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Abstract

A neuronal population encodes information most efficiently when its activity is uncorrelated and high-dimensional, but cor-
related lower-dimensional codes provide robustness against noise. Here, we analyzed the correlation structure of natural
image coding, in large visual cortical populations recorded from awake mice. Evoked population activity was high dimen-
sional, with correlations obeying an unexpected power-law: the nth principal component variance scaled as 1/n. This was
not inherited from the 1/f spectrum of natural images, because it persisted after stimulus whitening. We proved mathemat-
ically that the variance spectrum must decay at least this fast if a population code is smooth, i.e. if small changes in input
cannot dominate population activity. The theory also predicted larger power-law exponents for lower-dimensional stimu-
lus ensembles, which we validated experimentally. These results suggest that coding smoothness represents a fundamental
constraint governing correlations in neural population codes.

Introduction

The visual cortex contains millions of neurons, and the
patterns of activity that images evoke in these neurons
form a “population code”. The structure of this code is
largely unknown, due to the lack of techniques able to
record from large populations. Nonetheless, the popula-
tion code is the subject of long-standing theories.

Two extreme alternatives of such theories are the “ef-
ficient coding hypothesis” and the “columnar hypothe-
sis”. Efficient coding1–3 maintains that neural codes max-
imize information transmission by eliminating correla-
tions present in natural image inputs. In contrast, the
columnar hypothesis holds that all neurons in a cortical
column encode similar information4; such redundancy
has been suggested to allow reliable computations to arise
from inherently noisy circuits5. In between these two ex-
tremes lie a range of possibilities, which can be charac-
terized by their dimensionality: efficient codes should be
high dimensional, while highly redundant codes will be
low-dimensional.

Several experimental studies have suggested that neural
codes are confined to low-dimensional planes6–9. Never-
theless, theoretical considerations show that such results
are inevitable given stimuli or tasks of limited complex-
ity10: responses to a set of n stimuli, for example, have
to lie on an n− 1 dimensional plane. The dimensionality
of the cortical code thus remains an open question, which
can only be answered by recording the responses of large

numbers of neurons to large numbers of stimuli.

Here, we recorded the simultaneous activity of ∼10,000
neurons in mouse visual cortex, in response to thousands
of natural images. Our results were consistent with neither
the efficient coding hypothesis nor the columnar hypoth-
esis: responses were not confined to a low-dimensional
plane, but neither was the code uncorrelated. Instead, re-
sponses occupied a multidimensional space, with the vari-
ance in the nth dimension scaling as a power law n−α,
where α ≈ 1. This power-law scaling did not reflect cor-
relations in the images themselves, as it persisted when
showing decorrelated images. Instead, we hypothesized
it arises from smoothness constraints. We showed mathe-
matically that if variances decay slower than a power law
with exponent α = 1 + 2/d, where d is the dimension
of the input ensemble, then the space of neural activity
must be fractal, i.e. show increasingly rough structure
at finer and finer scales. We verified that variances are
almost as large as allowed by this bound by presenting
stimulus ensembles of varying dimension. These findings
suggest that the population code of visual cortex is deter-
mined by two constraints: efficiency, to make best use of
limited numbers of neurons, and smoothness, which al-
lows similar images to evoke similar responses.

Simultaneous recordings of ∼10,000 neurons

To obtain simultaneous recordings of∼ 10,000 cells from
mouse V1, we employed resonance-scanning two-photon
calcium microscopy, using 11 imaging planes spaced at
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35µm (Fig. 1a). The use of the GCaMP6s sensor allowed
activity to be detected at a 2.5 Hz scan rate, and an ef-
ficient data processing pipeline11 allowed large numbers
of cells to be detected accurately (Fig. 1b). Natural im-
age scenes (Imagenet database12) were presented on an
array of 3 monitors surrounding the mouse (Fig. 1c), at
an average of 1 image/s. Cells were tuned to the nat-
ural image stimuli: in experiments in which responses
to 32 images were averaged over 96 repeats (Fig. 1d),
stimulus responses accounted for 55.4±3.3% (SE, n=4
recordings) of the trial-averaged variance. Consistent with
prior reports13,14, neuronal responses were sparse: only a
small fraction (13.4±1.0% SE, n=4 recordings) of cells
were driven more than two standard deviations above their
baseline firing rate by any particular stimulus.

For our main experiments, we presented a sequence of
2,800 image stimuli twice in succession. Two repeats
were used to allow the maximum number of images to
be analyzed, while still allowing analyses based on cross-
validation (Fig. 1e). A majority of neurons (81.4±5.1%
SE, n=7 recordings) showed correlation between repeats
at p < 0.05; Extended Data Fig. 1a,b). Never-
theless, consistent with previous reports5,15,16, single-
trial responses showed substantial trial-to-trial variabil-
ity. Cross-validation showed that stimulus responses ac-
counted for on average 13.9±1.7% of the single-trial vari-
ance (Extended Data Fig. 1c), and the average signal-to-
noise ratio was 17.3±2.4% (Fig. 1f). This level of trial-
to-trial variability was not due our particular recording
method: measuring responses to the same stimuli elec-
trophysiologically yielded a similar signal-to-noise ratio
(Extended Data Fig. 2). Despite trial-to-trial variabil-
ity, however, the activity recorded on a single trial from
the 10,000 cell populations contained substantial informa-
tion about the sensory stimuli. Indeed, a simple nearest-
neighbor decoder, trained on one repeat and tested on the
other, was able to identify the presented stimulus with up
to 75.5% accuracy (Fig. 1g; range 25.4%-75.5%; median
41.7% compared to chance level of 0.036%, n=7 record-
ings). Decoding accuracy did not appear to have saturated
at population size 10,000, suggesting even higher perfor-
mance would be obtained with larger populations.

Neurons had similar visual properties to previous re-
ports17,18, but their responses were poorly captured by
classical linear-nonlinear models. We calculated a recep-
tive field (RF) for each cell from its responses to natural
images in two ways: by fitting linear RFs regularized with
a reduced rank method; or by searching for an optimal Ga-
bor filter that was rectified/quadrature filtered to
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Fig. 1. Population coding of visual stimuli. a, Simultaneous recording
of ∼ 10,000 neurons using 11-plane two-photon calcium imaging. b,
Randomly-pseudocolored cells in an example imaging plane. c, Exam-
ple natural image stimulus spans three screens surrounding the mouse’s
head. d, Mean responses of 65 neurons to 32 image stimuli (96 repeats).
e, To allow cross-validated analysis of responses to a large image ensem-
ble, a sequence of 2800 stimuli was repeated twice during the recording.
f, Distribution of single-cell signal-to-noise ratios (SNR) (2800 stim-
uli, two repeats). Colors denote recordings; arrows represent means.
g, Stimulus decoding accuracy as a function of neuron count for each
recording. h, Receptive fields (RFs) fit using reduced-rank regression
or Gabor models, for best-fit neurons. i, Distribution of the receptive
field centers, plotted on the left and center screens (line denotes screen
boundary). Each cross represents a different recording, with error bars
representing 95% confidence intervals on that recording’s mean RF po-
sition.

simulate classical simple/complex cell responses. As ex-
pected from retinotopy, the RF locations of simultane-
ously recorded neurons overlapped but there was a high
diversity of receptive field sizes and shapes (Fig. 1h; Ex-
tended Data Fig. 3, Extended Data Fig. 4). Both RF
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models, however, explained less than 20% of the stimulus-
related variance (the linear model explained 11.4±0.7%
SE, and the Gabor model explained 18.5±1.0% SE, n=7
recordings each), consistent with a vast literature indicat-
ing that natural image responses in V1 are poorly approx-
imated by classical RF models.19–22.

Dimensionality and power-law scaling of vari-
ances

To characterize the geometry of the neural code for vi-
sual stimuli, we developed a method of cross-validated
principal component analysis (PCA). PCA provides for
each integer n the maximum fraction of variance that can
be accounted for by linear variations along an optimal n-
dimensional subspace. Direct application of PCA to neu-
ral data, however, would measure the dimensionality of
both the stimulus representation and trial-to-trial fluctua-
tions. Since the present study is concerned only with the
former, we developed a cross-validated approach that fo-
cuses only on stimulus representation (Fig. 2a), and also
projected out dimensions corresponding to ongoing activ-
ity (see Extended Data Fig. 5; see Methods). To estimate
the amount of stimulus-related variance in an optimal n-
dimensional plane, we chose these planes by PCA of one
stimulus repeat (the training set), and measured the frac-
tion of the second repeat’s variance that was confined to
this plane. We confirmed that this technique can recover
the true variances using simulations of neural data with
the same noise statistics as our recordings (Extended Data
Fig. 6; Supplementary Information).

Cross-validated PCA revealed that the neural code in V1
is not low-dimensional: visual population responses did
not lie on any low-dimensional plane within the space
of possible firing patterns. The amount of variance ex-
plained continued to increase as further dimensions were
included, without saturating at any dimensionality below
the maximum possible (Fig. 2b). As a control analysis,
we used the same methods to analyze responses to multi-
ple repeats of a set of only 32 images – whose responses
must by definition lie on a 31-dimensional plane – and
observed a saturation after 31 dimensions. We therefore
conclude that the visual cortical representation of natural
image stimuli is not low-dimensional.

This analysis revealed an unexpected finding: the fraction
of neural variance in planes of successively larger dimen-
sions followed a power law. For natural image responses,
the eigenspectrum, i.e. the function summarizing the vari-
ance of the nth principal component, had a magnitude

PC
train

stimuli

PC
test

a

10 0 10 1 10 2 10 3

PC dimension

0

0.2

0.4

0.6

0.8

1

va
ria

nc
e

(c
um

ul
at

iv
e)

2800
images

32 imagesb

10 0 10 1 10 2 10 3

PC dimension

10 -5

10 -4

10 -3

10 -2

10 -1

va
ria

nc
e =1.04

c

10 0 10 1 10 2 10 3

PC dimension

10 -5

10 -4

10 -3

10 -2

10 -1

va
ria

nc
e

(all recordings)
d

0.9 1 1.1

power law exponent 

0

2

4

# 
of

 r
ec

or
di

ng
s

e

10 0 10 1 10 2 10 3

PC dimension

0

0.2

0.4

0.6

0.8

1

va
ria

nc
e

(c
um

ul
at

iv
e)

classical RF model

neural
data

f

10 0 10 1 10 2 10 3

dimension

10 -5

10 -4

10 -3

10 -2

10 -1

va
ria

nc
e

1.000
0.500
0.250
0.125
0.062
0.031
0.016

fraction of
all neurons:

g

10 0 10 1 10 2 10 3

dimension

10 -5

10 -4

10 -3

10 -2

10 -1
va

ria
nc

e

1.000
0.500
0.250
0.125
0.062
0.031
0.016

fraction of
all stimuli:

h

10 -1 10 0

fraction of
neurons/stimuli

0.4

0.6

0.8

1

co
rr

el
at

io
n

co
ef

fic
ie

nt

i

10 -1 10 0

fraction of
neurons/stimuli

0.5

1

1.5

po
w

er
 la

w
ex

po
ne

nt

j

Fig. 2. Visual cortical responses are high-dimensional with power-
law eigenspectrum. a, The eigenspectrum of visual stimulus responses
was estimated by cross-validated principal component analysis (PCA),
projecting singular vectors from the first repeat onto responses from the
second. b, Cumulative fraction of variance in planes of increasing di-
mension, for an ensemble of 2800 stimuli (blue) and for 96 repeats of 32
stimuli. Dashed line indicates 32 dimensions. c, Eigenspectrum plotted
in descending order of training set singular value for each dimension,
averaged across 7 recordings. d Eigenspectrum for each recording in-
dividually (superimposed). e, Histogram of eigenspectrum power law
exponent across all recordings. f, Cumulative eigenspectrum for a sim-
ple/complex Gabor model fit to the data (pink) superimposed on true
data (blue). g, Eigenspectra computed from random subsets of recorded
neurons, fraction indicated by colors. h, Same analysis for random sub-
sets of stimuli. i, Correlation coefficients for the log-log eigenspectra
plotted in g,h as a function of fraction analyzed (1 indicates a power
law). j, Power law exponents of the spectra plotted in g,h.

approximately proportional to 1/n (Fig. 2c) (1/nα where
α = 1.04). This power-law did not result from averag-
ing over multiple experiments: analysis of data from each
mouse individually revealed power-law behavior in ev-
ery case (Fig. 2d). While some variability between mice
was observed in the scaling exponent of the power law,
this exponent had a peak close to 1 across the population
(1.04±0.017 SE, n = 7 recordings, Fig. 2e). This eigen-
spectrum reflected correlations between neurons, and was
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not the consequence of a log-normal distribution of firing
rates or signal variance in the population (Extended Data
Fig. 7). In addition, this result could not be explained
by classical models of visual cortical receptive fields: a
model of simple/complex Gabor receptive fields with pa-
rameters fit to single cell responses (Fig. 1h) reached 95%
variance explained at 147 dimensions (compared to 998
dimensions in the neural data) (Fig. 2f).

The eigenspectrum power-law we observed was not a
function of the finite number of neurons and stimuli we
recorded and presented, but grew more accurate the more
neurons and stimuli were considered (Fig. 2g-j). By re-
peating the analyses with randomly-chosen subsets of
neurons or stimuli, we found that the correlation coeffi-
cient of log-variance with log-dimension grew closer to 1
with increasing numbers of neurons or stimuli (Fig. 2i).
Furthermore, the exponent of the power law converged
towards 1 with increasing numbers of neurons or stimuli
(Fig. 2j). We infer that the power law observed in our
recordings does not simply reflect how the particular set
of neurons we recorded responds to the particular set of
stimuli we happened to show; instead this power law rep-
resents a universal feature of the neural code in mouse V1,
that will also govern the response of even larger neuronal
populations to a potentially unlimited ensemble of stimuli
with similar visual properties.

Power-law variances do not arise from natural
image statistics

Natural images have a power-law structure23,24 (Fig. 3a),
but this did not cause the neural code’s power-law.
To investigate whether the eigenspectrum of the image
set could underlie the eigenspectrum seen in neural re-
sponses, we removed the image power law by spatially
whitening the images, and presented the ensemble of
whitened stimuli to 3 out of the 6 mice. Although the
power law in the image pixels was now abolished, the
power law in the neural responses remained (Fig. 3b).
Furthermore, the eigenspectrum of neural responses could
not be explained by simple receptive field properties: a
simple/complex Gabor model applied to the input im-
ages produced eigenspectra that decayed more quickly
than the actual responses, and were worse fit by a power-
law (p<10−3, Wilcoxon rank-sum test on Pearson correla-
tions) for both the original and spatially-whitened images
(Fig. 3a,b).

The power law eigenspectra also did not arise from the
long-range correlations characteristic of natural images,
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sional stimulus ensemble, show yet faster decay with α=3.43.

or indeed from any property unique to natural image stim-
uli. To investigate the role of long range interactions,
we constructed spatially localized image stimuli, in which
the region outside the classical RF was replaced by gray.
Again, the power law persisted with exponent close to 1
(Fig. 3c). Finally, to investigate whether natural stimuli
were in any way required for power-law variances, we
showed sparse noise stimuli to the mice (Fig. 3d). Again,
we observed a power-law spectrum, with exponent close
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to 1, although slightly larger than for the natural image
stimuli (1.13±0.044 SE, n=3 recordings; p = 0.067,
Wilcoxon two-sided rank sum test). We conclude that
power-law spectra do not reflect neural processing of a
property specific to natural images, but also arise in re-
sponse to multiple types of stimulus ensemble.

Power-law exponent reflects the dimensionality
of the set of inputs

Power law eigenspectra are observed in many scientific
domains, and are related to the smoothness of the under-
lying functions. For example, the Fourier spectrum of a
differentiable function of one variable must decay at least
as fast as a power law of exponent 1 (see e.g. Ref.25).
We therefore hypothesized that the variance power law
might be related to the smoothness of the set of neural
responses. The set of neural population responses to stim-
uli drawn from a d-dimensional stimulus space lies on a
subset – more specifically a manifold – of dimension at
most d, meaning that the firing rates of all neurons can
be described by a nonlinear function of no more than d
numbers. A manifold is said to be differentiable if these
coordinate functions are not just continuous but differen-
tiable. Differentiable manifolds are smoother than non-
differentiable ones. Not all manifolds are differentiable:
for example, many objects in nature (such as coastlines)
are fractal, showing increasing amounts of roughness at
finer spatial scales. We showed mathematically that if the
set of neural responses is a d-dimensional differentiable
manifold, then its principal component variances must de-
cay asymptotically faster than any power law with expo-
nent above α = 1+2/d (see Supplementary Information).
Conversely, if its eigenvalues asymptotically decay slower
than a power law of exponent 1 + 2/d then the neural re-
sponses cannot lie on a differentiable manifold but must
lie on a fractal.

To test the hypothesis that power-law eigenspectra re-
flected differentiability of the neural response manifold,
we presented our mice with stimuli drawn from stimu-
lus ensembles with systematically lower dimension. For
a high-dimensional stimulus ensemble such as natural im-
ages, d will be large so 1 + 2/d ≈ 1, which is close to
the power law exponent we observed for natural images.
However for smaller values of d, the power-law must have
larger exponents if fractality is to be avoided. We obtained
stimulus ensembles of dimensionality d = 8 and d = 4 by
filtering the natural image database, projecting onto a set
of basis functions that enforced the required dimensional-
ity (Fig. 3e,f). In addition, we obtained a one-dimensional
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Fig. 4. The smoothness of simulated neural activity depends on the
eigenspectrum decay. a, Summary of power law exponents α for neu-
ral responses (circles) and Gabor model (crosses), as a function of the
dimensionality of the stimulus set d. Dashed line: α = 1 + 2/d, cor-
responding to the border of fractality. b-f, Simulations of neuronal pop-
ulation responses to a 1-dimensional stimulus (x-axis), their eigenspec-
tra, and a random projection of responses in 3D space. b, Wide tuning
curves, corresponding to a circular neural manifold in a 2-dimensional
plane. c, Narrow tuning curves corresponding to uncorrelated responses
as predicted by the efficient coding hypothesis. (d-f) Scale-free tuning
curves corresponding to power law variance spectra, with exponents of
2, 3 (the critical value for d = 1), or 4.

ensemble by showing drifting grating stimuli, which are
parametrized by a single number (the grating’s orienta-
tion). Consistent with the hypothesis, stimulus sets with
d = 8, 4, and 1 yielded power-law scaling of eigenvalues,
with exponents of 1.49, 1.65, and 3.43, near the lower
bounds of 1.25, 1.50, and 3.00 predicted by the 1 + 2/d
exponent (Fig. 4a). These results suggest that the neural
responses lie on a differentiable manifold, but one that is
almost as high-dimensional as possible without becom-
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ing fractal. The simulated neural responses obtained from
the simple/complex cell model also satisfied the bound,
but with higher exponents, suggesting a differentiable, but
lower dimensional representation.

Discussion

By analyzing the responses of >10,000 neurons to thou-
sands of image stimuli, we found that visual cortical pop-
ulation responses to stimuli are not constrained to a low
dimensional plane. The geometry of the set of stimulus
responses was however constrained such that the variance
of nth dimension decayed as a power of n, with an ex-
ponent of α ≈ 1 + 2/d where d is the dimensionality of
the space of sensory inputs. We showed mathematically if
the variances decayed slower than this then they could not
lie on a differentiable manifold, but must instead lie on a
fractal. Nevertheless, these results are not mathematically
inevitable: for example, simulating Gabor receptive fields
gave responses whose variances decayed faster than this
bound. Our experimental results therefore suggest that
the eigenspectra of the visual cortical code decay close to
the slowest they could, consistent with differentiability of
the neural manifold.

To illustrate the geometrical consequences of power-law
variance spectra, we simulated neural codes with different
eigenspectra (see Supplementary Information), and visu-
alized them through a random projection onto 3D space.
The stimulus was 1-dimensional and circular, such as the
orientation of a grating, and the population was com-
posed of 1000 neurons. We first simulated a simple low-
dimensional code with two equal variances and all others
zero (Fig. 4b). The set of neural responses was by defini-
tion constrained to a plane, within which the neural mani-
fold lay on a circle. We then simulated a high-dimensional
code in which each neuron responds to a different stimu-
lus, which produces 1000 equal variances and all others
zero (Fig. 4c). These decorrelated responses replicate the
population code proposed by the efficient coding hypothe-
sis. Though high-dimensional, when viewed in 3D projec-
tion, it appeared as a spiky, discontinuous ball. This man-
ifold is differentiable, but smooth only at scales shorter
than a characteristic length scale set by the reciprocal of
the number of non-zero dimensions (less than 1 degree in
this example). For distances greater than this characteris-
tic scale, the code does not respect distances: responses to
two stimuli separated by just a few degrees are as different
as responses to diametrically opposite stimuli.

Power-law codes show a scale-free geometry, whose de-

gree of smoothness depends of the exponent α (Fig. 4d-
f). A power-law code with α = 2 (below the critical
value of α = 3 for a 1D stimulus) is a one-dimensional
manifold with fractal dimension 2 (see Supplementary In-
formation), which is preserved upon random projection
into 3 dimensions (Fig. 4d). The non-differentiable, frac-
tal structure of this manifold is visible by its “fuzzy” ap-
pearance, which reveals ever finer details at smaller length
scales. A consequence of this fractality is that the fraction
of neural variance encoding large-scale stimulus features
is outweighed by that encoding ever finer features. At the
critical exponent of α = 3 (which is equal to 1 + 2/d
given that d = 1), the neural manifold has a fractal di-
mension of 1 and is on the border of differentiability; this
is visible as a geometry that can still represent fine differ-
ences between stimuli, but does not let these differences
swamp features corresponding to larger stimulus differ-
ences (Fig. 4e). A higher exponent leads to a smoother
neural manifold, further away from the border of fractal-
ity (Fig. 4f).

What are the computational consequences of these dif-
ferent coding geometries, and what advantage might the
brain gain from a power-law code with close-to-critical
exponent? The efficient coding hypothesis would suggest
that information is optimally encoded when responses
to different stimuli are as different as possible. How-
ever, such codes carry a cost in terms of generalization.
This can be seen from an extreme example in which the
neural responses to any pair of stimuli are orthogonal:
in this case, even stimuli that differ only in tiny details
would have completely different responses, and a behav-
ior learned in response to one stimulus could never gener-
alize to another. An example of this behavior can be seen
in some neural network architectures that provide a dis-
continuous set of responses26, making them misrepresent
“adversarial images” that differ only very slightly from
normal images27. Differentiability of the neural manifold
ensures that similar stimuli will be represented by similar
firing patterns, allowing generalization to occur. We sug-
gest that a power-law code of critical exponent therefore
represents a balance between efficient, high-dimensional
codes, and the ability to generalize at multiple scales.

Methods

All experimental procedures were conducted according to
the UK Animals Scientific Procedures Act (1986). Ex-
periments were performed at University College London
under personal and project licenses released by the Home
Office following appropriate ethics review.
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Animals and surgery

We used mice bred to express GCaMP6s in excitatory
neurons in our recordings: 3 recordings from a Camk2a-
tTA, Ai94 GCaMP6s 2tg x Emx1-IRES-Cre mouse (avail-
able as JAX 024115 and JAX 005628); 2 recordings
from a Camk2a-tTA, Ai94 GCaMP6s 2tg x Rasgrf-Cre
mouse (available as JAX 024115 and JAX 022864); and
13 recordings from TetO-GCaMP6s x Emx1-IRES-Cre
mice (available as JAX 024742 and JAX 005628). We
also used mice bred to express tdTomato in inhibitory neu-
rons (GAD-IRES-Cre x CAG-tdTomato, available as JAX
010802 and JAX 007909) in 17 recordings. In this case,
GCaMP6s was expressed virally, and excitatory neurons
were identified by lack of tdTomato expression.

Surgical methods were similar to those described else-
where11,28. Briefly, surgeries were performed in adult
mice (P35–P125) under isoflurane anesthesia (5% for in-
duction, 0.5-1% during the surgery) in a stereotaxic frame.
Before surgery, Rimadyl was administered as a systemic
analgesic and lidocaine was administered locally at the
surgery site. During the surgery we implanted a head-
plate for later head-fixation, and made a craniotomy of 3-4
mm in diameter with a cranial window implant for optical
access. In Gad-Cre x tdTomato transgenics, we targeted
virus injections (AAV2/1-hSyn-GCaMP6s, University of
Pennsylvania Vector Core, 50-200 nl, 1-3 x 1012 GC/ml)
to monocular V1 (2.1-3.3 mm laterally and 3.5-4.0mm
posteriorly from Bregma), using a beveled micropipette
and a Nanoject II injector (Drummond Scientific Com-
pany, Broomall, PA 1) attached to a stereotaxic microma-
nipulator. To obtain large fields of view for imaging, we
typically performed 4-8 injections at nearby locations, at
multiple depths (∼500 µm and ∼200 µm). Rimadyl was
then used as a post-operative analgesic for three days, de-
livered to the mice via their drinking water.

Data acquisition

We used a 2-photon microscope (Bergamor II multipho-
ton imaging microscope, Thorlabs, Germany) to record
neural activity, and ScanImage29 for data acquisition, ob-
taining 10622 ± 1690 (standard deviation) neurons in the
recordings. The recordings were performed using multi-
plane acquisition controlled by a resonance scanner, with
planes spaced 30-35 µm apart in depth. Ten or twelve
planes were acquired simultaneously at a scan rate of 3
or 2.5 Hz. To verify that this low scan rate did not com-
promise estimation of neuronal responses, in a subset of
experiments we recorded in a single plane imaging con-
figuration (30 Hz frame rate), and downsampled in time

by a factor of 12. The downsampled traces contained on
average 33.9±5.6% less stimulus-related variance. Simu-
lations (Extended Data Fig. 6) indicated that this change
in variance would have no effect on the measured eigen-
spectra.

The mice were free to run on an air-floating ball and were
surrounded by three computer monitors arranged at 90o

angles to the left, front and right of the animal, so that the
animal’s head was approximately in the geometric center
of the setup.

For each mouse, recordings were made over multiple
days, always returning to the same field of view (in one
mouse, two fields of view were used). For each mouse,
a field of view was selected on the first recording day
such that 10,000 neurons could be observed, with clear
calcium transients and a retinotopic location (identified
by neuropil fluorescence) localized on the monitors. If
more than one potential field of view satisfied these cri-
teria, we chose either a horizontally and vertically cen-
tral retinotopic location, or a lateral retinotopic location,
at 90o from the center, but still centered vertically. The
retinotopic location of the field of view (central or lateral)
was unrelated to variance spectra. We also did not observe
significant differences between recordings obtained from
different modes of GCaMP expression. Thus, we pooled
data over all conditions.

Visual stimuli

Image stimuli were selected from the ImageNet
database12, from ethologically-relevant categories:
"birds", "cat", "flowers", "hamster", "holes", "insects",
"mice", "mushrooms", "nests", "pellets", "snakes", "wild-
cat". Images were chosen manually to ensure that less
than 50% of the image was a uniform background, and to
contain a mixture of low an high spatial frequencies. Each
stimulus consisted of a randomly-chosen image replicated
across the three screens after rotating and/or mirroring the
image up/down. Stimuli were presented for 0.5 sec, alter-
nating with a gray-screen inter-stimulus interval lasting
a random time between 0.3 and 1.1 s. For the main ex-
periments, 2800 stimuli were presented twice in the same
order each time. Additionally, in a subset of mice (4 out
of 6), we presented a smaller set of 32 or 112 images, pre-
sented in a randomized order between 32 and 96 times,
to enable more accurate estimation of trial-averaged re-
sponses.

We also presented partially spatially whitened versions of
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the 2800 natural images. To compute spatially whitened
images, we first computed the two-dimensional Fourier
spectrum for each image, and averaged the spectra across
images. We then whitened each image in the frequency
domain by dividing its Fourier transform by the averaged
Fourier spectrum across all images. The rescaled Fourier
transform of the image was transformed back into the
pixel domain by computing its inverse two-dimensional
Fourier transform and retaining the real part. Each image
was then intensity-scaled to have similar mean and stan-
dard deviation pixel values as the original.

The eight- and four-dimensional stimuli were constructed
using a reduced-rank regression model. We first used re-
duced rank regression to predict the neuronal population
responses R from the natural images I (Npixels by Nstimuli)
via a d-dimensional bottleneck :

R = ATBI

whereA is a matrix of size d byNneurons andB is a matrix
of size d by Npixels. The dimensionality d was either eight
or four depending on the set of stimuli being constructed.
The columns of B represent the image dimensions which
linearly explain the most variance in the neural popula-
tion responses. The stimuli were the original 2800 natu-
ral images projected onto the reduced-rank subspace B:
Ilow-D = B>BI .

In addition to natural image stimuli, we also presented
drifting gratings and sparse noise. Gratings of 32 direc-
tions, spaced evenly at 15◦ intervals were presented 96
times each, lasting 0.5 sec each, and with a gray-screen
inter-stimulus interval between 0.3 and 1.1 s. They were
full-field stimuli (all three monitors) and their spatial fre-
quency was 0.05 cycles per degree.

The sparse noise stimuli consisted of uncorrelated squares
of size 5◦ of magnitude ±1 or 0. The probability that a
square was non-zero was a uniform distribution of 5%.
The squares changed their magnitude every 200 ms. The
sparse noise played for 20 minutes, consisting of 6000
unique stimuli in total. Then the same sequence of sparse
stimuli was repeated.

In some of the sessions, spontaneous activity was
recorded for 30 minutes with all monitors showing a gray
or black background. In all sessions, there were occa-
sional blank stimuli (1 out of every 20 stimuli in the 2800
natural image stimuli). The activity during these non-
stimulus periods was used to project out spontaneous di-
mensions from the neuronal population responses (see be-
low).

Calcium imaging processing

Calcium movie data was processed using the Suite2p tool-
box11, available at www.github.com/cortex-lab/Suite2P.

Briefly, the Suite2p pipeline consists of registration, cell
detection, ROI classification, neuropil correction, and
spike deconvolution. Movie frames are registered using
2D translation estimated by regularized phase correlation,
subpixel interpolation and kriging. To detect regions of
interest (ROIs; corresponding to cells), Suite2p clusters
correlated pixels, using a low-dimensional decomposition
of the data to accelerate processing. The number of ROIs
is determined automatically via a threshold on pixel cor-
relations. Finally, ROIs were classified as somatic or
non-somatic using a classifier trained on a set of human-
curated ROIs. The classifier reached 95% agreement with
training data, thus allowing us to skip manual curation
for most recordings. For neuropil correction, we used
the approach of Ref.30, subtracting from each ROI sig-
nal the surrounding neuropil signal scaled by a factor of
0.7; all pixels attributed to an ROI (somatic or not) were
excluded from the neuropil trace. After neuropil subtrac-
tion, we further subtracted a running baseline of the cal-
cium traces with a sliding window of 60 seconds to re-
move long timescale additive shifts in the signals. Finally,
fluorescence transients were estimated using non-negative
spike deconvolution with a fixed timescale of calcium in-
dicator decay of 2 seconds, a method which we found to
out-perform others on ground truth data31,32.

Data acquisition and processing (electrophysiology)

Neuropixels electrode arrays33 were used to record ex-
tracellularly from neurons in six mice. The mice were
between 8 and 24 weeks old at the time of record-
ing, and were of either gender. The genotypes of the
mice were Slc17a7-Cre;Ai95, Snap25-GCaMP6s, TetO-
GCaMP6s;CaMKIIa-tTA, Ai32;Pvalb-Cre (two mice), or
Emx1-Cre;CaMKIIa-tTA;Ai94. In some cases, other
electrophysiological recordings had been made from other
locations in the days preceding the recordings reported
here. In all cases, a brief (<1 hour) surgery to implant a
steel headplate and 3D-printed plastic recording chamber
( 12mm diameter) was first performed. Following recov-
ery, mice were acclimated to head-fixation in the record-
ing setup. During head-fixation, mice were seated on a
plastic apparatus with forepaws on a rotating rubber wheel
(five mice) or were on a styrofoam treadmill and able
to run (one mouse). Three 20x16cm TFT-LCD screens
(LG LP097QX1) were positioned around the mouse at
right angles at a distance of 10cm, covering a total of
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270x78 degrees visual angle. On the day of recording,
mice were again briefly anesthetized with isoflurane while
eight small craniotomies were made with a dental drill.
After several hours of recovery, mice were head-fixed in
the setup. Probes had a silver wire soldered onto the ref-
erence pad and shorted to ground; these reference wires
were connected to a Ag/AgCl wire positioned on the skull.
The craniotomies as well as the wire were covered with
saline-based agar. The agar was covered with silicone oil
to prevent drying. Probes were each mounted on a rod
held by an electronically position-able micromanipulator
(uMP-4, Sensapex Inc.) and were then advanced through
the agar and through the dura. Once electrodes punctured
dura, they were advanced slowly ( 10µm/sec) to their final
depth (4 or 5 mm deep). Electrodes were allowed to settle
for approximately 15 minutes before starting recording.
Recordings were made in external reference mode with
LFP gain=250 and AP gain=500, using SpikeGLX soft-
ware. Data were preprocessed by re-referencing to the
common median across all channels.

We spike sorted the data using a modification of Kilosort
that tracks drifting clusters34, which we will refer to as
Kilosort2. This modification was necessary to obtain an
automated algorithm, and the code will be made publicly
available at or before the time of publication. Without
the modifications, the original Kilosort and similar algo-
rithms can split clusters according to drift of the electrode.
Kilosort2 in comparison tracks neurons across drift levels
and for longer periods of time ( 1 hour in our case). To
further mitigate the effect of drift, we used a conservative
threshold, excluding from further analysis units for which
the maximal firing rate was more than twice their minimal
firing rates, when the binned spikes were smoothed with
a Gaussian-window filter with a standard deviation of 500
seconds. This excluded 20% of the units on average.

Removal of ongoing activity dimensions

As shown previously28, approximately half the variance
of visual cortical population activity is unrelated to visual
stimuli, but represents behavior-related fluctuations. This
ongoing activity continues uninterrupted during stimulus
presentations, and overlaps with stimulus responses only
along a single dimension. Because the present study is
purely focused on sensory responses, we projected out the
dimensions corresponding to ongoing activity prior to fur-
ther analysis. The top 32 dimensions of ongoing activity
were found by performing principal component analysis
on mean-subtracted population activity recorded during
a 30-minute period of gray screen stimuli before or af-

ter the image presentations. To remove these dimensions
from stimulus responses, the stimulus-driven activity was
first z-scored (using the mean and variance of each neuron
computed from spontaneous activity), then the projection
onto the 32 top spontaneous dimensions was subtracted
(Extended Data Fig. 5).

Receptive field estimation

We estimated the receptive fields of the neurons, either
using a reduced-rank regression model or using a sim-
ple/complex Gabor model. In both cases, the model was
fit to the mean response of each neuron to half of the 2800
images (Itrain) over the two repeats. The performance of
the model was tested on the mean response of each neuron
to the other half of the 2800 images (Itest).

Reduced-rank receptive field estimation

To estimate a linear receptive field for each neuron,
we used reduced rank regression35, a self-regularizing
method which allowed us to fit all neurons’ responses
to a single repeat of all 2800 image stimuli. Reduced
rank regression predicts high-dimensional outputs from
high-dimensional inputs through a low-dimensional hid-
den "bottleneck" representation. We used it with a 25-
dimensional hidden representation to predict each neu-
ron’s activity from the image pixel vectors, taking the re-
sulting regressor matrices as the linear receptive fields.
These receptive fields explained 11.4±0.7% (SE, n=7
recordings) of the stimulus-related variance on the test
set. These were z-scored prior to display in Fig. 1h and
Extended Data Fig. 3.

Model-based receptive field estimation

To fit classical simple/complex receptive fields to each
cell, we simulated the responses of a convolutional grid
of Gabor filters to the natural images, and fit each neuron
with the the filter response most correlated to its response.

The Gabor cell filtersG(x) were parametrized by a spatial
frequency f , orientation θ, phase ψ, size α and eccentric-
ity β. Defining u and v to be unit vectors pointing parallel
and perpendicular to the orientation θ:

G(x) = cos(2πfx · u+ ψ)e−((x·u)
2+β(x·v)2)/2α2

We constructed 12288 Gabor filters, with centers span-
ning a 9 by 7 grid spaced at 5 pixels, and with param-
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eters f , θ, φ, α, and β ranging from (0.01, 0, 0, 1, 1) to
(0.11, 157, 337, 10, 2.5)

Simple cell responses were simulated by passing the dot
product of the image with the filter through a rectifier
function r(x) = max(0, x). Complex cell responses
were simulated as the root-mean-square response of each
unrectified simple cell filter and the same filter with phase
ψ shifted by 90◦. A neuron’s activity was predicted as a
linear combination of a simple cell and its complex cell
counterpart, with weights estimated by linear regression.
Each neuron was assigned to the filter which best pre-
dicted its responses to the training images ( Extended Data
Fig. 4). This simple/complex Gabor model explained
18.4±0.1% of the stimulus-related variance on the test set.

Sparseness estimation

The sparseness of neuronal responses was estimated using
their responses to 32 natural images. We computed the
tuning curve of each neuron by averaging the responses
over all 96 repeats. The baseline firing rate of each neu-
ron is computed as the mean firing rate during all peri-
ods without visual stimuli (spontaneous activity periods).
The standard deviation of the tuning curve is computed
for each neuron across stimuli. A cell is responsive to a
stimulus if its response to that stimulus is greater than two
standard deviations of its tuning curve added to its base-
line firing.

Decoding accuracy from 2,800 stimuli

To decode the stimulus identity from the neural responses,
we built a simple nearest neighbor decoder based on cor-
relation. The first stimulus presentation was used as train-
ing set while the second presentation was used as test set.
We correlated the population responses for a individual
stimulus in the test set with the population responses from
all stimuli in the training set. The stimulus with the maxi-
mum correlation was then assigned as our prediction. We
defined the decoding accuracy as the fraction of correctly
labelled stimuli.

Unbiased estimation of signal variance and SNR

At the core of our analysis methods is a method for un-
biased estimation of signal variance along any projection
of the population activity vector. We first describe this
method for the simplest case: estimating the stimulus-
related variance of a single neuron. We consider an ex-
periment in which T trials are repeated R times, with the
same stimulus st shown on trial t in each repeat.

Denote the neuron’s response on repeat r of trial t as ft,r.
Define µt to be neuron’s expected response to stimulus
st, i.e. the average over a hypothetical infinite number of
repetitions (µt of course cannot be measured in practice).
We can write the neuron’s response as:

ft,r = µt + εt,r

where εt,r is the trial-to-trial variability, or "noise". We
assume that the noise is independently and identically dis-
tributed across repeats of a single stimulus; this condition
can be approximately achieved in practice by separating
the presentation of the stimulus repeats by tens of min-
utes to avoid temporally correlated noise. However, we
do not assume that the noise has any particular probabil-
ity distribution, and we allow its distribution and variance
to depend on the stimulus.

We would like to estimate the signal variance

Vsig =
1

T

T∑
t=1

(µt − µ.)2

where we employ the usual convention that a dot subscript
represents a sample average over the corresponding index.
However, the variance computed from a single repeat will
also contain an upward bias due to the noise variance. A
simple calculation shows that

E

[∑
t (ft,r − f.,r)2

T

]
= Vsig +

T − 1

T 2

∑
t

Var(εt,r)

The bias introduced by the noise variance can be reduced,
but not eliminated by averaging over repeats. However,
we can obtain an unbiased estimate by instead computing
the covariance across just two repeats. Indeed, because
noise has mean zero and is uncorrelated between repeats,

E
[∑

t (ft,1 − f.,1)(ft,2 − f.,2)

T

]
=

1

T

T∑
t=1

(
(µt − µ.)2 + (µt − µ.)E [εt,2 − ε.,2]

+E [εt,1 − ε.,1] (µt − µ.) + E [(εt,1 − ε.,1)(εt,2 − ε.,2)]
)

= Vsig

If more than two repeats are available, a the following un-
biased estimator can be used:

V̂sig =
1

TR(R− 1)

∑
t,r,r′ 6=r

(ft,r − f.,r)(ft,r′ − f.,r′).
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To compute the tuning-related signal-to-noise ratio (SNR;
Fig. 1f), we computed the ratio between V̂signal and V̂noise

where V̂noise = Vtotal − V̂signal where Vtotal is the total vari-
ance. This signal-to-noise ratio is non-zero when a neuron
has responses to stimuli above its noise baseline.

Estimating principal component variances

The above method can be extended to obtain an estimate
of the principal component variances of the mean popula-
tion responses to a set of stimuli. We now consider a set
of N neurons, and define the rate of neuron n on repeat r
of trial t as fn,t,r. The observed firing rate can be written

fn,t,r = µn,t + εn,t,r

The N × T matrix µ is the "signal", i.e. the average re-
sponse to each stimulus over a hypothetical infinite num-
ber of repeats, and for each repeat r the N × T matrix
εr is the "noise", i.e. the variation from the mean on that
repeat. Again, we assume independence between repeats
but no other conditions on the distribution of εr. For ex-
ample, the noise can be correlated between neurons and
have a non-Gaussian distribution that depends on the pre-
sented stimulus. Note however that it has zero mean by
definition.

We would like to estimate the singular value spectrum of
µ. In principle this could be achieved by averagingµ over
multiple repeats, but this would greatly reduce the number
of images that can be analyzed. Nevertheless, we can esti-
mate its singular value spectrum from just two repeats by
adapting the covariance method of the previous section.

To estimate the singular value spectrum of µ from only
two repeats, we measure the amount of variance in the
second repeat that is captured by successive singular vec-
tors of the first. Specifically, we perform a singular value
decomposition on the first repeat:

f1 = µ+ ε1 =
∑
i

λiuiv
>
i

and measure the amount of second-repeat variance ex-
plained by the ith singular vector using the formula

V̂i = (f>1 ui) · (f>2 ui) = u>i f1f
>
2 ui

To see why this works, we can expand the firing rates into
signal and noise components:

E[V̂i] = E
[
u>i (µ+ ε1)(µ+ ε2)>ui

]
= E

[
u>i µµ

>ui
]

+ E
[
u>i ε1µ

>ui
]

where all terms involving ε2 have zero expectation due to
the statistical independence of ε2 with ε1 and ui, but the
second term remains as ε1 is not independent of ui. In
a limit where the singular vectors ui approach the singu-
lar vectors of µ, the first term will converge to the sin-
gular value spectrum of µ, and the second term will con-
verge to zero (because the variance of ui will also con-
verge to zero). In Supplementary Information section 1,
we show mathematically that this convergence will occur,
under conditions that hold with good approximation in our
recordings.

Estimation of power-law exponent

We computed the linear fit of the eigenspectrum over the
range of 11 to 500 dimensions for all recordings (and
model fits) other than the 32-orientation recordings. For
the 32-orientation recordings, due to noise and the length
of the spectrum, we computed the power-law exponent
from 5 to 30. The linear fit was performed in log-log
space: the range of log(11) to log(500) was regressed onto
the log of the eigenspectrum.
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Extended Data Fig. 2. Comparison with electrophysiology. a, Single trial responses of 100 neurons recorded by two-photon calcium imaging to
50 stimuli. b, Same as (a) for a second presentation of the same stimuli. c, Distribution of tuning SNR for 74,353 neurons recorded by two-photon
calcium imaging. d, Average peri-stimulus time histogram of spikes recorded electrophysiologically in a separate set of experiments. The images
shown were a random subset of 700 images out of the total 2,800. efg Same as (abc) for the electrophysiologically recorded neurons.
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Extended Data Fig. 3. Single neuron receptive fields estimated using reduced-rank regression. 399 randomly chosen neurons’ receptive fields
estimated using reduced-rank regression. The receptive field is z-scored for each neuron.
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Extended Data Fig. 4. Single neuron receptive field estimation using Gabor models. a, An example Gabor fit to a single cell. b-f Histograms
showing the distribution of model parameters across cells. Each color represents the cells of one recording.
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Extended Data Fig. 6. Validating the eigenspectrum estimation method using simulations. a, We simulated the responses of 10,000 neurons
to 2,800 stimuli with a power spectrum decay of α = 1. On top of the responses, we added noise that had the same power-law decay as in
the recordings (α = 0.70). The simulation was performed for four noise levels, which produced stimulus-related variance ranging from 5% to
100%; for comparison we observed 13.9±1.7% in the neural recordings. In all cases, the n−1 eigenspectrum was recovered almost exactly (blue
curves, color-coded by noise level). b, For each level of noise, we simulated 10 different instantiations of additive random noise (with a power-law
decay). The average estimated power-law exponent α of the simulated responses from each noise instantiation at each noise level is plotted. The
error bars are standard deviations across the 10 different noise instantiations. c As an additional test, we simulated neural activity where the signal
eigenspectrum exponent took different values (α = 0.5, 1.0, 1.5). In all cases, the power law exponent was recovered almost exactly.

Eigenspectrum

Extended Data Fig. 7. Power law scaling reflects correlation structure, not single-neuron statistics. a, The signal variance of each neuron’s
responses are sorted in descending order; they approximately follow a power law with a decay exponent of α = 0.59. b, Same plot after z-scoring
the recorded traces to equalize firing rates between cells; the distribution of single-neuron variance has become nearly flat. c PC eigenspectra for
z-scored data. Each colored line represents a different recording. Dashed blue shows the average eigenspectrum from the original, non-z-scored
responses. The fact that the eigenspectrum power-law is unaffected by equalizing firing rates, while the distribution of single cell signal variance is
altered, indicates that the power law arises from correlations between cells rather than from the distribution of firing rates or signal variance across
cells.
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Extended Data Fig. 8. Power law scaling grows more accurate for increasing numbers of neurons and stimuli, for all stimulus ensembles.
a, Eigenspectra estimated from a random subset of the recorded neurons (color-coded by fraction of neurons retained. b, Eigenspectra estimated
from a random subset of stimuli, color-coded by fraction of stimuli retained. c, Correlation coefficient of the spectra plotted in a,b. d, Power law
exponent of the spectra plotted in a,b. Each row corresponds to a different ensemble of visual stimuli.
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Supplementary Information

The supplementary information contains two sections. In section 1, we show mathematically why the singular vectors
estimated from one repeat of all stimuli will be close to those of the noise-free data, in conditions that in our recordings
to good approximation. In section 2, we prove that the eigenspectrum of a differentiable manifold of dimension d
cannot decay slower than a power law of exponent α = 1 + 2/d.

1 The limit of many cells and stimuli

We define three conditions that are sufficient for the estimated singular vectors of the recorded data f to converge to
the singular vectors of the noise-free responses µ. These conditions hold to good approximation in our recordings, as
will be discussed at the end of this section.

The first condition is that we record from a sufficiently large number of neurons. We can formalize this requirement
using the framework of functional data analysis36–38, i.e. the statistical inference of objects that lie in an infinite-
dimensional function space. We consider the recorded neurons to have been sampled from a hypothetical infinite
population of neurons N , according to a probability measure P(n), and idealize the firing pattern of visual cortex on
trial t as a function φt : N → R, such that fn,t = φt(n) represents the activity of the neuron n on trial t. The number
of neurons in visual cortex is of course finite, but the use of an idealized infinite population allows mathematical lim-
iting arguments that hold to good approximation. Such limiting approximations occur in all applications of functional
data analysis. For example, financial timeseries are composed of a finite number of trades, but functional data analysis
provides a way to approximate these very high dimensional discrete data as infinite dimensional continuous functions.

More specifically, we consider the functions φt(n) as lying in the infinite-dimensional Hilbert space L2(N ), equipped
with the inner product 〈φt1 ,φt2〉 =

∫
φt1(n)φt2(n) dP(n). If we now consider a recording of N neurons n1 . . . nN

randomly sampled from the populationN , then the law of large numbers implies that as the population size increases,
the correlation of their activity on trials t1 and t2 converges to the Hilbert space inner product:

1

N

N∑
i=1

fni,t1fni,t2
N→∞−−−−→ 〈φt1 ,φt2〉

The second condition that we require is to have recorded responses to a sufficient number of stimuli. Again, we
formalize this condition by considering the presented stimuli to be drawn at random from a hypothetical infinite
ensemble of possible stimuli S, according to a probability measure P(s). However, the neural activity on trial t does
not only depend on the stimulus st shown on that trial, but also contains a nonsensory ("noise") component:

φt = µst + εt

In the functional data analysis framework, correlations are summarized by operators on Hilbert space (the infinite-
dimensional generalization of matrices). Thus, we can summarize the correlations of mean responses over the ensem-
ble of all possible stimuli by a "signal correlation operator" Cµ = E[µ ⊗ µ] =

∫
µs ⊗ µs dP(s). Similarly we can

summarize the correlations in the sensory-independent response by a "noise correlation operator" Cε = E[ε ⊗ ε] =∫
ε ⊗ ε dP(ε|s) dP(s). Note we have not assumed that the noise is independent of the stimulus s; however, because

E [ε|s] is by definition zero, the noise will be uncorrelated with the signal: E[µ⊗ ε] = 0, and the total correlation will
be the sum of the signal and noise correlations: C = E[φ⊗ φ] = Cµ +Cε.

Now consider a recording of responses on T trials, from stimuli s1 . . . sT sampled at random from S, and denote the
total correlation measured on these trials asC(T ) = 1

T

∑T
t=1 φt⊗φt. If we write the ith eigenvector ofC(T ) as u(T )

i ,
then standard arguments imply that

u
(T )
i

T→∞−−−−→ ui
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where ui denotes the ith eigenvector of the total covariance operator C, and convergence should be understood as
modulo orthogonal transformation of any eigenvectors with a common eigenvalue (see for example Ref.37, theorem
9.1.1).

The third condition we require is that in the limit of a large number of neurons, the noise becomes orthogonal to the
stimulus. Although this condition might be unexpected based on low-dimensional intuition, vectors in high dimen-
sional space are orthogonal with high probability; furthermore, an analysis of visual cortical data collected similarly to
that analyzed here (Ref.28, discussed further below) showed that the spaces spanned by non-visual and visually-evoked
activity overlap in only one dimension. We can therefore assume to good approximation that the subspaces of L2(N )
spanned by mean responses µs and non-visual variability εt are orthogonal. Denoting the ith eigenvectors of Cµ and
Cε as uµ,i and uε,i, respectively, this orthogonality implies thatCµuε,i = Cεuµ,i = 0. Thus, the set of eigenvectors
of the total covariance operatorC = Cµ+Cε is the union of the sets of eigenvectors uµ,i and uε,i, and the empirical
eigenvectors computed from repeat 1 will converge to these for sufficient neurons and stimuli. To determine the results
of our cross-validation method in the limit of a large number of neurons and stimuli, it therefore suffices to consider
the results for the vectors uµ,i and uε,i.

For any fixed vector u, independence of noise ε1 and ε2 on the two repeats implies∫
〈µs + ε1,u〉 〈µs + ε2,u〉 dP(ε1, ε2, s) = 〈u,Cµu〉

For the signal eigenvectors, therefore

V̂i =

∫
〈µs + ε1,uµ,i〉 〈µs + ε2,uµ,i〉 dP(ε1, ε2, s) = 〈uµ,i,Cµuµ,i〉 = Vi

For the noise eigenvectors, we have

V̂i =

∫
〈µs + ε1,uε,i〉 〈µs + ε2,uε,i〉 dP(ε1, ε2, s) = 〈uε,i,Cµuε,i〉 = 0

due to the orthogonality of noise and signal in the limit of large neuronal population size. Thus, we conclude that if
sufficient neurons and stimuli are recorded, our method should reproduce the signal eigenvalue spectrum, but adding
a number of estimated eigenvalues whose expected value is zero, resulting from the noise eigenvectors. Examining
the empirical eigenvalue distributions for our neural recordings, we indeed frequently observe a "cliff drop" around
the 1000th eigenvalue, after which the eigenvalues fall below the power law (Fig. 2c,d). We suggest this reflects the
estimates corresponding to noise eigenvectors. The number of these near-zero estimated eigenvalues is reduced by
preprocessing the data to project out the largest non-visual dimensions estimated from spontaneous activity (Extended
Data Fig. 7).

Finally, we consider how closely our data obeys the three conditions required for accurate estimation of signal eigen-
values. To test the first two conditions (sufficient neurons and stimuli), we performed a subsetting analysis (Fig. 2g-j).
The eigenvalue power law became more accurate the more neurons and stimuli were considered, and the measured
exponent appeared to be close to convergence at the numbers of neurons and stimuli used. The third condition, or-
thogonality of noise and signal spaces, is supported by several observations. Much of what is called neural "noise"
is not really random, but encodes nonvisual variables to do with behavioral and cognitive state, a substantial fraction
of which can be predicted from videographic analysis of mouse behavior. Analysis of data recorded similarly to that
analyzed here28 showed that these nonvisual variables are encoded in dimensions almost entirely orthogonal to those
encoding sensory stimuli, with the overlap occurring primarily in a single dimension corresponding to population-
averaged firing rate. This overlap may have led to underestimation of the first few signal variance components seen in
our experimental results, which do indeed dip below the predicted power law (Fig. 2c,d). Not all response variability
is predictable from videographic behavior monitoring: for example, "independent noise" that is largely uncorrelated
between neurons cannot be predicted videographically. However, in the limit of large numbers of neurons, any sample
of this independent noise will become increasingly orthogonal to any predefined vector (including the signal eigen-
vectors) with probability 1. Finally, another potential violation of the orthogonality condition is multiplicative neural
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variability: the observation that sensory responses on different trials can represent the same template scaled by differ-
ent factors39,40. However, multiplicative variability will simply scale the expected estimated covariance operator, and
will therefore affect neither its eigenvectors nor the estimated signal eigenvalues. We therefore conclude that all three
conditions required for eigenvector convergence hold in our data to good approximation.

Simulations

To further verify these mathematical arguments, we performed simulations whereµ had a 1/nα power-law distribution
of singular values with varying α levels. The simulation was a multiplication of two matrices Λα and Qfix where Λα
is a matrix of all zeros other than the diagonal:

Λα =

 λ1 0
. . .

0 λs

 with λk =
1/kα/2∑s
j=1 1/jα/2

and s = 2800,

and Qfix is

Qfix =

 a11 . . . a1n
...

. . .
...

as1 . . . asn


where aij is a random number drawn from a Gaussian distribution with mean zero and standard deviation 1, and
n = 10000 is the number of neurons. We added noise to the simulations which had a 1/nβ power-law distribution
where β = 0.71 (the noise spectrum in the recordings). The noise was a multiplication of Λβ and Qt, where Qt is a
different instantiation of random Gaussian noise for each trial t. The resulting responses from two trials are defined as

R1 = ΛαQfix + ΛβQ1

R2 = ΛαQfix + ΛβQ2

We then computed the eigenspectrum from these two trials of responses using the cross-validated PCA technique
described above. We found that the estimated spectrum indeed represented an unbiased estimate of the true spectrum
of 1/nα for varying power-law exponents of the eigenspectrum (Extended Data Fig. 6).
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2 Mathematical derivation of power-law eigenspectrum bound

In this section we prove that the eigenspectrum of neuronal responses on a differentiable manifold of dimension d
must decay at least as fast as a power law of exponent α = 1+2/d, which implies that if the variance spectrum decays
slower than this the response space must be fractal.

Manifolds and Minkowski dimension

There are multiple ways to quantify the dimension of a set, which for some sets do not give the same answer. A
manifold is a set that is locally similar to a Euclidean space: in any local region of a d-dimensional manifold, each
point can be uniquely identified by d real-valued coordinates. However, there are two distinct concepts of a manifold,
that place different requirements on the coordinate functions. In a topological manifold, the coordinate functions are
required to be continuous; in a differentiable manifold, they are required to be differentiable. Because differentiable
functions are always continuous, every differentiable manifold is also a topological manifold. However not all topo-
logical manifolds are differentiable, as not all continuous functions are differentiable; indeed, there are functions that
are continuous everywhere but differentiable nowhere41.

A prime example of topological manifolds that are not differentiable are fractals. For example, the coastline of a
country can be considered as a one-dimensional topological manifold, but not a differentiable manifold as it shows
"rough" structure down to very small scales. Non-differentiability of a manifold can often be revealed by its fractal
dimension. Fractal dimensions are measures of dimensionality on arbitrary sets, which take the value d on a d-
dimensional differentiable manifold but can exceed d if the manifold is not differentiable. The west coast of Britain,
for example, has a fractal dimension of approximately 1.25 (Ref.42).

There are several ways of formalizing the notion of fractal dimension (See e.g. Refs.43,44), all based on the idea that
the volume of a d-dimensional object with diameter δ should scale as δd. Here, we will use the upper Minkowski
dimension. Given a subset S of a metric space, we define the the covering number Nδ(S) to be the smallest number
of spheres of diameter δ required to cover A. Intuitively, Nδ(S) should scale as δ−d for a space of dimension d. The
upper Minkowski dimension of S is written as dimMS, and defined to be inf{s : lim supδ→0Nδ(S)δs = 0}. This
means that for any s > dimMS and for any C > 0, there exists an ε > 0 such that for all δ < ε, Nδ(S)δs < C;
furthermore dimMS is the smallest number with this property.

This definition involves a limit as a length scale δ tends to 0. For a real-world object such as a coastline, it clearly
makes no sense to talk about its shape at subatomic scales. Saying a coastline has fractal dimension d really means
that there is a range of length scales over which Nδ(S) scales as δ−d to good approximation; the limit δ → 0 is
an idealization that allows theorems to be proved. In the current study, where we consider the dimension of the set
of neural responses to visual stimuli, we idealize the visual stimuli as coming from a continuous distribution, even
though the monitor has a finite number of possible pixel intensities, and we approximate firing rates as continuous
variables even though neurons fire a discrete number of spikes. Furthermore, we idealize firing rate vectors as lying in
an infinite-dimensional Hilbert space, which allows limiting arguments about the scaling of covariance eigenvalues.

Relating Minkowski dimension to covariance eigenvalues

We now prove our main theorem, which relates the covariance eigenvalues of a random variable supported on a subset
of Hilbert space, to that subset’s upper Minkowski dimension.

Theorem. Let X be a random variable supported on a set S of upper Minkowski dimension d inside a separable
Hilbert space H, with E

[
‖X‖2

]
< ∞. Write the eigenvalues of Cov(X) as λ1 ≥ λ2 ≥ . . .. Then for all s > d,

λn = O(n−1−2/s) as n→∞.

Proof. We assume without loss of generality that E[X] = 0. Fix s > dimMS and C > 0. It follows from the defintion
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of the upper Minkowski dimension that there exists n0 such that for any n ≥ n0, we can cover S with n balls of
diameter at most Cn−1/s. For each point x ∈ S, let b(x) be an integer between 1 and n identifying a ball in this cover
that contains x. Define a mean vector for each ball: µb = E[X|b(X) = b]. We can decompose the variance of X
using an ANOVA decomposition:

E
[
‖X‖2

]
= E

[∥∥X − µb(X)

∥∥2]+ E
[∥∥µb(X)

∥∥2] .
Let P be the projection operator onto the n-dimensional subspace spanned by mean vectors {µb : b = 1 . . . n}.
Then the total variance of X in this subspace is at least as big as the variance between means: E

[
‖PX‖2

]
=

E
[∥∥P (X − µb(X))

∥∥2] + E
[∥∥µb(X)

∥∥2] ≥ E
[∥∥µb(X)

∥∥2] . But the variance in any n-dimensional subspace cannot

exceed the sum of the first n covariance eigenvalues: E
[
‖PX‖2

]
≤
∑n
i=1 λi (e.g. Ref.37, theorem 7.2.8). Thus,

n∑
i=1

λi ≥ E
[∥∥µb(X)

∥∥2] .
Write the sum of all eigenvalues above n as Λn =

∑
i>n λi. Because the eigenvalues must sum to the total variance,∑∞

i=1 λi = E
[
‖X‖2

]
, we have Λn ≤ E

[∥∥X − µb(X)

∥∥2]. Furthermore, because the balls have diameter at most

Cn−1/s, this implies that for all n ≥ n0,
Λn ≤ C2n−2/s (1)

Informally we can see why λn should follow an n−1−2/s power law by differentiating with respect to n. Formally,
we argue from the convexity of Λn. Because the eigenvalues were arranged in non-increasing order, for all m ≤ n we
have Λm = Λn +

∑n
i=m+1 λi ≥ Λn + (n−m)λn. Applying (1) to Λm, we have that Λn + (n−m)λn ≤ C2m−2/s

and since Λn ≥ 0,

λn ≤
C2m−2/s

n−m
This bound holds for all integer m with n0 ≤ m ≤ n. To obtain an upper bound for λn, we observe that fn(m) =
C2m−2/s/(n −m) is a convex function of m (considered as a real number), with a minimum at m0 = 2n/(s + 2),

where it takes the value n−1−2/sC2
(

2
s+2

)−2/s (
s
s+2

)−1
. Although m0 may not be an integer, we can apply the

bound to the next largest integer dm0e. By convexity,

λn ≤ fn(dm0e) ≤ fn(m0 + 1) = n−1−2/sC2

(
2

s+ 2
+ n−1

)−2/s(
s

s+ 2
− n−1

)−1
,

which is O(n−1−2/s) for any s > 0. Thus, for any number s arbitrarily close above dimMS,

λn = O(n−1−2/s)

Corollary. If S ⊂ H is a the image of a set of upper Minkowski dimension d under a Lipschitz map, or if S is a
d-dimensional compact differentiable submanifold of H, then for all s > d, λn ∼ O(n−1−2/s).

Proof. In both cases we must show that S has upper Minkowski dimension at most d. It is a standard result that if
φ is a Lipschitz map, dimM (φ(S)) ≤ dimM (S), and that if φ is bi-Lipschitz, dimM (φ(S)) = dimM (S) (See e.g.
Ref.44).

By a d-dimensional differentiable submanifold of H we mean a set S ⊂ H, where every point is contained in an open
set (in the subspace topology of S) that bijects to an open set of Rd via a chart with a continuous Frechet derivative
that is nonzero everywhere. To show such a set has upper Minkowski dimension d, observe that each chart must
be bi-Lipschitz, and thus each point is contained in an open set of upper Minkowski dimension d. By compactness,
S is therefore covered by finite number of sets of upper Minkowski dimension d, and because dimM (S1 ∪ S2) =
max(dimMS1,dimMS2) (see e.g. Ref.44), dimMS = d.
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A worked example

We now consider a simple example, in which a 1-dimensional circle is continuously mapped into Hilbert space,
with a covariance spectrum of order n−α by construction. This will show the bounds of the previous section cannot be
improved, in the sense that for any d ≥ 1, there is a probability distribution supported on an S ⊂ H with dimM (S) = d
and covariance eigenvalues that decay ∼ n−1−2/d. This example is illustrated in Fig. 4d-f.

Parametrize the circle by an angle θ, uniformly distributed between 0 and 2π. We define a vector X(θ) in an infinite-
dimensional Hilbert space, such that the covariance eigenvalues follow a power law n−α. Specifically, for n ≥ 1:

X(θ)2n−1 =
cosnθ

nα/2

X(θ)2n =
sinnθ

nα/2

Observe that all dimensions of X are uncorrelated; computing their variances shows that λ2n−1 = λ2n = n−α/2.
Also observe that ‖X(θ)‖2 = ζ(α), where ζ(α) =

∑
n≥1 n

−α is the Riemann zeta function. Thus ‖X(θ)‖ < ∞

if α > 1. Furthermore note that
∥∥∥dkX(θ)

dθk

∥∥∥2 =
∑
n≥1 n

−(α−2k). Thus S is a topological manifold for α > 1, a
differentiable manifold for α > 3, and k-times differentiable manifold for α > 1 + 2k. However for no value of α is
S an infinitely-differentiable manifold.

We now compute dimM (S). First we compute the distance between two points in S. By circular symmetry we may
without loss of generality set one of them to 0. We obtain

D(θ)2 = ‖X(θ)−X(0)‖2 =
∑
n≥1

(cosnθ − 1)2 + sin2 nθ

nα

=
∑
n≥1

2− 2 cosnθ

nα

= 2ζ(α)− Liα(eiθ)− Liα(e−iθ)

where Liα(z) =
∑
n≥1 z

nn−α is the polylogarithm function.

To compute dimM (S) we consider how D(θ)2 depends on θ as θ → 0. For non-integer α, the polylogarithm has a
series expansion45:

Liα(ex) = Γ(1− α)(−x)α−1 +
∑
k≥0

ζ(α− k)

k!
xk.

Substituting this in, we obtain

D(θ)2 = −Γ(1− α)θα−1(iα−1 + (−i)α−1) + ζ(α− 2)θ2 +O(θ4)

= −2Γ(1− α)θα−1 cos((α− 1)π/2) + ζ(α− 2)θ2 +O(θ4)

For any value of θ we can cover S with 2π/θ balls no smaller than D(θ). Thus, we have upper Minkowski dimension
of d if D(θ) ∼ θ1/d as θ → 0. For α > 3, the dominant term as θ → 0 is ζ(α − 2)θ2, so D(θ) ∼ θ, and we have
dimM (S) = 1. However, for 1 < α < 3, the first term of order θα−1 dominates, so dimM (S) = 2

α−1 , which is
greater than 1 indicating a fractal structure. At the critical value of α = 3, we can use a Laurent expansion of the
the ζ and Γ functions to obtain ∆(θ) ∼ θ2 log 1

θ . Thus for α = 3, the dimension is still 1, even though X(θ) is not
differentiable.

Recall that our theorem predicts that for dimension d, we must have α ≥ 1 + 2/d. This is consistent with the above
calculations: d = 1 when α ≥ 3, and d = 2/(α − 1) when 1 < α < 3. Thus the bound is saturated for 1 < α ≤ 3,
but loose for α > 3.
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