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Abstract: Researchers are generating single-cell RNA sequencing (scRNA-seq) profiles of 

diverse biological systems1–4 and every cell type in the human body.5 Leveraging this data to 

gain unprecedented insight into biology and disease will require assembling heterogeneous cell 

populations across multiple experiments, laboratories, and technologies. Although methods for 

scRNA-seq data integration exist6,7, they often naively merge data sets together even when the 

data sets have no cell types in common, leading to results that do not correspond to real 

biological patterns. Here we present Scanorama, inspired by algorithms for panorama stitching, 

that overcomes the limitations of existing methods to enable accurate, heterogeneous scRNA-seq 

data set integration. Our strategy identifies and merges the shared cell types among all pairs of 

data sets and is orders of magnitude faster than existing techniques. We use Scanorama to 

combine 105,476 cells from 26 diverse scRNA-seq experiments across 9 different technologies 

into a single comprehensive reference, demonstrating how Scanorama can be used to obtain a 

more complete picture of cellular function across a wide range of scRNA-seq experiments.  
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Main Text

Individual single-cell RNA sequencing (scRNA-seq) experiments have already been used 1 

to discover novel cell states1,2 and reconstruct cellular differentiation trajectories3,4. Through 2 

global efforts like the Human Cell Atlas5, researchers are now generating large, comprehensive 3 

collections of scRNA-seq data sets that profile a diversity of cellular function, which promises to 4 

make a substantial contribution to our understanding of fundamental biology and disease. 5 

Assembling a large, unified reference data set, however, may be compromised by differences due 6 

to experimental batch, sample donor, or sequencing technology. While recent approaches have 7 

shown that it is possible to integrate scRNA-seq studies across multiple experiments6,7, these 8 

approaches automatically assume that all data sets share at least one cell type in common6 or that 9 

the gene expression profiles share largely the same correlation structure across all data sets.7 10 

These methods therefore have limited utility when integrating collections of data sets with 11 

considerable differences in cellular composition such as the Human Cell Atlas. 12 

Here we present Scanorama, a strategy for efficiently integrating multiple scRNA-seq 13 

data sets even when they are composed of heterogeneous cellular phenotypes. Scanorama takes 14 

inspiration from computer vision algorithms for panorama stitching that identify images with 15 

overlapping content, which are then merged into a larger panorama (Fig. 1a).8 Analogously, 16 

Scanorama automatically identifies only those scRNA-seq data sets with overlapping cell types 17 

and can leverage those overlaps for batch-correction and integration (Fig. 1b), without also 18 

merging data sets that do not overlap. Importantly, Scanorama is robust to different data set sizes 19 

and sources, preserves data set-specific populations, and does not require that all data sets share 20 

at least one cell population, e.g., using a cell control spiked into all data sets.6 21 
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Our approach generalizes mutual nearest neighbors matching, a technique which finds 22 

similar elements between two data sets, to instead find similar elements among a large number of 23 

data sets. Originally developed for pattern matching in images9, finding mutual nearest neighbors 24 

has also been used to identify common cell types between two scRNA-seq data sets at a time.6 25 

However, to align more than two data sets, existing methods6,7 select one data set as a reference 26 

and successively integrate all other data sets into the reference one at a time, which may lead to 27 

suboptimal results depending on the order in which the data sets are considered (Supplementary 28 

Fig. 1). In contrast, Scanorama is not vulnerable to this problem since it finds matches between 29 

all pairs of data sets. Conceptually, we first form directed links from cells in one data set to their 30 

nearest neighbors among all other data sets, where cells with more similar gene expression 31 

profiles are also closer together, which we repeat for each data set. We then match cells between 32 

all pairs of data sets only if they were mutually linked in the previous search step, which 33 

increases the robustness of our matches and excludes links involving data set-specific 34 

populations. Once cell type matches have been determined, they can then be used to merge data 35 

sets together to create scRNA-seq “panoramas” (Methods). 36 

Although searching for matching cells among all data sets may seem computationally 37 

intractable, we introduce two key optimizations to greatly accelerate our matching procedure. 38 

Instead of performing the nearest neighbor search in the high-dimensional gene space, we 39 

compress the gene expression profiles of each cell into a low-dimensional embedding using an 40 

efficient, randomized singular value decomposition (SVD)10 of the cell-by-gene expression 41 

matrix. Additionally, we use an approximate nearest neighbor search based on hyperplane 42 

locality sensitive hashing11 and random projection trees12 to greatly reduce the nearest neighbor 43 

query time both asymptotically and in practice (Methods). 44 
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To verify the merit of our approach, we first tested Scanorama on simulated data and a 45 

small collection of scRNA-seq data sets. We simulated three data sets with four cell types in total 46 

but where the first and third data sets had no cell types in common (Supplementary Fig. 2a-c). 47 

We also obtained three previously generated13 data sets: one of 293T cells, one of Jurkat cells, 48 

and one with a 50:50 mixture of 293T and Jurkat cells (Fig. 2a). In both cases, we were able to 49 

merge common cell types across data sets (Fig. 2b, Supplementary Fig. 2d) without also 50 

merging disparate cell types together, as was the case when applying existing integration 51 

methods to these data sets (Fig. 2c,d). 52 

We then sought to demonstrate the ability of Scanorama to assemble a larger and more 53 

diverse set of cell types. In total, we ran our pipeline on 26 scRNA-seq data sets representing 9 54 

different technologies and containing a total of 105,476 cells (Fig. 3a, Supplementary Table 1), 55 

each data set coming from a different scRNA-seq experiment. Scanorama correctly identifies 56 

data sets with the same cell types and merges them together such that they cluster by cell type 57 

instead of by experimental batch (Fig. 3a-c). Importantly, in contrast with existing methods, our 58 

algorithm does not merge disparate cell types together (Fig. 3b,c; Supplementary Figure 3), 59 

and correctly identifies a data set of mouse neurons as distinct from the cell types of all other 60 

data sets (Fig. 3a). One of the panoramas identified by Scanorama consists of two data sets of 61 

hematopoietic stem cells (HSCs)14,15 which, once corrected for batch effects and plotted along 62 

the first two principal components, reconstruct the expected HSC differentiation hierarchy (Fig. 63 

3d, Supplementary Fig. 4a,b). We also observe cell type-specific clusters within panoramas of 64 

pancreatic islet cells (Fig. 3e, Supplementary Fig. 5,6) and peripheral blood mononuclear cells 65 

(Supplementary Fig. 7,8) but now have greater power to detect rare cell populations. For 66 

example, in the pancreatic islet panorama, we observe a cluster of cells consistent with a 67 
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previously reported rare subpopulation of pancreatic beta cells marked by increased expression 68 

of endoplasmic reticulum (ER) stress genes (Fig. 3e, Supplementary Fig. 6g,h).7 69 

Due to our algorithmic optimizations, Scanorama is also significantly faster than existing 70 

methods for scRNA-seq data set integration. In particular, to integrate our collection of 26 data 71 

sets containing 105,476 cells, Scanorama completes the nearest neighbor search to find 72 

panoramas in roughly five minutes and performs batch-correction of all panoramas in under 25 73 

minutes. In contrast, existing methods require more than 27 hours to integrate the same 74 

collection of data sets (Fig. 3f) using about the same amount of memory (Supplementary Fig. 75 

9) while also performing poorly at preserving real biological heterogeneity in the integrated 76 

result (Fig. 3b,c, Supplementary Fig. 10). 77 

  The alignments made by Scanorama are also interpretable, allowing researchers to 78 

examine the genes that significantly contribute to the alignment between two data sets and better 79 

understand the technical or biological origin of discrepancies between experiments. For example, 80 

Scanorama aligned two data sets consisting of the same cell type but separated by a known 81 

biological difference, i.e., two macrophage data sets with and without Mycobacterium 82 

tuberculosis (Mtb) infection. We found that the alignment of macrophage populations between 83 

these data sets is directed by genes that are enriched for processes relating to bacterial infection 84 

(Fig. 3g, Supplementary Table 2), indicating that our alignment vectors can be examined for 85 

biological significance. Such information gives researchers a better understanding of the 86 

alignment between data sets, which may optionally be corrected by our pipeline. 87 

 As researchers work to assemble a more complete picture of diverse biological functions 88 

at a single-cell resolution, the need to integrate heterogeneous experiments also increases. Our 89 

algorithm provides a robust and efficient solution to this problem, which we make publicly 90 
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available at http://scanorama.csail.mit.edu. We note that Scanorama is modular and can be used 91 

alongside other tools, which includes assembling the reference data set required for projective 92 

methods16 or combined with different methods for scRNA-seq clustering and visualization.17–19 93 

While we currently align all high-quality cells, random or structure-preserving sampling of the 94 

data20 could further improve computational efficiency. Our algorithm may also be used to 95 

interrogate a system in which the underlying cell states are unknown and are not guaranteed to be 96 

shared among different experiments, which may elucidate novel biological patterns. Scanorama 97 

provides a robust platform for integrating complex biological data sets acquired using scRNA-98 

seq, thereby enabling the identification of biological paradigms, across multiple diseases, tissues, 99 

and biological conditions, independent of sequencing technology or cell subpopulation 100 

frequency.101 
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Methods 

Data sets and data processing 

We used the following publicly-available data sets: 

• 293T cells from Zheng et al. (2017)13 (https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.1.0/293t) 

• Jurkat cells from Zheng et al. (2017)13 (https://support.10xgenomics.com/single-cell-

gene-expression/datasets/1.1.0/jurkat) 

• 50:50 Jurkat:293T cell mixture from Zheng et al. (2017)13 

(https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.1.0/jurkat:293t_50:50) 

• 99:1 Jurkat:293T cell mixture from Zheng et al. (2017)13 

(https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.1.0/jurkat_293t_99_1) 

• Mouse neurons from 10x Genomics (unpublished) 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neuron_9k) 

• Macrophages (Mtb infected) (pending final GEO approval) 

• Macrophages (Mtb exposed) from Gierahn et al. (2017)21 (GSE92495) 

• Macrophages (unexposed) (pending final GEO approval) 

• Macrophages (unexposed) from Gierahn et al. (2017)21 (GSE92495) 

• Mouse hematopoietic stem cells (HSCs) from Paul et al. (2015)14 (GSE72857) 

• Mouse HSCs from Nestorowa et al. (2016)15 (GSE81682) 

• Human pancreatic islet cells from Baron et al. (2016)22 (GSE84133) 

• Human pancreatic islet cells from Muraro et al. (2016)23 (GSE85241) 
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• Human pancreatic islet cells from Grün et al. (2016)24 (GSE81076) 

• Human pancreatic islet cells from Lawlor et al. (2017)25 (GSE86469) 

• Human pancreatic islet cells from Segerstolpe et al. (2016)26 (E-MTAB-5061) 

• Human PBMCs from Zheng et al. (2017)13 (https://support.10xgenomics.com/single-cell-

gene-expression/datasets/1.1.0/fresh_68k_pbmc_donor_a) 

• Human CD19+ B cells from Zheng et al. (2017)13 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/b_cells) 

• Human CD14+ monocytes from Zheng et al. (2017)13 

(https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.1.0/cd14_monocytes) 

• Human CD4+ helper T cells from Zheng et al. (2017)13 

(https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.1.0/cd4_t_helper) 

• Human CD56+ natural killer cells from Zheng et al. (2017)13 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/cd56_nk) 

• Human CD8+ cytotoxic T cells from Zheng et al. (2017)13 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/cytotoxic_t) 

• Human CD4+/CD45RO+ memory T cells from Zheng et al. (2017)13 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/memory_t) 

• Human CD4+/CD25+ regulatory T cells from Zheng et al. (2017)13 

(https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.1.0/regulatory_t) 

• Human PBMCs from Kang et al. (2018)27 (GSE96583) 
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• Human PBMCs from 10x Genomics (unpublished) 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k) 

In each data set, we removed low-quality cells by including only those with at least 600 

identified genes. When searching for scRNA-seq panoramas, we only consider the genes that are 

present in all data sets and 𝑙2-normalize the expression values for each cell for scale-invariant 

comparison. In our study, there were 5,216 genes present across all 26 data sets, each data set 

containing between 90 and 18,018 cells, and which in total contained 105,476 high-quality cells 

(Supplementary Table 1). 

Dimensionality reduction using randomized SVD 

We compute a compressed, low-dimensional embedding of the gene expression values for each 

cell by taking the SVD of the combined cell-by-gene expression matrix, taking inspiration from 

different compressive techniques for other biological problems.28 The SVD is normally very 

expensive to compute on large matrices, so we leverage an efficient, randomized approach to 

find an approximate SVD10, which is implemented in the fbpca Python package 

(http://fbpca.readthedocs.io/en/latest/). We use a reduced dimension of 100 in all of our 

experiments. 

All-to-all data set matching 

For each data set, we query for its cells’ nearest neighbors among the cells of all remaining data 

sets in the low-dimensional embedding space. After repeating this for all data sets, we find all 

instances where a cell in one data set is the nearest neighbor of a cell in another data set, and vice 

versa. Additional algorithm descriptions are given in the Supplementary Materials. 

Approximate nearest neighbors using locality sensitive hashing 
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To greatly accelerate our nearest neighbor queries, our algorithm conducts an approximate 

search based on locality sensitive hashing, where multiple trees of random hyperplanes, used as 

hash functions, divide the search space of the points in the query set.11,12 We use the Annoy 

C++/Python package (https://github.com/spotify/annoy), a memory efficient implementation of 

this algorithm. 

Nonlinear data set merging and panorama stitching 

Once mutual nearest neighbor matches are identified, we merge data sets together into larger 

panoramas. We build upon the nonlinear batch-correction strategy of Haghverdi et al.6 that maps 

one scRNA-seq data set onto another by computing translation vectors in the full gene 

expression space for all cells in a data set. Translation vectors for each cell are obtained as a 

weighted average of the matching vectors (defined by the pairs of matched cells), where a 

Gaussian kernel function upweights matching vectors belonging to nearby points. We order pairs 

of data sets based on the percentages of cells in the data sets that are involved in a matching and 

use this ordering to build panoramas of data sets by successively merging a data set into a 

panorama or using the pair of data sets to merge two panoramas together using the nonlinear 

correction procedure described above. Additional algorithm descriptions are given in the 

Supplementary Materials. 

Interpreting alignments 

Since aligning and merging two data sets is based on a set of matching vectors, we reasoned that 

the magnitude of these vectors along the dimensions of the gene expression space would allow 

us to identify genes with a significant contribution to the direction of the alignment. To interpret 

an alignment between two data sets, we averaged the matching vectors across all matchings and 

compared the absolute magnitude of each of the values in the mean vector to the corresponding 
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absolute magnitudes of a “null set” of vectors. We constructed a null distribution by randomly 

pairing cells between the two data sets and computing the vectors obtained from each pair 

(excluding pairs in the matching itself). We used a null distribution of 100,000 vectors to 

calculate a permutation-based p-value for each of the genes. Genes were put into a target list at a 

false discovery rate (FDR)29 of less than 0.05, for which we looked for gene ontology (GO) 

process enrichment among the background set of 5,216 genes using the GOrilla web tool 

(http://cbl-gorilla.cs.technion.ac.il/).30 

t-SNE visualization 

We modified the implementation of t-Distributed Stochastic Neighbor Embedding (t-SNE)31 in 

scikit-learn32 by replacing the exact nearest neighbors search phase with an approximate nearest 

neighbors search using the same locality sensitive hashing algorithm and implementation as in 

our data set matching procedure. This modification was done to improve the runtime of the 

default scikit-learn t-SNE when visualizing our results and is included in the code package for 

our algorithm. 

Clustering performance 

Previous scRNA-seq analyses6,33 have used the Silhouette Coefficient34 as a quantitative measure 

of clustering performance. The Silhouette Coefficient is calculated using the mean of the 

distances from cell 𝑖 to all other cells of the same type (𝑎𝑖) and the mean of the distances from 

cell 𝑖 to all other cells that belong to the cell type that is nearest to the cell type of 𝑖 (𝑏𝑖). The 

Silhouette Coefficient for a cell is 
𝑏𝑖−𝑎𝑖

max{𝑎𝑖,𝑏𝑖}
, taking values between 1 and -1, inclusive, where 

higher values indicating better clustering performance. Intuitively, the Silhouette Coefficient 

improves if a cell is close to other cells of the same type and far from cells of a different type. 

We computed the Silhouette Coefficient using the t-SNE embeddings of all cells across our 
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collection of 26 data sets integrated by Scanorama, scran MNN, and Seurat CCA 

(Supplementary Fig. 10). We use the Silhouette Coefficient implementation provided by scikit-

learn.  

Simulation of non-overlapping data sets 

We simulated data sets by sampling from a 2-dimensional Gaussian mixture model with four 

components and isotropic noise. We then projected all of our data sets into a 100-dimensional 

space using a matrix with Gaussian noise entries. We also simulated batch effects for each data 

set by adding a vector of Gaussian noise to all entries in a data set, using a different random 

vector (i.e., a different batch effect) for each data set. 

Panorama of 293T and Jurkat cells 

We obtained three separate data sets consisting of 293T cells, Jurkat cells, and a 50:50 mixture of 

293T and Jurkat cells from 10x Genomics.13 These data sets were processed, aligned, and 

merged using the procedure described previously to give a total of 9,530 cells. We defined cell 

types using labels from the original study. 

Panorama of hematopoietic stem cells (HSCs) 

Two publicly available data sets14,15 of HSCs were processed, aligned, and merged using the 

procedure described previously to give a total of 3,175 cells. We used the cell types that were 

reported by both studies, and we examined the expression of marker genes indicating 

erythropoiesis for additional validation (Supplementary Fig. 4c-e). We quantified the quality of 

our batch correction by computing the likelihood-ratio using the likelihood that the corrected 

MARS-Seq data set came from the same distribution as the uncorrected MARS-Seq data set (𝐻0) 

or from the same distribution as the corrected Smart-seq 2 data set (𝐻1), where we can more 
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confidently reject the null hypothesis 𝐻0 if the likelihood-ratio 
ℒ(𝐻0)

sup{ℒ(𝐻0),ℒ(𝐻1)}
 is very small. We 

modeled each distribution with a three-component Gaussian mixture model. 

Panorama of pancreatic islets 

Five publicly-available pancreatic islet data sets22–26 were processed, aligned, and merged using 

the procedure described previously to give a total of 15,921 cells (Supplementary Fig. 5). We k-

means clustered the cells in the corrected gene expression space, obtaining 40 clusters, and 

assigned cell types to each cluster based on cell type labels provided by previous clustering 

analyses7,23,25 and the relative expression levels of cell type-specific marker genes 

(Supplementary Fig. 6). This allowed us to identify a cluster corresponding to a rare 

subpopulation of beta cells with upregulated ER stress genes, which we identified using 

previously inferred labels7 for one of the data sets22 and by confirming upregulation of the 

marker genes HERPUD1 and GADD45A in cells from all data sets within that cluster 

(Supplementary Fig. 6g,h). 

Panorama of peripheral blood mononuclear cells (PBMCs) 

Ten publicly-available data sets13,27 involving PBMCs, or cell types found in PBMCs, were 

processed, aligned, and merged using the procedure described previously to give a total of 

47,994 cells. Cell types were either experimentally determined13 using fluorescence activated 

cell sorting (FACS) or inferred by previous clustering analyses6,7 (Supplementary Fig. 7), and 

we examined the expression levels of cell type-specific marker genes for additional validation 

(Supplementary Fig. 8). 

Macrophage alignment interpretation 

Four publicly available data sets21 of macrophages, sorted by FACS for Mtb infection, were 

processed and aligned using the procedure described previously to give a total of 15,337 cells. 
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Once the matching vectors between the Mtb infected and uninfected data sets were determined, 

we used the procedure described previously to identify genes and functional processes that 

significantly contribute to the discrepancy between the two data sets (Supplementary Table 2). 

Runtime and memory profiling 

We used Python’s time module to obtain runtime measurements for the alignment and merging 

portions of our algorithm and used the top program in Linux (Ubuntu 17.04) to make periodic 

memory measurements. We also randomly subsampled sets of 10,547 (10%), 26,369 (25%), and 

52,738 (50%) cells from our total of 105,476 cells and measured the runtime and memory of our 

algorithm on the subsampled data. We compared computational resource usage to two methods, 

Seurat CCA7 (with 15 canonical correlation vectors) and scran MNN6, using their default 

parameters. For a fair comparison, we used the same preprocessed data and only measured the 

resources required for the portions of the methods responsible for alignment and data set 

integration. We used R’s proc.time function and Linux’s top to measure runtime and memory 

usage, respectively, of these programs. All methods were limited to 10 cores and run on a 2.30 

GHz Intel Xeon E5-2650v3 CPU with 384 GB of RAM. 

Data and code availability 

The data and code used in this study are available at http://scanorama.csail.mit.edu.   
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Figure 1 

Illustration of “panoramic” data set integration. (a) A panorama stitching algorithm finds and 

merges overlapping images to create a larger, combined image. (b) A similar strategy can also be 

used to merge heterogeneous scRNA-seq data sets. Scanorama searches nearest neighbors to 

identify shared cell types among all pairs of data sets. Dimensionality reduction techniques and 

an approximate nearest neighbors algorithm based on hyperplane locality sensitive hashing and 

random projection trees greatly accelerate the search step. Mutually linked cells form matches 

that can be leveraged to correct for batch effects and merge experiments together (Methods). 
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Figure 2 

Scanorama correctly integrates a simple collection of data sets where other methods fail. (a) We 

apply Scanorama to a collection of three data sets13: one entirely of Jurkat cells (Experiment 1), 

one entirely of 293T cells (Experiment 2), and a 50:50 mixture of Jurkat and 293T cells 
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(Experiment 3). (b) Our method correctly identifies Jurkat cells (orange) and 293T cells (blue) as 

two separate clusters. (c,d) Existing methods for scRNA-seq data set integration incorrectly 

merge a Jurkat data set and a 293T data set together first before subsequently incorporating a 

293T/Jurkat mixture, forming clusters that do not correspond to actual cell types.  
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Figure 3 

Panoramic integration of 26 single cell data sets across 9 different technologies. (a) t-SNE 

visualization of 109,618 cells after batch-correction by our method, with cells clustering by cell 

type instead of by batch (median Silhouette Coefficient of 0.34). (b-c) Other methods for 

scRNA-seq data set integration (scran MNN6 and Seurat CCA7) are not designed for 

heterogeneous data set integration and therefore naively merge all data sets into a single large 

cluster (median Silhouette Coefficient of 0.01 for scran MNN and -0.20 for Seurat CCA; 

Supplementary Fig. 10). (d) Scanorama automatically identifies a panorama of two 
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hematopoietic stem cell (HSC) data sets14,15 and removes any significant difference due to 

experimental batch (likelihood-ratio = 2.7e-902; Methods). Visualizing the corrected HSCs 

along the first two principal components captures the “pseudo-temporal” arrangement of the cell 

types, in which granulocyte-macrophage progenitors (GMP) and megakaryocyte-erythrocytes 

(MEP) are derived from common myeloid progenitors (CMP). (e) Within a panorama of 

pancreatic islet cells from five different data sets22–26, we can observe clusters of distinct cellular 

subtypes including a previously reported rare subpopulation of beta cells marked by ER stress 

gene upregulation (Supplementary Fig. 8g,h). (f) Scanorama is significantly faster than current 

methods for scRNA-seq integration. (g) Interpreting the alignment between Mtb infected and 

uninfected macrophages reveals genes significantly enriched for processes related to bacterial 

infection. 
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