in which the mean of 502	
generalization capacity in V4 was larger than the mean of generalization capacity in IT).  503	
 504	
When comparing population decoding measures (Figs 5a-c, 9c, & 10c), 1000 iterations of cross-505	
validated population performance were computed, and P values were calculated as the fraction 506	
of classifier iterations on which the difference was flipped in sign relative to the actual difference 507	
between the means across classifier iterations (for example, if the mean of decoding measure 1 508	
was larger than the mean of decoding measure 2, the fraction of iterations in which the mean of 509	
measure 2 was larger than the mean of measure 1). When evaluating whether a population 510	
decoding measure was different from chance (Figs 9-10), P values were calculated as the 511	
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fraction of classifier iterations on which performance was greater than chance performance 512	
(50%).    513	
 514	
	515	

  516	
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RESULTS 517	
 518	
To compare responses in V4 and IT, we trained two monkeys to perform an “invariant delayed-519	
match-to-sample” (IDMS) task that required them to report when target objects appeared across 520	
variation in the objects’ positions, sizes and background contexts. Some of the data presented 521	
here were also included in an earlier publication (Roth and Rust 2018). There, we reported that 522	
during IDMS, neural signals in IT reflected behavioral confusions on the trials in which the 523	
monkeys made errors, and IT target match signals were configured in a manner that minimized 524	
their interference with IT visual representations. The focus of the current report is a 525	
determination of how these signals arrive in IT via a systematic comparison between IT and its 526	
input brain area, V4. 527	
 528	
 529	
The invariant delayed-match-to-sample task (IDMS) 530	
 531	
Monkeys performed an invariant delayed-match-to-sample (IDMS) task in short blocks of trials 532	
(~3 minutes on average) with a fixed target object. Each block began with a cue trial that 533	
indicated the target for that block (Fig 2a ‘Cue Trial’). The remainder of the block was comprised 534	
primarily of test trials (Fig 2a, ‘Test trial’). Test trials began with the presentation of a distractor 535	
and on most trials, this was followed by 0-5 additional distractors (for a total of 1-6 distractor 536	
images) and then an image containing the target match. The monkeys’ task required them to 537	
maintain fixation during the presentation of distractors and make a saccade in response to the 538	
appearance of a target match to receive a juice reward. To minimize the possibility that 539	
monkeys would predict the target match, on a small fraction of the trials the target match did not 540	
appear and the monkeys were rewarded for maintaining fixation through 7 distractors. Unlike 541	
other classic DMS tasks (Eskandar et al. 1992; Chelazzi et al. 1993; Leuschow et al. 1994; 542	
Miller and Desimone 1994; Pagan et al. 2013) our experimental design does not incorporate a 543	
cue at the beginning of each test trial, to better mimic real-world object search, where target 544	
matches are not repeats of the same image presented shortly before. 545	
   546	
 547	
 548	
Figure 2. The invariant delayed-match-to-sample task (IDMS). a) Monkeys initiated trials by 549	
fixating on a small dot. Each block (~3 minutes in duration) began with a cue trial which 550	
indicated the target object. On subsequent trials, a random number (1-7) of distractors were 551	
presented, and on most trials, this was followed by the target match. Monkeys were required to 552	
maintain fixation throughout the distractors and make a saccade to a response dot within a 553	
window 75 - 600 ms following the onset of the target match to receive a reward. In cases where 554	
the target match was presented for 400 ms and the monkey had still not broken fixation, a 555	
distractor stimulus was immediately presented. b) A schematic of the full experimental design, 556	
which included 80 conditions: looking “at” each of 4 objects, each presented at 5 identity-557	
preserving transformations (for 20 images in total), viewed in the context of looking “for” each 558	
object as a target.  In this design, target matches (gray) fall along the diagonal of each “looking 559	
at” / “looking for” transformation slice whereas distractors (white) fall off the diagonal. c) Images 560	
used in the task: 4 objects were presented at each of 5 identity-preserving transformations (“up”, 561	
“left”, “right”, “big”, “small”), for 20 images in total. In any given block, 5 of the images were 562	
presented as target matches and 15 were distractors. d) Percent correct for each monkey, 563	
calculated based on both misses and false alarms (but disregarding fixation breaks), shown as 564	
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a function of the number of distractors preceding the target match. Error bars indicate standard 565	
error across experimental sessions. e) Histograms of reaction times during correct trials (ms 566	
after stimulus onset), with means labeled. 567	

 568	
 569	
Our experimental stimuli consisted of a fixed set of 20 images: 4 objects presented at each of 5 570	
transformations (Fig 2b). These specific images were selected in order to make the task of 571	
classifying object identity challenging for the IT population and these specific transformations 572	
were selected based on findings from our previous work (Rust and DiCarlo 2010). In a given 573	
target block (e.g. a ‘banana block’), a subset of 5 of the images were target matches and the 574	
remaining 15 were distractors (Fig 2c). The full experimental design amounted to 20 images (4 575	
objects presented at 5 identity-preserving transformations), all viewed in the context of each of 576	
the 4 objects as a target, resulting in 80 experimental conditions (Fig 2b). In this design, “target 577	
matches” fall along the diagonal of each looking at / looking for matrix slice (where a matrix 578	
“slice” corresponds to the conditions at one fixed transformation; Fig 2b, gray). For each of the 579	
80 conditions, we collected at least 10 repeats on correct trials. Behavioral performance was 580	
high overall (Fig 2d). The monkeys’ mean reaction times (computed as the time their eyes left 581	
the fixation window relative to the target match stimulus onset) were 311 ms and 363 ms for 582	
monkey 1 and 2, respectively (Fig 2e).  583	
 584	
To systematically compare the responses of V4 and IT during this task, we applied a population-585	
based approach in which we fixed the images and their placement in the visual field across all 586	
the units that we studied, and we sampled from units whose receptive fields overlapped the 587	
stimuli. Specifically, we presented images at the center of gaze, with a diameter of 5 degrees. 588	
Neurons in IT typically have receptive fields that extend beyond 5 degrees and extend into all 589	
four quadrants (Fig 3a top; Op De Beeck and Vogels 2000). In contrast, V4 receptive fields are 590	
smaller, retinotopically organized, and confined to the contralateral hemifield (Fig 3a bottom; 591	
Desimone and Schein 1987; Gattass et al. 1988). To compare these two brain areas, we 592	
applied extensions of approaches developed in our earlier work in which we compared the 593	
responses of a set of randomly sampled IT units with a population of V4 units whose receptive 594	
fields tiled the image (Rust and DiCarlo 2010). This required sampling V4 units with receptive 595	
fields in both upper and lower visual fields, which we achieved through recording at different 596	
positions within and around the inferior occipital sulcus. This also required measuring units with 597	
receptive fields on both sides of the vertical meridian, which we approximated by isolating our 598	
recordings to one hemisphere but reflecting the images along the vertical axis in approximately 599	
half the sessions. 600	
 601	
 602	
 603	

Figure 3. V4 and IT receptive field locations. Images were displayed at the center of gaze and 604	
were 5 degrees in diameter. Red circles indicate the location and size of the images. a) 605	
Schematic of expected receptive field locations and sizes for neurons in IT (top; Op De Beeck 606	
and Vogels 2000) V4 (bottom; Desimone and Schein 1987; Gattass et al. 1988).  b) We 607	
targeted V4 units with receptive fields that tiled the images. After approximate receptive field 608	
localization with hand mapping, receptive field locations were determined with oriented bar 609	
stimuli presented in a 5 x 5 grid of different positions (see Methods). Shown are the receptive 610	
field centers of a subset of recorded V4 units; one dot is shown for each unique receptive field 611	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2018. ; https://doi.org/10.1101/370049doi: bioRxiv preprint 

https://doi.org/10.1101/370049
http://creativecommons.org/licenses/by-nc/4.0/


	 16 

location recorded. On approximately half of the sessions, images were reflected across the 612	
vertical axis, and for these sessions, the receptive field centers are plotted in the ipsilateral 613	
visual field. Monkey 1: gray; Monkey 2: white. 614	

 615	

 616	
 617	
Because V4 receptive fields in the region of the field that we recorded are small, one issue of 618	
concern is the replicability of retinal image placement across trials. We quantified the stability of 619	
monkeys’ eye positions across repeated trials as the percent of eye positions that were within 620	
windows corresponding to V4 receptive field sizes at the range of eccentricities we recorded 621	
(Gattass et al. 1988). We found that 89% of eye positions fell within windows corresponding to 622	
the average RF sizes at the fovea (average foveal receptive field size = 0.56 degrees), and 98% 623	
of eye positions were within windows corresponding to RF sizes at an eccentricity of 2.5 624	
degrees (average receptive field size at 2.5 degrees = 1.4 degrees). To achieve this in Monkey 625	
2, fixational control was improved by aligning the images closer to the center of gaze at stimulus 626	
onset (see Methods). These approaches were effective in producing similar distributions of trial-627	
by-trial variability between V4 and IT, as measured by the mean and standard deviation of the 628	
variance-to-mean ratio (Fano factor) across units (mean +/- std, V4 = 1.41+/-0.3; IT = 1.35 +/- 629	
0.33). 630	
 631	
As two monkeys performed this task, we recorded neural activity from small populations using 632	
24-channel probes that were acutely lowered into V4 or IT before each session. With the 633	
rationale that V4 contains approximately 3-fold more units than IT near the fovea (DiCarlo et al. 634	
2012), we aimed to collect 3-fold more units from V4. Following a screen for units based on their 635	
stability, isolation, and task modulation (see Methods), our data included 598 V4 units and 193 636	
IT units (Monkey 1: 345 units in V4 and 98 in IT; Monkey 2: 253 units in V4 and 95 in IT). The 637	
data reported here were extracted from trials with correct responses. For all analyses except Fig 638	
7, we counted spikes in equal length windows in V4 and IT but adjusted for the difference in 639	
latency between the two brain areas (170 ms, V4: 40-210 ms; IT: 80-250 ms following stimulus 640	
onset). These windows always preceded the monkeys’ reaction times and thus corresponded to 641	
periods of fixation. 642	
 643	
 644	
Visual modulation as a benchmark for verifying V4 and IT data: 645	
 646	
When making systematic comparisons between V4 and IT, there are important factors to 647	
consider. For example, should the information contained in the V4 and IT populations be 648	
compared with equal numbers of units? Similarly, what are appropriate benchmarks for 649	
determining whether the samples recorded from each brain area are representative? As an 650	
example, imagine a scenario in which the same information about whether an image is a target 651	
match or a distractor is reflected in both V4 and IT to the same degree, but the V4 neurons 652	
recorded in an experiment all have small, overlapping receptive fields confined to the same, 653	
small region of the visual field. In contrast, IT neurons, by virtual of their large receptive fields, 654	
would have access to much more of the visual field. From this data we might erroneously find 655	
that the magnitude of total target match information is larger in IT than V4 by way of non-656	
representative sampling.  657	
 658	
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As a benchmark for assessing whether the data we recorded from each brain area were 659	
representative, we compared the amount of visual modulation present in each brain area, at 660	
each transformation, with the following rationale. First, all the visual information contained in IT 661	
is thought to arrive there after first travelling through V4 (Felleman and Van Essen 1991), and 662	
consequently, samples of V4 and IT are comparable only if visual information is equal or higher 663	
in the V4 sample. Second, comparisons of visual information at each transformation 664	
independently circumvent issues related to well-established differences in the format of visual 665	
information between the two brain areas: object identity (across changes in object position, size 666	
and background context) is more accessible to a linear read-out in IT whereas it is more 667	
nonlinear in V4 (e.g. Rust and DiCarlo 2010).  668	
 669	
To compare the amounts of visual information in our recorded V4 and IT populations, we 670	
computed a single-unit measure of visual modulation that disentangles modulations due to 671	
changes in visual identity from other factors, such as top-down target modulation. This measure 672	
quantifies the modulation in a unit’s spike count that can be attributed to changes in the identity 673	
of the object in view, computed separately for each of the 5 transformations. Specifically, the 674	
analysis employs a bias-corrected procedure that quantifies different types of modulation in 675	
terms of the number of standard deviations around each unit’s grand mean spike count (Pagan 676	
and Rust 2014). For three of the five transformations (‘left’, ‘small’, ‘up’), mean visual modulation 677	
was statistically indistinguishable between V4 and IT (Fig 4a-c). For one transformation (‘big’; 678	
Fig 4d) mean visual modulation was larger in V4, but we retained this transformation for 679	
subsequent analyses because its incorporation reflected a worst-case scenario against the 680	
sampling problem of concern (i.e. one in which V4 has been inadequately sampled). In contrast, 681	
for the final transformation (‘right’; Fig 4f), the V4 population had significantly lower performance 682	
than IT (p < 1e10-5), and investigation of the recorded receptive field locations (Fig 3b) revealed 683	
that this was likely due to incomplete sampling at that location. As such, we disregarded this 684	
transformation from further analyses. Subsequent analyses are focused on the 4 of 5 685	
transformations in which visual modulation, averaged across transformations, was not 686	
statistically distinguishable in V4 as compared to IT, either in the pooled data or in either 687	
monkey (Fig 4f; Monkey 1: V4 mean = 0.26, IT mean = 0.21, p = 0.08; Monkey 2: V4 mean = 688	
0.16, IT mean = 0.17, p = 0.53). The fact that visual modulation is matched between V4 and IT 689	
across these four transformations suggests that the two populations can and should be 690	
compared with approximately matched numbers of units, consistent with previous reports (Rust 691	
and DiCarlo 2010).  692	
 693	
 694	

Figure 4. Comparison of visual modulation in V4 and IT. Shown are distributions of visual 695	
modulation magnitudes across units, parsed by transformation for V4 (open bars, n = 598 units) 696	
and IT (gray, n = 193 units) and plotted on a log axis. Following a bias correction to remove the 697	
impact of trial variability, visual modulation was computed in units of standard deviation around 698	
each unit’s grand mean spike count. The first bin includes units with negligible visual modulation 699	
(modulation < 0.001) and the broken axis indicates that these bars should extend to the 700	
proportions labeled just above. Means of each distribution, including units with negligible visual 701	
modulation, are indicated by arrows and values are indicated at the bottom of each panel. The 702	
p-values at the top of each panel were computed via a bootstrap significance test evaluating the 703	
probability that differences in the means between V4 and IT can be attributed to chance. a-e) 704	
Distributions parsed by transformation. Visual modulation corresponding to the transformation 705	
‘right’ was higher in IT as compared to V4, due to incomplete sampling of receptive fields at this 706	
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location (Fig 3b), and was thus disregarded from further analyses. f) Distributions of visual 707	
modulation, averaged for each unit across the transformations ‘left’, ‘small’, ‘up’, and ‘big’.  708	

 709	
 710	
A comparison of visual object invariance in V4 and IT  711	
 712	
Information about object identity, across changes in identity-preserving transformations, is 713	
reported to be more accessible to a linear read-out in IT as compared to V4 (Rust and DiCarlo 714	
2010). To determine whether this difference between V4 and IT was reflected during the IDMS 715	
task, we measured the ability of a 4-way linear object identity classifier, trained at each 716	
transformation, to generalize to other transformations. Specifically, “reference performance” was 717	
measured as cross-validated classifier performance when the training and testing trials came 718	
from the same transformation. “Generalization performance” was measured as cross-validated 719	
classifier performance when the testing trials came from the three transformations that were not 720	
used for training. To avoid confounding visual and target match modulation, each type of 721	
performance was computed separately for target matches and distractors (in all possible 722	
combinations) and then averaged (see Methods). Finally, “generalization capacity” was 723	
measured as the ratio of generalization over reference performance after subtracting the value 724	
expected by chance (where chance = 25%). 725	
 726	
Fig 5a depicts how reference and generalization performance grew as a function of population 727	
size in each brain area. In V4, generalization performance remained modest across all 728	
population sizes whereas V4 reference performance grew at a faster rate. In IT, both reference 729	
and generalization performance grew at non-negligible rates. Fig 5b summarizes the results in 730	
the two brain areas by plotting the endpoints of the plots in Fig 5a. Generalization capacity, 731	
computed as the ratio of generalization over reference performance, was higher in IT as 732	
compared to V4 (V4 = 0.16; IT = 0.47; p < 0.001), consistent with IT reflecting a more linearly-733	
separable object representation. This plot also reveals slightly lower reference performance in 734	
V4 for matched numbers of units (Fig 5b) despite the two populations reflecting matched 735	
average single-unit visual modulation (Fig 4f). We have determined that this small difference 736	
can be attributed to the slightly higher variance-to-mean ratio in V4 as compared to IT (reported 737	
above, mean Fano factor V4 = 1.41; mean Fano factor IT = 1.35), as opposed to other factors 738	
such how the information is tiled across the stimulus space or differences in task-relevant 739	
modulation (not shown). To confirm that IT generalization capacity remained higher even under 740	
conditions in which more total visual information was available in V4, we also computed 741	
generalization capacity for the full V4 population (n = 598 units). As shown in Figure 5c, 742	
generalization capacity remained higher in IT even under these conditions (mean V4 = 0.20; 743	
mean IT = 0.47; p < 0.001). Higher generalization capacity also held for each of the 744	
transformations individually (Fig 5d; ‘Big’ p < 0.001; ‘Left’ p < 0.001; ‘Small’ p = 0.046; ‘Up’ p = 745	
0.001).  746	
 747	
 748	

Figure 5. Comparison of visual object invariance across identity-preserving transformations in 749	
V4 versus IT. a) Performance of V4 and IT on a 4-way linear read-out of object identity, 750	
assessed either with cross-validated trials of the same transformation (“Reference”) or when 751	
asked to generalize to transformations not used for training (“Generalization”; see text). b) 752	
Reference and generalization performance for matched numbers of units (n = 193 for both V4 753	
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and IT populations), replotted from the endpoints in panel a. Generalization capacity was 754	
computed as the ratio of generalization over reference performance after subtracting the value 755	
expected by chance (where chance = 25%). c) Reference and generalization performance for 756	
the full recorded V4 population (n = 598 units) as compared to the full recorded IT population 757	
replotted from panel b (n = 193 units). d) Generalization capacity computed for matched 758	
numbers of units in V4 and IT (n = 193 units), applied to each transformation separately. Single 759	
asterisks denote p < 0.05; double asterisks denote p < 0.01; triple asterisks denote p < 0.001. In 760	
all panels, error bars (standard error) reflect the variability that can be attributed to the specific 761	
subset of trials chosen for training and testing and, for subsets of units smaller than the full 762	
population, the specific subset of units chosen.   763	

 764	
 765	
 766	
In sum, the results presented thus far demonstrate that, consistent with earlier reports, V4 and 767	
IT can be compared with approximately matched numbers of units, and that visual 768	
representations of object identity are more accessible to a linear population read-out in IT during 769	
IDMS. 770	
 771	
 772	
 773	
Conceptualizing IDMS target match computation 774	
 775	
To interpret the different types of signals that might be reflected in V4 and IT during IDMS, it is 776	
useful to conceptualize how target match signals – which reflect the solution to IDMS – might be 777	
computed. When considered in terms of a single 4x4 “looking at” vs. “looking for” slice of the 778	
experimental design matrix (Fig 2b), target match signals are reflected as diagonal structure (Fig 779	
6a, right, ‘Target match (four object)’). In the most straightforward description of target match 780	
computation, congruent ‘visual’ information (vertical structure) and ‘target identity’ information 781	
(horizontal structure) combine in a nonlinear fashion to compute target match detectors that are 782	
selective for one object presented as a target match (‘Target match (one object)’). Finally, these 783	
are pooled across the four different objects to create ‘Four object target match detectors’ that 784	
respond whenever a target is in view (Fig 6a). Consequently, the class of proposals presented 785	
in Fig 1a, where top-down modulation is integrated exclusively in V4, has at least two variants. 786	
In the first, target match signals exist in V4 and arrive in IT via a feed-forward process (Fig 6b), 787	
possibly with some linear pooling to produce target match invariance (across object identity). In 788	
the second, target identity signals (as opposed to target match signals) are reflected in V4, and 789	
IT target match signals are computed in IT via the nonlinear combination of these inputs (Fig 790	
6c).   791	
 792	
 793	

Figure 6. Conceptualizing IDMS target match computation. a) An idealized depiction of how 794	
target match signals, which reflect the solution to the IDMS task, might be computed. For 795	
simplicity, the computation is described for one 4x4 slice of the experimental design matrix, 796	
which corresponds to viewing each of four objects (‘Looking AT’) in the context of each of four 797	
objects as a target (‘Looking FOR’) at one transformation. In the first stage of this idealization of 798	
target match computation, a unit reflecting visual information and a unit reflecting persistent 799	
target identity information (i.e. working memory) are combined, and the result is passed through 800	
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a threshold. The resulting unit reflects target match information for one object. Next, four of 801	
these units (each with a different object preference) are linearly combined to produce a unit that 802	
signals whether a target match is present, regardless of the identity of the object. b) A variant of 803	
the class of “IT: Inherited” proposals (Fig 1a) in which target match information is computed in 804	
V4 and then fed forward to IT. c) A variant of the class of “IT: Inherited” proposals in which 805	
visual and target identity information are both present in V4 and then fed forward to IT, where 806	
they are combined to compute the target match signal. d-e) The response matrices 807	
corresponding to 3 example units from V4 and IT. Response matrices were plotted as the 808	
average firing rates across trials, and rescaled from the minimum (black) to maximum (white) 809	
response across all experimental conditions.  810	

 811	

 812	
We found examples of nearly all of these types of idealized units in V4 and/or IT (Figures 6d-e). 813	
In both areas, we found ‘purely visual’ units that responded selectively to images but were not 814	
modulated by other factors, such as target identity or whether an image was presented as a 815	
target match (Fig 6d-e, ‘Purely visual’). In contrast, one notable difference between V4 and IT 816	
was the existence of a handful of IT units (~10/193) that reflected the remarkable property of 817	
responding to nearly every image presented as a target match (every object at every 818	
transformation) but not when those same images were presented as distractors (Fig 6e, ‘Target 819	
match (four object)’). We did not find any such units in V4. However, in both V4 and IT, we 820	
found units that responded preferentially to individual objects presented as target matches as 821	
compared to distractors (Fig 6d-e, ‘Target match (one object)’). We note that while these 822	
illustrative examples were chosen because they reflect intuitive forms of pure selectivity, many 823	
(if not most) units tended to reflect less intuitive mixtures of visual and task-relevant modulation. 824	
 825	
To more quantitatively compare the types of signals reflected in V4 and IT, we extended the 826	
procedure presented in Fig 4 to not only quantify ‘visual’ modulation (i.e. modulation that can be 827	
attributed to changes in the identity of the visual image), but also other types of non-overlapping 828	
modulations that could be attributed to: ‘target identity’ modulation - changes in the identity of a 829	
sought target; ‘target match’ modulation - changes in whether an image was a target match or a 830	
distractor; and ‘residual’ modulation - nonlinear interactions between visual and target identity 831	
that are not target match modulation (e.g. an enhanced response to a particular distractor 832	
condition). When considered in terms of a single 4x4 “looking at” vs. “looking for” slice of the 833	
experimental design matrix (Fig 2c), these modulations produce vertical, horizontal, diagonal, 834	
and off-diagonal structure, respectively (Fig 7a). Notably, this analysis defines target match 835	
modulation as a differential response to the same images presented as target matches versus 836	
distractors, or equivalently, diagonal structure in the transformation slices presented in Fig 7a. 837	
Consequently, units similar to both the ‘target match (one object)’ unit as well as the ‘target 838	
match (four object)’ unit (Fig 6d-e) reflect target match modulation, as both units have a 839	
diagonal component to their responses. What differentiates these two types of units is that the 840	
‘Target match (one object)’ unit also reflects selectivity for image and target identity, which is 841	
reflected in this analysis as a mixture of target match, visual, and target identity modulation.  842	
 843	
 844	

Figure 7. Evolution of different types of single unit modulations in V4 and IT. a) To illustrate the 845	
different types of task-relevant signals that could be present in V4 and IT, shown is a slice 846	
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through the IDMS experimental design (Figure 2c), corresponding to one transformation. Shown 847	
are visual modulations, which differentiate between different objects in view (vertical structure); 848	
target identity modulations, which differentiate between different target objects (horizontal 849	
structure); target match modulations, which differentiate between whether objects appear as a 850	
target match versus a distractor (diagonal structure); and residual modulations, which 851	
differentiate between any other types of conditions (e.g. a response to a particular distractor 852	
condition such as looking for object 4 when looking at object 2).  b-e) Modulations were 853	
computed for each type of experimental parameter in units of the standard deviations around 854	
each unit’s grand mean spike count (see Results). In each panel, average modulation 855	
magnitudes across units in V4 (n = 598) and IT (n = 193) shown on the left as a function of time 856	
(ms after stimulus onset). Modulation magnitudes, computed in spike count bins 50 ms wide and 857	
shifted by 10 ms, are plotted corresponding to the midpoint of each bin. The bar plots show 858	
average signal magnitudes quantified within broader spike counting windows indicated by the 859	
rectangles on the left (V4: 40-210 ms, red rectangle; IT: 80-250 ms, gray rectangle). Triple 860	
asterisks denote p < 0.001; ‘ns’ indicates p > 0.05. Error bars reflect the standard error of 861	
modulation across units, computed via a bootstrap procedure.  862	

 863	
To compare these different types of task-relevant signals between V4 and IT, we applied the 864	
analysis to spike count windows positioned at sliding locations relative to stimulus onset, as well 865	
as the same counting windows described for Fig 4 (170 ms; V4: 40-210 ms; IT: 80-250 ms; Fig 866	
7b-e). As expected, visual modulation did not exist before stimulus onset, and visual signals 867	
arrived in V4 ~ 40 ms earlier than in IT in both animals (Fig 7b). In contrast, modulations 868	
reflecting information about whether an image was a target match or a distractor (‘target match’ 869	
modulation) were considerably smaller in V4 as compared to IT in both animals (Fig 7c; monkey 870	
1 p < 0.001; monkey 2 p < 0.001). In monkey 1, V4 target match modulations increased 871	
throughout the viewing period, and reached levels that were similar to those found in IT, but this 872	
rise occurred with a delay in V4 relative to IT. This was not replicated in monkey 2, where target 873	
match modulations were small throughout the viewing period.  874	
 875	
Modulations reflecting information about the identity of the target (‘target identity’ modulation) 876	
were present in both V4 and IT before stimulus onset (Fig 7c), consistent with persistent 877	
working memory signals in both brain areas. These persistent signals were stronger in IT as 878	
compared to V4 in monkey 1 (p < 0.001) but comparable in size between V4 and IT in monkey 2 879	
(p = 0.23). Lastly, we found that in both V4 and IT, residual modulation was small relative to the 880	
other types of modulations (Fig 7e). Residual modulation was comparable in size between V4 881	
and IT in monkey 1 (p = 0.46) and larger in IT than V4 in monkey 2 (p < 0.001). To summarize 882	
these results, we found that in both monkeys, visual modulation was matched between V4 and 883	
IT whereas target match signals were weaker in V4. We also found persistent target identity 884	
signals that were reflected in both areas before and throughout the stimulus-evoked period.  885	
 886	
As a complementary analysis, we also quantified the total amount of non-visual, ‘cognitive’ 887	
modulation (combined target match, target identity, and residual modulation), and compared it to 888	
the evolution of the visual modulation (Fig 8). In both brain areas, total cognitive modulation was 889	
considerable throughout the analysis window. During the latency-corrected stimulus-evoked 890	
period, cognitive modulations were 41% and 81% the size of the visual modulations in V4 and 891	
IT, respectively. These results demonstrate that considerable non-visual, task-relevant 892	
modulations exist in both brain areas, and they also suggest that these are smaller in V4 as 893	
compared to IT. 894	
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 895	
 896	
Figure 8. Single unit cognitive modulations in V4 and IT cortex. a-b) Cognitive modulations (V4: 897	
light red; IT: light gray) were computed as the sum of target identity, target match, and residual 898	
modulations, and are shown alongside visual modulations (V4: dark red; IT: dark gray). Mean 899	
modulation magnitudes are computed in the same manner and shown with the same 900	
conventions as Fig 7. Labels in the bar plots above the cognitive modulation magnitudes 901	
indicate the proportional size of cognitive relative to visual modulations in each brain area.  902	

 903	
Below we focus on how these data constrain descriptions of how top-down task-relevant signals 904	
combine with feed-forward visual information during IDMS (e.g. Fig 1; Fig 6b,c). As an overview, 905	
we begin by evaluating the variant of the “IT: Inherited” class in which IT target match signals 906	
are inherited directly from V4 (Fig 6b), both under the assumption that IT uniformly samples V4 907	
units, as well as when IT is allowed to preferentially sample the “best” V4 units. Next, we 908	
evaluate the variant of the “IT: Inherited” class that allows for IT nonlinear computation applied 909	
to input arriving from V4 (Fig 6c). After ruling out both of these proposals, we conclude that 910	
during the IDMS task, top-down signals must be integrated directly within IT (Fig 1b). 911	
 912	
 913	
Could target match signals arrive in IT via input from the “best” V4 neurons? 914	
 915	
The results presented in Fig 7c demonstrate that target match signals are, on average, larger in 916	
IT than V4. This suggests that target match signals are unlikely to arrive in IT from V4 via a 917	
simple feed-forward process, under the assumption that IT uniformly samples V4 neurons. 918	
However, evidence from other studies suggests that the brain can learn to preferentially read-919	
out the subset of neurons that carry the most task-relevant information with extensive training 920	
(Law and Gold 2009) and the monkeys involved in these experiments were trained extensively. 921	
Could a version of the feed-forward proposal in which IT preferentially samples the “best” V4 922	
neurons account for our data? To allow us to address this question, we sampled 3-fold more 923	
units in V4 as compared to IT, consistent with anatomical estimates of the ratios of neurons 924	
between the two brain areas (DiCarlo et al. 2012). This allowed us to compare V4 and IT under 925	
different assumptions, including that IT sampled V4 units “uniformly” versus the “best” subset 926	
with regard to the amount of IDMS information reflected in their responses. 927	
 928	
Target match signals, reflected as diagonal matrix structure (e.g. target match units for one 929	
object or across multiple objects; Fig 6a) translate into a linearly separable representation of the 930	
same images presented as target matches as compared to distractors (Fig 9a). To quantify the 931	
amount of linearly separable target match information in V4 and IT, we computed the cross-932	
validated performance of a linear classifier to perform this 2-way classification at each 933	
transformation separately and then averaged over transformations (Fig 9b, see Methods). To 934	
verify that uniform sampling of V4 could not account for target match information in IT, we 935	
randomly selected IT units up to the total numbers of units that we recorded (Fig 9c, gray), and 936	
compared this to a random selection of V4 units for matched sized populations (and thus always 937	
a subset of the V4 data Fig 9c, red). As expected based on the results presented in Fig 7c, 938	
cross-validated population performance was higher than chance in V4, but was significantly 939	
higher in IT as compared to V4 (Fig 9c, gray versus red; in both monkeys, compared at n = 98 in 940	
monkey 1 and n = 95 in monkey 2, p<0.001). These results verify that IT target match 941	
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information is not directly inherited from V4 under the assumption of a uniform sampling of V4 942	
by IT. 943	
 944	
To assess whether a “best” sampling description of V4 by IT could account for our data, we 945	
recomputed performance for V4 and IT populations that were matched in size, but when only 946	
the top-ranked V4 units were included. In this analysis, units were ranked based on the training 947	
data before computing cross-validated performance. We found that V4 performance was slightly 948	
higher for the best units as compared to randomly selected units (Fig 9c, cyan vs. red), 949	
however, performance for the best V4 units remained lower than IT performance in both 950	
monkeys (Fig 9c, cyan vs. gray, p<0.001). These results suggest that during IDMS, IT target 951	
match modulation cannot be accounted for via feed-forward propagation of this modulation from 952	
V4, even if IT were to sample from the “best” V4 subset (Fig 6b).  953	
 954	
 955	

Figure 9. A comparison of linearly separable target match information in V4 and IT.  a-b) The 956	
IDMS task can be envisioned as a two-way classification of the same images presented as 957	
target matches versus as distractors. Shown are cartoon depictions where each point depicts a 958	
hypothetical population response for a population of two neurons on a single trial, and clusters 959	
of points depict the dispersion of responses across repeated trials for the same condition. 960	
Included are the hypothetical responses to the same images presented as target matches 961	
(black) and as distractors (gray). The dotted line depicts a hypothetical linear decision boundary. 962	
a) A schematic of two neurons that each respond to one object as a target match. In this 963	
scenario, target matches and distractors are linearly separable. b) A schematic of the IDMS 964	
task, where four images must be classified as target matches as compared to distractors, 965	
applied to a linearly separable representation. c) Performance of a linear classifier trained to 966	
classify whether an object was a target match or a distractor, invariant of the object’s identity (at 967	
one transformation). Performance was assessed at each identity-preserving transformation 968	
(‘Big’, ’Left’, ’Small’, ’Up’), and then averaged. Performance was higher in IT (gray) than in V4, 969	
both when V4 units were sampled uniformly from the full population (red) and when V4 units 970	
were sampled by choosing the best possible V4 units based on the training data (cyan). Monkey 971	
1: n = 98 units, Monkey 2: n = 95 units. Error bars (standard error) reflect the variability that can 972	
be attributed to the specific subset of trials chosen for training and testing, and, for subsets of 973	
units smaller than the full population, the specific subset of units chosen. Dashed line indicates 974	
chance performance. 975	

 976	
 977	
Could target match signals arrive in IT via nonlinear combinations of input from V4? 978	
 979	
To evaluate the variant of the matched proposal in which IT target match signals are computed 980	
via nonlinear combinations of inputs arriving from V4 (Fig 6c), we quantified the “total” target 981	
match information in each brain area, regardless of its format. Specifically, combinations of 982	
visual and target identity signals (reflected in different units) map to target match information 983	
present in a nonlinearly separable format (Fig 10a) whereas target match signals map to target 984	
match information that is linear (Fig 9a) and a measure of total target match information 985	
quantifies information regardless of its format. 986	
 987	
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Total target match information was measured as cross-validated performance on the same 2-988	
way classification as presented in Fig 9, but for a maximum likelihood (as opposed to linear) 989	
classifier (see Methods). This nonlinear classifier assesses the total amount of target match 990	
information regardless of its format (combined linear and nonlinear). Cross-validated population 991	
performance was higher than chance in V4 (Fig 10b, filled red points; in both monkeys, 992	
compared at n = 98 in monkey 1 and n = 95 in monkey 2, p<0.001), but was also higher in IT as 993	
compared to V4 (Fig 10b, gray; in both monkeys, compared at n = 98 in monkey 1 and n = 95 in 994	
monkey 2, p<0.001). These results suggest that IT target match information is not exclusively 995	
inherited via feed-forward projections arriving from V4 (Fig 1a; Fig 6b-c), but rather, integrated 996	
directly in IT itself (Fig 1b).  997	
 998	
 999	
 1000	
Figure 10. A comparison of total (linear and nonlinear) target match information in V4 and IT. a) 1001	
A schematic of two neurons, one ‘visual’ neuron and one ‘target identity’ neuron. In this 1002	
scenario, target match information exists, but is present in a non-linearly separable format. b) A 1003	
schematic of the IDMS task where four images must be classified as target matches versus 1004	
distractors, applied to a nonlinearly separable representation. c) Performance of a nonlinear, 1005	
maximum likelihood classifier trained to classify between whether an object was a target match 1006	
or a distractor, invariant of object identity. Performance was assessed at each identity-1007	
preserving transformation, and then averaged. Error bars (standard error) reflect the variability 1008	
that can be attributed to the specific subset of trials chosen for training and testing, and, for 1009	
subsets of units smaller than the full population, the specific subset of units chosen. Dashed line 1010	
indicates chance performance.  1011	
 1012	
 1013	
 1014	
  1015	
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DISCUSSION 1016	
 1017	
Finding sought objects requires the brain to compare visual information about the objects in 1018	
view with information about the currently sought target to compute a signal that reports when a 1019	
target match has been found. During object search, information about the identity of a sought 1020	
target and/or whether it is a target match is thought to be fed-back to mid to higher stages of the 1021	
ventral visual pathway, including V4 and IT, but the specific path this information takes is 1022	
unclear. In this study, we sought to differentiate between scenarios in which top-down 1023	
information is integrated directly in IT (Fig 1b) versus those in which it is integrated in V4 and 1024	
arrives in IT via feed-forward propagation (Fig 1a). We evaluated a number of feed-forward 1025	
descriptions between V4 and IT, and found none of them could account for the amount of non-1026	
visual, task-relevant information present in IT. These included a model in which IT uniformly 1027	
samples target match signals from V4 (Fig 9, red), a model in which IT preferentially samples 1028	
target match signals from the best V4 units (Fig 9, cyan), and a model that allowed for IT 1029	
nonlinear processing of inputs arriving from V4 (Fig 10). Together, these results suggest that 1030	
during IDMS, top-down, task-specific signals in IT are not exclusively inherited from V4 but 1031	
rather are integrated within IT, at least in part. 1032	
 1033	
We found non-visual, task-specific signals to be sizeable in V4 (~40% of the size of visual 1034	
modulation), consistent with many other reports (Moran and Desimone 1985; Haenny et al. 1035	
1988; Motter 1994; Motter 1994; Luck et al. 1997; McAdams and Maunsell 1999; McAdams and 1036	
Maunsell 2000; Chelazzi et al. 2001; Ogawa and Komatsu 2004; Bichot et al. 2005; Hayden and 1037	
Gallant 2005; Mirabella et al. 2007; Cohen and Maunsell 2009; Kosai et al. 2014). At the same 1038	
time, we also found that non-visual, task-specific modulations to be even larger in IT (~80% the 1039	
size of visual modulation). In a previous study, during a visual target search task in which 1040	
monkeys made a saccade to a target match following the presentation of a sample image, non-1041	
visual, task-specific signals were reported to be more similar in V4 and IT (63% and 70% of the 1042	
visually-evoked response in V4 and IT, respectively; Chelazzi et al. 1998; Chelazzi et al. 2001). 1043	
One notable difference between our study and this earlier work is that our study compared V4 1044	
and IT during a version of the delayed-match-to-sample task in which sought target objects 1045	
could appear at different positions, sizes and background contexts. The fact that top-down, task-1046	
specific signals were considerably larger in IT versus V4 in our task may follow from the fact that 1047	
IT contains a more explicit, linear representation of object identity across these transformations 1048	
than V4 (reviewed by DiCarlo et al. 2012). Consequently, top-down modulation may be targeted 1049	
directly to IT in situations that require an invariant object representation whereas the brain might 1050	
target the pathway differently when tasks have different computational requirements. For 1051	
example, because V4 receptive fields are smaller and retinotopically organized, V4 might serve 1052	
as the primary locus for the integration of top-down signals for tasks that require spatial 1053	
specificity, such as covert spatial attention tasks, and in these tasks little top-down integration 1054	
might occur in IT (Moran and Desimone 1985). Only one earlier study has reported on the 1055	
responses of IT neurons in the context of a DMS task in which, objects could appear at different 1056	
identity-preserving transformations (Leuschow et al. 1994), but this study did not measure 1057	
signals in V4.   1058	
 1059	
Our results, which demonstrate larger non-visual, task-relevant modulations in IT as compared 1060	
to V4, are consistent with more general interpretations that the magnitudes of top-down 1061	
modulation exist in a gradient-like fashion hierarchically along the ventral visual pathway 1062	
(reviewed by Noudoost et al. 2010). As described above, such gradients are consistent both 1063	
with the integration of top-down modulation at multiple stages of the pathway (Fig 1a) as well as 1064	
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integration at a single locus, followed by feedback within the pathway itself (Fig 1b, right). One 1065	
study (Buffalo et al. 2010) provided evidence supporting the latter description in V1, V2 and V4 1066	
in the form of noting that not only the magnitude of modulation was greater in higher visual 1067	
areas, but it also arrived earlier, consistent with a feed-back description. In our data, this issue 1068	
was ambiguous: we found that in one monkey, the arrival of the target match signal appeared to 1069	
be delayed in V4 as compared to IT (Fig 7c, Monkey 1) whereas in the other animal, it appeared 1070	
to arrive earlier (Figure 7c, Monkey 2).  1071	
 1072	
In an earlier series of reports, we compared the responses of IT and its projection area, 1073	
perirhinal cortex, during a more classic version of the delayed-match-to-sample task (that did 1074	
not incorporate variation in the objects’ transformations; Pagan et al. 2013; Pagan and Rust 1075	
2014; Pagan et al. 2016). We found that the responses of perirhinal cortex were well-described 1076	
by a model in which top-down, task-relevant signals were integrated within or before IT 1077	
consistent with a feed-forward process between IT and perirhinal cortex. The results presented 1078	
here extend this understanding to suggest that the locus of top-down integration during DMS 1079	
search tasks is unlikely to exclusively be V4, and that some amount of top-down integration is 1080	
likely to happen directly within IT itself.  1081	
 1082	
Computing a target match signal requires the combination of the visual representation of the 1083	
currently viewed scene with a remembered representation of the sought target (e.g. Fig 6a). In 1084	
an analysis of the same IT data presented here, we found that the IT population misclassified 1085	
trials on which the monkeys made errors, supporting notions that the IT target match signal is in 1086	
fact related to the neural signals used to make target match behavioral judgments (Roth and 1087	
Rust 2018). The additional target match information present in IT that is not also present in V4 1088	
could reflect the implementation of this comparison in IT itself, or alternatively, the comparison 1089	
might be implemented in a higher order brain area and fed-back to IT cortex. The timing of the 1090	
arrival of this signal in IT (which peaks at ~150 ms; Fig 7c) relative to the monkeys’ median 1091	
reaction times (~335 ms; Fig 2e), does not rule out the former scenario, but with our data we 1092	
cannot definitively distinguish between these alternatives. Additionally, in this study monkeys 1093	
were trained extensively on the images used in these experiments and future experiments will 1094	
be required to address the degree to which these results hold under more everyday conditions 1095	
in which monkeys are viewing images and objects for the first time.   1096	
 1097	
 1098	
 1099	
 1100	

 1101	

 1102	

 1103	

 1104	

 1105	

 1106	

 1107	
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