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1 Abstract

Transposase-Accessible Chromatin (ATAC) followed by sequencing (ATAC-seq) is a simple and

fast protocol for detection of open chromatin. However, computational footprinting in ATAC-

seq, i.e. search for regions with depletion of cleavage events due to transcription factor binding

sites, has been poorly explored so far. We propose HINT-ATAC, a footprinting method that

addresses ATAC- seq specific protocol artifacts. HINT-ATAC uses a probabilistic framework

based on Variable-order Markov models to learn the complex sequence cleavage preferences

∗ivan.costa@rwth-aachen.de

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2018. ; https://doi.org/10.1101/362863doi: bioRxiv preprint 

https://doi.org/10.1101/362863
http://creativecommons.org/licenses/by/4.0/


of the transposase enzyme. Moreover, we observed specific strand specific cleavage patterns

around the binding sites of transcription factors, which are determined by local nucleosome

architecture. HINT-ATAC explores local nucleosome architecture to significantly outperform

competing footprinting methods in predicting transcription factor binding sites by ChIP-seq.

HINT-ATAC is an open source software and available online at www.regulatory-genomics.

org/hint

2 Introduction

DNase I hypersensitive sites sequencing (DNase-seq) has become the standard choice for genome-

wide detection of open chromatin (Boyle et al. 2008; Crawford et al. 2006b; Neph et al. 2012a;

Vierstra and Stamatoyannopoulos 2016). In this protocol, the start of DNA fragments reflects

the exact location of DNase I cleavage, therefore transcription factor binding sites (TFBS) leave

footprints (depletion of DNase-seq signals) and these indicate the location of TFBS. Assays for

Transposase-Accessible Chromatin followed by sequencing (ATAC-seq) have been proposed as

an alternative to DNase-seq (Buenrostro et al. 2013). ATAC-seq requires fewer cells (down to

500) and is less laborious than DNase-seq (Buenrostro et al. 2013). A recent variant of the

protocol (Omni-ATAC) increases the proportion of reads from non-mithocondrial DNA and

allows working of frozen tissues (Corces et al. 2017). A similar number of studies based on

ATAC-seq and DNase-seq (247 and 210 respectively) have been deposited in Gene Expression

Omnibus in the last year, while there are three times more ATAC-seq samples than DNase-seq

samples in these studies1. This indicates the emerging importance of ATAC-seq and confirms

that its experimental simplicity makes it a choice for studies with large number of samples as

in clinical scenarios (Rendeiro et al. 2016).

Computational footprinting methods are crucial in the analysis of DNase-seq (Vierstra and

Stamatoyannopoulos 2016; Gusmao et al. 2016). Among others, footprinting on DNase-seq

1Query performed using the words ”ATAC-seq” and ”DNase-seq” at 11/16/2017 considering the number of
series and samples deposited within the last year
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data has been used to detect regulatory lexicon of several cells (Neph et al. 2012b; Schmidt

et al. 2017; Ho et al. 2017; Kolovos et al. 2016; Lin et al. 2015), investigate responses to

environmental stimuli (Goldstein et al. 2017) and detection of variants impacting transcription

factor binding (Schwessinger et al. 2017). While footprints are also observed in ATAC-seq

data (Buenrostro et al. 2013), computational footprinting of ATAC-seq data has been poorly

addressed for far. The few studies contrasting ATAC-seq and DNase-seq show that ATAC-

seq footprints have a slightly inferior accuracy than DNase-seq based footprints (Quach and

Furey 2016) or leave more unclear footprint profiles than DNase-seq (Schwessinger et al. 2017).

Moreover, most work performing footprinting in ATAC-seq so far (Buenrostro et al. 2013; Raj

et al. 2015; Quach and Furey 2016) treated ATAC-seq and DNase-seq similarly and ignored

characteristics intrinsic to the ATAC-seq protocol.

A possible reason for the lower performance of ATAC-seq is its cleavage enzyme Tn5, which

has a large DNA binding site and a more complex cleavage mechanism than DNase-I (Fig. 1A

& B). The Tn5 dimer cleaves the DNA by inserting two distinct adapters in the DNA fragment

ends. Cleavage leaves two 9bps single strand DNA ends that are later extended in the ATAC-

seq protocol (Fig. 1C). Tn5 displays a large palindromic (17bp) “transposase motif” (Reznikoff

2008; Buenrostro et al. 2013) in the start of aligned ATAC-Seq reads (Fig. 1A). The palin-

dromicity reflects the fact that Tn5 works in dimmers and individual proteins bind to DNA in

reverted orientations. Moreover, the motif is centered around position +5, which indicates Tn5

binds to the middle of the 9bp single stranded DNA. In contrast, DNase-I leaves a short motif

close to the start of reads in DNase-seq experiments (Fig. 1B).

The DNA binding preferences of enzymes cause the so called sequence specific cleavage

bias. Computational bias correction is an important aspect of the analysis of DNase-seq and

ATAC-seq data (He et al. 2014; Sung et al. 2014; Martins et al. 2017). All bias correction

methods proposed so far are based on bias estimates of k-mer sequences around the start

of aligned reads, i.e., probability of finding a 6-mer around the start of DNase-seq reads vs.

the probability of the k-mer in the genome (He et al. 2014; Sung et al. 2014; Gusmao et al.

2016; Wang et al. 2017; Schwessinger et al. 2017). These methods require the estimation of
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Figure 1: Sequence motif relative to aligned read start after cleavage with Tn5 and DNase I
enzymes on naked DNA ATAC-seq (A) and DNase-seq (B) experiments. The size of the motifs
are reflected by the structural protein contacts of Tn5 and DNase-I (Protein Data Bank entries
1MM8 and 2DNJ). C - Tn5 inserts adapters in both DNA ends. Moreover, DNA is cleaved in
two 9 bps single ends, which are later repaired in the ATAC-seq protocol. D - Cleavage profiles
around CTCF Chip-seq peaks indicate strand specific cleavage preference left/right of the TF
binding site for both standard and Omni ATAC-seq libraries. Smaller peaks far from the TF
binding represent linker regions between histones
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a multinomial distribution and will suffer from over-fitting for large k as possibly required for

ATAC-seq data. A solution for dealing with large k-mer size is the use of position weight

matrices (PWMs) which is the most popular model for protein-DNA interaction (Stormo et al.

1982) and assumes statistical independence between positions. Variable order Markov models

(VOM) represent an alternative to PWMs, where relevant dependencies are learned from the

data (Ben-Gal et al. 2005; Keilwagen and Grau 2015). Currently, we are unaware of any work

applying VOMs for modeling the bias of ATAC-seq or any cleavage enzymes.

The large and asymmetric nature of the Tn5 dimmer (Fig 1A) will also make cleavage

dependent on structural features of the neighboring proteins (transcription factors or histones)

and size of accessible DNA (Schep et al. 2015). Fragment size distribution of ATAC-seq libraries

indicates indeed that cleavage between the small linker DNA between nucleosomes is possible,

but less likely than cleavage of short fragments from open chromatin (Buenrostro et al. 2013).

Indeed, strand specific ATAC-seq profiles around CTCF, which is a TF usually binding alone

and surrounded by equally spaced histones (Buenrostro et al. 2013; Vierstra et al. 2014), has

an intricate cleavage pattern with higher number of cleavage events in the forward strand left

of the TF binding site for both major ATAC-seq protocols (Fig. 1D). The strand specificity

is particularly high in linker regions. While strand specificity has been previously observed in

DNase-seq (Piper et al. 2013; Schwessinger et al. 2017), the strand specific nature of ATAC-seq

and the influence of local nucleosome architecture has not been shown or explored until date.

We propose here HINT-ATAC, the first footprinting method dealing with ATAC-seq specific

characteristics. First, HINT-ATAC includes a probabilistic approach for correction of cleavage

bias based on a specific type of Variable order Markov models (Keilwagen and Grau 2015).

We perform a comprehensive evaluation of distinct bias correction approaches (k-mer based,

PWM and VOM) for ATAC-seq and DNase-seq data under distinct word sizes. Bias correction

strategies are evaluated in the ability to recover TF ChIP-seq binding sites as in Cuellar-

Partida et al. (2011); Gusmao et al. (2016). Next, we explore the fact that fragment sizes,

as indicated by paired-end reads, allow the decomposition of cleavage signals by fragments

potentially containing zero, one or more nucleosomes (Vierstra et al. 2014; Buenrostro et al.
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2013). We used distinct combinations of strand specific and nucleosome decomposed signals

to generate multivariate cleavage profiles used as input to the Hidden Markov model. We use

data of independent cell lines to contrast the performance of HINT-ATAC with state of art

footprint methods DNase2TF (Sung et al. 2014), PIQ (Sherwood et al. 2014), HINT (Gusmao

et al. 2014) and DeFCoM (Quach and Furey 2016). HINT-BC has been previously proposed by

us for footprinting in DNase-seq data, while DeFCoM is the only footprint method evaluated

in ATAC-seq up to date. We also contrast the performance of HINT-ATAC in distinct variants

of ATAC-seq and DNase-seq protocols.

3 Results

3.1 Variable order Markov models improve cleavage bias correction

We investigate here the impact of distinct methods for bias corrections (k-mer, PWM and

VOM) to improve footprinting in ATAC-seq and also in DNase-seq protocols. These steps are

performed previous to the application of HINT (Gusmao et al. 2014) (see Methods Section).

Besides the standard approach to use reads from the ATAC-seq/DNA-seq library itself, we

also evaluate the use of bias estimates from ATAC-seq/DNase-seq libraries performed in the

deproteinated DNA (naked DNA). Methods were evaluated on their recovery of footprints with

binding sites supported by ChIP-seq peaks following Gusmao et al. (2016). We use here ChIP-

seq of 32 TF on GM12878 cells (train dataset). For each TF, we calculate the area under

precision recall curve (AUPR) and under the reciever operating characteristics curve (AUC) for

distinct false positive rates (1%, 10% and 100%) A final ranking score is obtained by combining

the ranking of a method for each of the six statistics. A higher ranking score indicates higher

recovery of ChIP-seq supported footprints than compared methods.

A first question is the influence of the word size (k) within each bias correction method.

For DNase-seq data, bias correction methods performed best with small word size (4-8), while

larger words were best for ATAC-seq (8-12). These observations fits with the size of motifs
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detected for DNase-I and Tn5 cleavage sites (Fig. 1A & B). Next, we compared distinct bias

correction methods, where k was fixed to the best choices for each method (Fig. 2A & B). VOM

models with k = 8 were ranked best in both ATAC-seq and DNase-seq protocols. It significantly

outperformed PWM, K-mer (naked DNA) and uncorrected signal for ATAC-seq (p-value < 0.05;

Friedman-Nemenyi test) and the uncorrected signal for DNase-seq (p-value < 10−7; Friedman-

Nemenyi test). We also observed that estimates based on naked DNA obtained lower ranks

than their counterparts based on reads from the ATAC/DNase-seq library at hand. Therefore,

we adopt the use of VOM(8) bias correction as standard in HINT-ATAC and in all experiments

below.

The AUPR of HINT with VOM(8) bias correction is higher than the AUPR of HINT with

uncorrected signal for 29 of 32 TFs investigated, as exemplified by the clear footprint profiles

of NFYB and Sp1 after bias correction (Fig. 2C). AUPR only decreased marginally (average of

0.003) for 3 TFs. Lastly, we evaluated the similarity between sequence bias estimates (based

on VOM 8-mer approach) on 31 ATAC-seq libraries. We observed that all ATAC-seq libraries

based on the standard ATAC and Omni-ATAC protocol group together and have quite similar

bias (average R=0.96). Bias estimates based on naked DNA also grouped with standard ATAC-

seq libraries, but showed a smaller average correlation (R=0.88) with other standard libraries.

Single cell ATAC-seq libraries grouped apart for all other experiments (average R=0.82 in

relation to standard libraries). The distinct bias in protocols with few cells might be an effect

of over-digestion of chromatin by Tn5 (Buenrostro et al. 2015). Given that cleavage bias varies

in distinct degrees for each library, these results support the use of bias estimates based on

reads from the ATAC-seq library at hand.

3.2 Strand specific and nucleosome decomposition improves footprint pre-

dictions in ATAC-seq

We evaluate here variants of HINT-ATAC HMM models in their abilities to predict footprints

on the standard and Omni ATAC protocols. Of particular interest is to explore the use of
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Figure 2: Comparison of bias estimation methods in ATAC-seq (A) and DNase-seq (B) on 32
TF ChIP-seq data from GM12878. Y -label indicate the ranking score, where higher values
indicates higher recovery of footprints supported by TF ChIP-seq peaks. (C) The scatter plot
contrasting AUPR of HINT with VOM-based estimation with 8-mer (x-axis) and HINT without
bias correction (y-axis). NFYB and Sp1, which are TFs among the ones with highest AUPR
increase, have a clear improvement of footprint profiles after correction (D).

strand specific signals and local nucleosome architecture for footprint prediction. We decom-

pose cleavage signals by only considering reads from nucleosome free fragments or reads from

fragments with particular number of nucleosomes. Decomposition is based on fragment size
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intervals defined on the distribution of paired-end aligned reads (Fig. 3A). Here, we evaluate

the following nucleosome decompositions as input for HINT-ATAC: all reads (all); only nu-

cleosome free reads (Nfr); joint analysis of nucleosome free and nucleosome containing signals

(Nfr & +1N); and the joint analysis of nucleosome free, one nucleosome and two or more nu-

cleosomes signals (Nfr & 1N & +2N). For each decomposition, we have two signals (number

of reads and slope of number of reads (Gusmao et al. 2014)) for both positive and negative

strands. Therefore, strand-specific nucleosome decomposition strategies produce signals with 4

(All and Nfr), 8 (Nfr & +1N) and 12 dimensions (Nfr & 1N & +2N). We then evaluate mod-

els for standard ATAC-seq and Omni-ATAC-seq separately on the training dataset with 32

TFs in GM12979 cells.

For each nucleosome decomposition strategy (All, Nfr, Nfr & 1N,Nfr & 1N & +2N) we

evaluated the optimal number of states and the use of strand-specific signal on the training

dataset. While the optimal number of states was specific to the decomposition strategy, models

with strand-specific signals had highest ranking in 7 out of 8 comparisons. Next, we contrasted

the performance of the best models for each decomposition (Fig. 3B). The use of nucleosome

free reads (Nfr) obtained higher ranking scores than other models for standard ATAC, while

the use of Nfr & +1Nr or only Nfr signals obtained higher ranking scores than other models for

Omni-ATAC (p-value < 0.01; Friedman-Nemenyi test). This indicates that separating cleavage

signals by the presence and number of nucleosomes between two cleavage events is better than

using all reads for finding footprints in ATAC-seq. The HMM with 9 states and strand specific

Nfr reads will be adopted as the HINT-ATAC model for standard ATAC and the HMM with

7 states based on Nfr & +1N strand specific signals will be adopted for Omni-ATAC protocol.

We used the test dataset based on K562 and H1-ESC cells for standard ATAC-seq and

K562 for Omni-ATAC (148 TFs in total) to compare the performance of HINT-ATAC with

state-of-the-art footprinting methods. This includes DNase2TF, PIQ, Wellington and HINT-

BC, which have been reported to perform well with DNase-seq data (Gusmao et al. 2016) and

DeFCoM, which has been recently evaluated in ATAC-seq data. We also included the evalua-

tion of a version of HINT-ATAC with all reads, as nucleosome decomposition is not possible
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for ATAC-seq libraries sequenced with single ends. Both versions of HINT-ATAC had the high-

est ranking scores (Fig. 3C) and significantly outperformed all other methods (p-value < 0.01;

Friedman-Nemenyi test). Similar rankings were observed when only considering Omni-ATAC

and standard ATAC libraries independently. HINT-ATAC based on nucleosome decomposition

significantly outperformed the use of all reads (p-value < 0.05; Friedman-Nemenyi test). In-

terestingly, the only other method using strand specific information—Wellington— was ranked

third and significantly outperformed its lower-ranked competitors (p-value < 0.01; Friedman-

Nemenyi test).
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Figure 3: A - Fragment size distribution for Omni and standard ATAC-seq on GM12878 cells
indicate clear peaks representing fragments with particular numbers of nucleosomes. Local min-
imum values were used to define nucleosome free fragments Nfr, fragments with one nucleosome
1N and fragments with one or more +2N nucleosomes. B - Comparison of HINT-ATAC mod-
els with distinct nucleosome decomposition strategies of Omni ATAC-seq (top) and standard
ATAC-seq (bottom) on training dataset (GM12787 cell). Higher ranking score indicates
highest recovery of ChIP-seq supported binding sites. C - Comparative evaluation of HINT-
ATAC with all reads and with nucleosome decomposition (ND), HINT, Wellington, DNase2TF,
DeFCoM and PIQ in the test dataset (H1-ESC and K562 cells). D - AUPR values of DNase-
seq (double hit protocol) vs ATAC-seq (Omni) for 91 factors, of which 41 factors obtain higher
AUPR using ATAC-seq. The footprint profiles of two factors with the highest AUPR difference
are shown.
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3.3 Footprints based on Omni-ATAC-seq and DNase-seq have similar pre-

dictive performance

Next, we compared the performance of distinct ATAC-seq protocols (standard (Buenrostro

et al. 2013), fast (Corces et al. 2016) and Omni (Corces et al. 2017) ATAC-seq) and cell

number (bulk 50.000, 500 or single cells) (Buenrostro et al. 2015) in either GM12878, K562 and

H1-ESC cell lines. To contrast results with DNase-seq based footprints, we have also optimized

HINT models to consider strand specific signals for DNase-seq of single hit (Sabo et al. 2004)

and double hit (Crawford et al. 2006a) protocols. Note that nucleosome decomposition is not

possible here due to lack of paired end libraries. We observed that footprint prediction, on

either double or single hit DNase-seq, benefits from the use of strand specific signals (p-value

< 0.05; ; Friedman-Nemenyi test). Therefore, we adopted strand specific signals and an HMM

with 9 states for double hit DNase-seq and 7 states for single hit DNase-seq from here on. These

models, which also include VOM based bias correction, will be refereed as HINT-DNase.

Double hit DNase-seq and Omni ATAC-seq have significantly higher ranking scores than

other protocols (p-value < 0.05; Friedman-Nemenyi). Overall, standard ATAC-seq and fast-

ATAC-seq protocols had lowest ranking scores. Down-sampling of libraries with a high number

of reads did not influence rankings. On an individual factor level, we observed that TFs with

higher AUPR on ATAC-seq have more ATAC-seq cleavage sites surrounding the binding site

and vice-versa, as exemplified by YY1 and JunD for both Omni-ATAC (Fig. 3D) or standard

ATAC protocols. We also investigated if differences between ATAC-seq and DNase-seq might

arise from the previously reported lower performance of Tn5 in digesting enhancer regions (Sos

et al. 2016; Corces et al. 2017). We therefore split our dataset with histone based annotation

of promoter and enhancer regions from chromHMM (Ernst and Kellis 2012). We observed

that the AUPR difference (DNase-seq - ATAC-seq) is significantly larger for enhancer regions

than in promoter regions (p-value < 0.01; Wilcoxon signed rank test) with standard ATAC-seq,

however no such difference was found in Omni-ATAC-seq. DNase-seq obtained significantly

higher AUPR for all 21 TFs from the bZIP family for both ATAC protocols and for factors

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2018. ; https://doi.org/10.1101/362863doi: bioRxiv preprint 

https://doi.org/10.1101/362863
http://creativecommons.org/licenses/by/4.0/


of the helix-loop-helix family for standard ATAC (p-value < 0.001; Mann-Whitney test). This

is an indication that structural features of the TF, which are usually shared by TF families,

negatively affect the ability of Tn5 to cleave DNA around specific TFs.

3.4 Local nucleosomes architecture and strand specific ATAC-seq digestion

profiles

To understand the importance of nucleosome number decomposition and strand specific bias in

footprint prediction, we analyzed the average cleavage profiles of distinct decomposed signals

around CTCF ChIP-seq peaks in GM12878 cells (Fig. 4A and 4B). First, we calculated the

position of linkers (by finding peak centers of 1N and +2N reads) and then the middle position

of histones. The intervals between histone and CTCF center were used to count the number

of reads associated to linkers and on the open chromatin region left or right of CTCF. Of

particular interest are cleavage events left/right to CTCF, as these are the ones delineating

footprints. While profiles based on all reads are strand specific in the vicinity of CTCF (1.38

ratio of forward/reverse reads left of CTCF binding), we observed a stronger strand cleavage

bias in nucleosome free fragments in both Omni-ATAC-seq (2.6 ratio) and standard ATAC-seq

(2.3 ratio). As shown in Fig. 4C, nucleosome free reads can arise from DNA fragments with

(type I) or without (type II) CTCF binding in the middle. As sequencing is performed in the 5’

to 3’ direction, type I reads will generate forward reads left to CTCF, while type II reads will

generate both forward and reverse reads left to CTCF. Using CTCF binding sites supported

by ChIP-seq to count type I and II Nfr fragments, we detected more type I than type II reads

in Nfr fragments for Omni-ATAC or standard ATAC, which supports the bias towards forward

reads in the regions adjacent to the left of CTCF binding and vice-versa.

While Nfr reads have few cleavage events on linker regions, we observed clear peaks on

linkers -1 and + 1 for 1N reads and clear peaks on linkers -2 and +2 for +2N reads (Fig. 4A and

B). This confirms the soundness of the nucleosome number decomposition strategy in separating

reads regarding the potential presence of distinct numbers of nucleosomes using only fragment
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sizes. Interestingly, the strand bias in the region left to CTCF is reverted for 1N (ratio 0.63)

and +2N signals (ratio 0.5) in contrast to Nfr reads, while cleavage events in the linker -1 (for

1N reads) and linker -2 (for +2N reads) are biased towards forward strand (ratio 1.9-2.6). As

proposed in Fig. 3C, 1N (and +2N reads) can be divided into three types: fragments including

one nucleosome close to CTCF (type I), fragments containing a nucleosome and CTCF (type

II) or others (type III). We observed more type I reads in comparison to type II (or type III)

in Omni-ATAC-seq and standard ATAC-seq for both 1N and +2N. The higher number of type I

reads, which generates reverse strand reads left of CTCF, explains the inverted strand cleavage

bias observed in 1N and +2N reads (Fig. 4C).

CTCF is an exceptional TF, which usually binds alone to the DNA and has a tight distance

to the next nucleosome (Buenrostro et al. 2013; Vierstra et al. 2014). While peaks associated to

cleavage in linkers regions are less prominent in other TFs and the distance to the next linker

varies for each TF (Buenrostro et al. 2013), we observed the similar strand bias for nucleosome

number decomposed signals for other TFs with or without cleavage bias correction. Finally,

we investigated if TF specific properties, as the distance to the next linker, the amount of

strand bias on average profiles is related to the AUPR values of HINT-ATAC. While there is

no clear association between distance to nucleosomes and AUPR, we observe that the AUPR

of TF binding in enhancers is correlated with strand specificity for all ATAC and DNase-seq

protocols (average R=0.57). Altogether, these results indicate that properties of the cleavage

events generating fragments (nucleosome free, nucleosome containing with or without the TF)

introduce a strand specific cleavage bias relative to the TF binding site. These strand bias are

crucial in the delineation of footprints.
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region left/right to the TF binding or nucleosome linkers. Nucleosome free reads will generate
fragments with (type I) or without (type II) the TF bound to DNA. As sequencing is performed
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4 Discussions

We present here the first computational footprinting method tailored for the ATAC-seq protocol.

First, we show that the use of Variable-order Markov models (VOM) for correction of cleavage

bias is crucial for ATAC-seq. This approach, which estimates dependencies between sequence

positions from the data, is able to model cleavage bias spanning larger motifs more accurately

than the k-mer based approach because it avoids over-fitting. Previously, Schwessinger et al.

(2017) reported difficulty in detection of footprints around motifs associated to regulatory

variants in ATAC-seq data. As a practical example of the power of VOM models, we observe

that bias correction improves footprint profiles for the majority of these motifs. There is

a growing attention in the field by the fact that cleavage bias is present in any sequencing

protocol using cleavage/digestion enzymes (Madrigal 2015; Foulk et al. 2015; Wang et al. 2017).

For example, the “digestion bias” of nucleases has been shown to induce artifacts in nascent

RNA-seq protocols (Foulk et al. 2015). The same enzyme is used in ChIP-seq variants (ChIP-

exo (Rhee and Pugh 2011); ChIP-nexus (He et al. 2015)) and is likely to influence the detection

of ChIP-exo footprints. VOM models represent a flexible framework for modeling cleavage bias,

which is likely to improve downstream analysis of any of these protocols.

The strand specific digestion patterns around transcription factor binding sites represent

another overseen aspect of ATAC-seq. Decomposition of DNA fragments by nucleosome number

contains intricate strand specific cleavage patterns relative to TF binding. We show that the

strand bias of ATAC-seq protocols arises from a preference of having fragments with the TF

alone or fragments containing only nucleosomes with a digestion event close to the TF (Fig. 4C).

Another evidence of the importance of neighboring proteins to Tn5 cleavage is the fact that

the relative predictive power of ATAC-seq in relation to DNase-seq varies for particular TF

families. This includes TFs from the bZIP and helix-loop-helix families, which bind as dimmers

and have large structures. These structural properties are likely to impair access of Tn5 to

neighboring DNA regions.

HINT-ATAC is the only footprinting method exploring both nucleosome number decom-
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position and strand specific cleavage bias for improving footprinting prediction. Indeed, our

comparative analysis indicate a clear advantage of HINT-ATAC in prediction of footprints in

relation to state-of-art footprinting methods DeFCoM, Wellington, DNase2TF, PIQ and HINT-

BC. The advantage of HINT-ATAC is also clear on libraries without paired-end sequences, where

nucleosome number decomposition is not possible. Nucleosome decomposition but not strand

specific signals were already used for nucleosome positioning in DNase-seq (Vierstra et al. 2014).

While our analysis reinforces the importance of strand specific signals for all DNase-seq proto-

cols, we could not evaluate the impact of nucleosome architecture decomposition given the lack

of paired end DNase-seq libraries for cells with several TF ChIP-seq data, as the ones evaluated

in this study.

Altogether, footprints predicted in Omni-ATAC obtained better performance than standard

and fast-ATAC protocols. As seen in Fig.3A, Omni-ATAC libraries have higher amount of

fragments on peaks associated to mono and di-nucleosomes, while it has less fragments between

the peaks of Nfr and 1N or with large size (>500). This suggests that improvements introduced

in Omni-ATAC protocol enrich for mono and bi nucleosome reads, which leaves more attenuated

strand bias profiles in 1N and +2N reads than standard ATAC-seq (Fig. 4). Indeed our model

selection experiments confirm that using separated signals for nucleosome free and nucleosome

containing fragments is the best strategy for finding footprints in Omni-ATAC, while only

nucleosome free reads are best for standard ATAC. Finally, we show that the footprint predictive

performance is equivalent between Omni-ATAC-seq and DNase-seq protocols, despite some TF

specific differences. This indicates that improvements in ATAC-seq protocols and computational

approaches make it a competitive alternative to DNase-seq for identifying TF binding sites, even

for experiments based on moderate number of reads (∼50 millions) and low number of cells

(∼50.000).
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