
 1 

Regulatory mechanism predates the evolution of ant-like swarm intelligence 

in simulated robots 

Ryusuke Fujisawa1*§, Genki Ichinose2§, Shigeto Dobata3*§ 
 
1 Department of Mechanical Engineering, Hachinohe Institute of Technology, 88-1, Ohbiraki, Myo, Hachinohe, Aomori 031-
8501, Japan 
2 Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan 
3 Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, 
Kyoto 606-8502, Japan 

* Correspondence to Ryusuke Fujisawa (swarm.ant@gmail.com), Shigeto Dobata (dobata@kais.kyoto-
u.ac.jp) 
§ All authors contributed equally to this work 
 
Key words: Preadaptation, Self-organization, Social insects, Stochastic tunneling, Superorganism 
 

Abstract 

The evolution of complexity is one of the prime features of life on Earth. Although well accepted as the 
product of adaptation, the dynamics underlying the evolutionary build-up of complex adaptive systems 
remains poorly resolved. Using simulated robot swarms that exhibit ant-like group foraging with trail 
pheromones, we show that their swarm intelligence paradoxically involves regulatory behavior that arises 
in advance. We focused on a “traffic rule” on their foraging trail as a regulatory trait. We allowed the 
simulated robot swarms to evolve pheromone responsiveness and behaviors simultaneously. In most cases, 
the traffic rule, initially arising as selectively neutral component behaviors, assisted the group foraging 
system to bypass a fitness valley caused by overcrowding on the trail. Our study reveals a hitherto 
underappreciated role of regulatory mechanisms in the origin of swarm intelligence, as well as highlights 
the importance of embodiment in the study of their evolution.  
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The evolution of complexity is one of the most 
striking characteristics of life throughout its 
hierarchy (1, 2). The resulting complexity often 
entails adaptation to the environment, known as 
complex adaptive systems (3–5). At the 
organismal level, theoretical works based on 
Fisher’s geometric model of adaptation predict 
that a population of organisms climbing a hill in 
a fitness landscape evolves a complex polygenic 
trait based on a few major genes and many minor 
genes (6–9). Typically, the advent of major genes 
with large phenotypic effects is followed by the 
subsequent evolution of minor genes with small 
phenotypic effects. 

Complex adaptive systems beyond the 
single organismal level, such as multicellularity 
and social organization, show similar multi-
component regulations: The systems seem to 
take a layered form in which their core 
components, often considered as evolutionary 
innovation and hence with large phenotypic 
effects, are buffered by additional, regulatory 
components with relatively small phenotypic 
effects (10). In the study of self-organization in 
biological systems, such regulation has been 
referred to as “parameter tuning” (10, 11). Self-
organization itself does not guarantee adaptation 
(10, 12), and previous studies have shown how 
fine-tuning of endogenous parameters and 
supplementation of accessory regulation of the 
core self-organizing systems can lead to variable 
system outputs (10, 13–16) and make the 
systems adapt to species-specific (17–19) or 
within-species changing environments (19, 20). 
The ability of such adaptive modifications should 
be attributed to the evolution of regulatory traits 
that regulate core components. Therefore, for a 
deeper understanding of the adaptability of 
systems of biological organization as complex 
adaptive systems, it is necessary to decipher the 
multi-trait evolutionary dynamics leading to 
extant systems (21). 

In this study, we address this issue by 
considering social insect colonies as a model 
system. Social insects stand at one of the 
pinnacles of biological complexity. Their 
colonies are characterized by highly coordinated 
systems, often likened to swarm intelligence, in 
which microscopic interactions of nestmate 
individuals collectively produce diverse 
macroscopic phenomena (10, 22–24). A typical 
example is found in mass foraging by ants with 
trail pheromones (25, 26). The core component 
of this system is indirect pheromone 
communication among nestmates according to 
the following algorithm: Once a worker finds 
food, she puts a chemical marker on the ground 

while carrying the food to her nest; nestmate 
workers are recruited to the marker and follow 
the trail toward the food, and lay the same 
marker to reinforce the trail. The system is 
strengthened by the balance between positive 
(trail reinforcement) and negative (trail decay) 
feedbacks depending on changing food 
availability. The algorithm of worker’s behavior 
has been applied to solve computational 
problems such as the traveling salesman problem, 
known as Ant Colony Optimization (27).  

We took a constructive approach with both 
robotic and computational systems that mimic 
this foraging system, focusing on its logistic 
aspects (28, 29). These artificial systems can 
provide not only controlled experiments that 
would be impossible in real organisms, but also 
greater realism through embodiment, which is 
often abstracted in analytical and purely 
simulational studies (30–33). Such contributions 
include the demonstration of evolutionary 
emergence of cooperative behaviors (34–38) and 
rigorous testing of kin selection theory (39). 
During the development of the real robotic 
system, we faced a problem of how to deal with 
overcrowding on the trail. Because the use of the 
trail inevitably puts robots (as it does ants) into 
traffic-jam-like overcrowding, an accessory 
regulation that supports efficient pheromone 
communication is required in both systems. As a 
solution to the robotic overcrowding, we 
heuristically introduced a set of collision-
processing behaviors in the robots (29, 40). 
These behaviors constitute an overall “traffic 
rule”, such that inbound (food-to-nest) robots are 
always given priority over outbound (nest-to-
food) robots. Interestingly, similar collision-
processing behavioral rules have been reported in 
some ants (41; see Discussion). Although the 
ants and our robots are obviously different in 
many respects, the two systems share the same 
property of the layered complexity: the core 
component (pheromone-mediated group 
foraging) is supported by regulatory traits (traffic 
rule). Therefore, we asked how such complex 
adaptive systems, supplemented with accessory 
regulations, were achieved through adaptive 
evolution. In accordance with the conventional 
notions of polygenic traits, it seemed reasonable 
to assume that such regulations evolve after the 
system’s core component has been established, 
simply because the former rely on the latter for 
their functions. 

Using a simulated system that precisely 
modeled the dynamic properties of real robots 
(29), we first confirmed that the algorithm of 
pheromone communication alone was not 
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sufficient to establish effective recruitment due 
to the overcrowding on the pheromone trail. The 
additional traffic rule was required to solve this 
problem by keeping the robots from being stuck 
on the trail. Next, we performed evolutionary 
population genetic simulations that allowed for 
mutation and selection to occur simultaneously 
in pheromone responsiveness and collision-
processing behaviors of the robots. In most 
simulation runs, the collision-processing 
behaviors did not arise as a consequence of 
pheromone communication, but arose in advance, 
taking a form of selectively neutral behaviors in 
the absence of swarm intelligence. The behaviors 
then assisted the pheromone responsiveness trait 
to arise and become fixed in the population. 
Finally, we confirmed the above results with a 
population genetic analysis hybridized with 
simulated distributions of fitness values. 

Results 

Our robots searched for the location of “food” in 
a rectangular field (900 mm × 9000 mm) 
surrounded by walls and enclosing their “nest-
site” (Fig. 1a). The field setup was originally 
intended to facilitate observation of robots on the 
trail, but it might also be applied to the traffic 
flow inside ant nests, where numerous ants have 
to manage overcrowding along their underground 
galleries. The algorithm for foraging behaviors 

(29) is described as state transitions among three 
behaviors: S1, searching; S2, carrying food 
(inbound) and recruiting (laying scent); and S3, 
being recruited (outbound, following scent). 
State S3 is functional only in the presence of the 
ability to detect pheromones (Fig. 1b). As an 
accessory regulation, we implemented a 
collision-processing behavior: When two robots 
collide, both take one of two reactions: “Stay” 
(stop moving for a given time) or “Leave” (move 
backward by a given distance). We assumed that 
the robots’ reactions depend on their state (for 
different assumptions, see Discussion). When 
colliding robots with different states take 
different reactions, they can be regarded as 
obeying a traffic rule, i.e., the robot with the 
reaction “Leave” gives priority to the robot with 
the reaction “Stay” (Fig. 1c). To allow for the 
robotic swarms to evolve, we made a simple 
assumption that each robot has its own haploid 
genome consisting of four loci, b1, b2, b3, and p, 
each of which has a binary allelic state (0 or 1). 
The resulting multilocus genotype is described as 
{b1,b2,b3;p}. The locus bi (i ∈ {1, 2, 3}) defines 
the collision-processing behavior (i.e., Stay = 0, 
Leave = 1) taken by the robot with state Si. That 
is, if a robot is currently in state Si, then its 
collision behavior is bi. The locus p defines the 
ability to detect pheromone. 

 

 
 
Figure 1. Experimental setup. (a) The foraging arena used in the simulations. (b) The behavioral algorithm for 
individual robots with their state transitions (S1–S3). (c) The collision-processing behaviors. 
 

We measured biological fitness of simulated 
clonal swarms resulting from their multilocus 
genotypes ({0,0,0;0} – {1,1,1;1}, 24 = 16 in 

total) to map a multidimensional fitness 
landscape. The total number of times the robots 
go back to their nest from the food was 

RobotNest Fooda

b c

Find food item Find scent trail
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considered as a measure of swarm fitness. The 
ability to detect pheromone (p = 1) alone did not 
result in higher fitness, although recruitment (S3) 
occurred (illustrated as the presence of orange 
bars in Fig. 2). The reaction “Leave” at locus b1 
contributed to the fitness increase regardless of 
the presence of pheromone responsiveness. 
Interestingly, particular sets of behavioral 
genotypes together with the pheromone 
responsiveness remarkably improved the swarm 
fitness, which was achieved through successful 
recruitment. Among the 16 multilocus genotypes, 
the genotype {1,0,1;1} showed the highest 

swarm fitness, in which a traffic rule was 
established with outbound robots (b3 = 1) giving 
priority to inbound robots (b2 = 0) on the 
pheromone trail. This result was consistent with 
our previous real robot experiment (40). To 
confirm that the traffic rule helped the swarms to 
avoid overcrowding, we counted the number of 
collisions during each simulation run. The traffic 
rule on the pheromone trail (b2 = 0, b3 = 1), 
together with b1 = 1, strengthened the pheromone 
communication by reducing the occurrence of 
collision (Supp. Fig. 1, red arrow). 

 

 
 
Figure 2. Measures of group foraging performance. Total number of foraging bouts per swarm as a measure of 
swarm fitness. Bars indicate that the food was found by robots in state S1 (white, searching independently) or S3 
(orange, being recruited). Error bars show SD (n = 100 000 trials each). 
 

We next conducted population genetic 
simulations to trace an evolutionary trajectory of 
the robotic population that initially had the 
genotype {0,0,0;0}, that is, without pheromone 
communication and priority-giving behaviors. 
For simplicity, all robots in a single swarm were 
assumed to have the same genotype, and genetic 
variation was permitted only among swarms. In 
terms of sociobiology, only a single robot in the 
swarm clonally (with mutations) produces 
foundress robots of the next generation 
depending on the swarm fitness, each of which 
then clonally reproduces (without mutations) to 
form a new swarm. Consequently, the average 
relatedness of nestmates within a swarm is 
strictly 1. 

Throughout the simulation replicates, as 
expected, the populations eventually became 
fixed at the genotype {1,0,1;1}; that is, the 
swarms successfully evolved the pheromone-
mediated swarm intelligence together with the 
traffic rule (Supp. Movie 1). Then we inspected 
the detail of each evolutionary trajectory. The 
population of swarms first became dominated 
quickly (frequency ≥ 0.985, fixed in most cases, 
Supp. Table 1) by the genotype {1,0,0;0}, in 
which the reaction “Leave” by randomly 
searching robots (b1 = 1) was not related to 
pheromone communication (Supp. Movie 1). 
Starting from the population dominated by the 
genotype {1,0,0;0} and assuming the shortest 
path, the robot swarms had to experience 0→1 
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mutations at both loci b3 and p before fixation of 
the genotype {1,0,1;1}. Surprisingly, in most 
(44/50) of the simulated genealogies leading to 
the final genotype {1,0,1;1}, the 0→1 mutations 
occurred first at the behavior locus b3, followed 
by the pheromone-responsiveness locus p (Fig. 
3a). The intermediate genotype {1,0,1;0} never 
became fixed; it served as the source of the final 
genotype when it had an intermediate (0.005–
0.685) frequency in the population (Fig. 3b, Supp. 
Table 1). Among the rest of the simulated 
genealogies, five had the 0→1 mutation 
occurring first at locus p and then at locus b3. 

The intermediate genotype {1,0,0;1} remained at 
a low frequency (0.01–0.02). One genealogy did 
not take the shortest path from {1,0,0;0} to 
{1,0,1;1}; its sequence was {1,0,0;0}→
{1,1,0;0}→{1,1,1;0}→{1,1,1;1}→{1,0,1;1}. 
Mutations at the behavior loci were observed 
both before and after the 0→1 mutation at locus 
p. The irregularity can be explained by an 
additional 0→1 mutation at locus b2 before the 
0→1 mutation at locus b3 while the dominant 
pattern of evolutionary precedence of b3 = 1 over 
p = 1 remained intact. 

 

 
 
Figure 3. Simulated evolutionary dynamics. (a) In most cases, the population of the ancestral genotype {0,0,0;0} 
(dark gray) was quickly taken over by the genotype {1,0,0;0} (light gray); the genotype {1,0,1;0} (yellow) as well as 
other genotypes then arose but remained at low frequencies; and the final genotype {1,0,1;1} (red) arose from 
{1,0,1;0} and quickly became fixed. The whole population showed a state transition from all-{1,0,0;0} to all-
{1,0,1;1}. (b) Selected genealogies of the genotype {1,0,1;0} during generations 192 and 201 shown in a. Circles 
denote swarms, with colors as in a. This includes the genealogy leading to the final genotype {1,0,1;1}. The 
regulatory trait b3 = 1 predated the evolution of pheromone responsiveness trait p = 1 along the focal genealogy. 

 
The observed bias toward evolutionary 

precedence of the regulatory trait over the core 
pheromone-responsiveness trait can be explained 
using the fitness landscape as follows (Fig. 4a): 
One of the two possible intermediate genotypes, 
{1,0,0;1}, actually had lower swarm fitness than 
the genotype {1,0,0;0} because of overcrowding 
on the pheromone trail (Supp. Movie 1), whereas 
the other intermediate {1,0,1;0} gave the same 
fitness in principle because locus b3 gives a 
selectively neutral trait by definition, as long as 
the pheromone-responsiveness is absent (i.e., p = 
0) (Supp. Movie 1). Consequently, the genotype 
{1,0,1;0} is more likely to arise first. 

The evolutionary process with selectively 
neutral or even inferior intermediates is known as 
stochastic tunneling (42, see Discussion). To 
evaluate how common the observed evolutionary 
precedence of the regulatory trait (45/50; note 
that we tentatively included the irregular 
genealogy described above) is, we applied the 

population genetic formulation of stochastic 
tunneling (43) that analytically yields the point 
estimate of waiting time to fixation of the 
genotype {1,0,1;1}. Starting from the population 
fixed at the genotype {1,0,0;0}, the evolving 
population takes one of the two possible shortest 
evolutionary paths—that is, the path with the 
intermediate genotype {1,0,1;0} (b3 = 1 first) and 
that with the alternative intermediate {1,0,0;1} (p 
= 1 first)—and the realized path could be 
predicted as the one with the shorter waiting time 
by comparing respective estimates. Among the 
parameters of the analytical model were the 
relative fitness (compared to the original 
genotype {1,0,0;0}) of the neutral intermediate 
{1,0,1;0}, the inferior intermediate {1,0,0;1}, 
and the final genotype {1,0,1;1}, which had to be 
derived empirically from the evolutionary 
simulations. Therefore, we incorporated 
resampled distributions of relative mean swarm 
fitness (Fig. 4b) into the analytical model (see 
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Methods and Supp. Note for details). 
We generated 1000 sets of 50 evolutionary 

outcomes that the populations were expected to 
show. The 50 outcomes were typically 
dominated by those with the intermediate 
genotype {1,0,1;0}, and their frequency 
distribution (calculated over the 1000 sets) 
included the observed frequency (45/50) at the 
borderline of the 95% interval between the 2.5th 
(34) and 97.5th (45) percentiles (Supp. Fig. 2). 
The rare outcomes with the inferior intermediate 
(i.e., the precedence of pheromone 
responsiveness) were explained by the 
stochasticity in the swarm fitness that sometimes 

resulted in the higher mean relative swarm 
fitness of this genotype than of the neutral 
intermediate (Fig. 4b). Moreover, the waiting 
time to fixation averaged over the 50 runs 
(157.68 generations) again fell within the 95% 
interval between the 2.5th (145.54) and 97.5th 
(354.76) percentiles of the distribution of the 
mean waiting time (Supp. Fig. 3). These analyses 
support the view that the phenomenon observed 
in our evolutionary simulations is well captured 
quantitatively by the theory of stochastic 
tunneling, and that the evolution of swarm 
intelligence in our robotic system was facilitated 
by this evolutionary process. 

 

 
 
Figure 4. (a) Schematic diagram of fitness landscape involving the core (p) and regulatory (b3) traits of the swarm 
intelligence. Starting from the genotype {1,0,0;0} (light gray), the swarm fitness of the genotype {1,0,0;1} (blue) is 
generally lower than that of the genotype {1,0,1;0} (yellow), making the latter more likely to arise first (depicted by 
the thicker arrow) and to serve as the precursor of the final genotype {1,0,1;1} (red). Height of the bars 
corresponds to swarm fitness in Fig. 2. (b) Resampled distribution of relative swarm fitness of the neutral 
intermediate {1,0,1;0} (yellow), inferior intermediate {1,0,0;1} (blue), and final {1,0,1;0} (red) genotypes, compared 
with the original genotype {1,0,0;0} (- - -). The distributions were incorporated into the mathematical analysis. 

 
 

Discussion 

One of the long-standing debates in evolutionary 
biology ever since Charles Darwin is based on 
the observation that the complexity of life we can 
find today seems too sophisticated to be achieved 
through gradual evolution (44, 45). Advocates of 
saltationism or macromutationism claim that 
gradualism cannot account for the incipient 
stages of complex adaptive traits because the 
intermediate forms must be maladaptive (44). 
The debate has consequently motivated further 
work on the genetic and developmental basis of 
organismal complexity, leading to the rise of 
present-day evolutionary developmental biology 
(reviewed in e.g., Refs. 46, 47). The current 
consensus is that both views are correct 

depending on systems, and that the real 
evolutionary processes are fairly complex (48). 
These contrasting views on the origin of 
complexity can also be applied to the evolution 
of social systems, which motivated our present 
study. In our robotic swarms, the intermediate 
maladaptive stage corresponds to the pheromone-
based recruitment without the traffic rule. By 
taking a standard population genetic approach, 
we demonstrated that the resulting fitness valley 
can be dynamically bypassed through a 
selectively neutral alternative, that is, cryptic 
priority-giving behavior without pheromone-
based recruitment. Here, the regulatory 
mechanism was not an evolutionary follower of 
the core component; instead, it preceded the 
establishment of the core component and assisted 
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it. The evolutionary precedence of some 
regulatory mechanisms originated as selectively 
neutral traits (neutral from their regulatory 
functions) might be a general component feature 
of complex adaptive systems, as long as the 
systems’ core components alone are maladaptive 
and the accessory regulations rely for their 
functions on the core components. It does not 
rule out the possibility that the regulatory 
mechanisms can arise after the establishment of 
the core components. The resulting layers of 
accessory regulations should contribute to the 
complexity of life. 

Exaptive origins of regulatory mechanisms. The 
role of the cryptic regulatory mechanisms can be 
understood by employing the structuralist 
concept of exaptation (49), a formal definition of 
so-called preadaptation. Exaptation refers to the 
evolution of traits that had originated by the 
selective advantage other than their current use 
(pre-aptation) or that had originally been non-
adaptive (non-aptation or spandrel); both were 
subsequently co-opted into current adaptive use. 
The regulatory behavior of our system may 
provide an example of non-aptation because, by 
definition, the trait b3 = 1 was selectively neutral 
at its origin. It should be noted here that we can 
also consider different genetic coding of the three 
behavioral traits (b1–b3). On the basis of the 
biologically reasonable assumption that the trait 
b3 = 1 (or b2 = b3 = 1) is a pleiotropic byproduct 
of b1 = 1, again we can expect exaptive 
precedence (i.e., spandrel or a neutral byproduct 
of previous adaptation in other contexts, 50) of 
the regulatory mechanism in this foraging system, 
otherwise the fitness valley would arise owing to 
overcrowding (Supp. Note). 

In our simulations, the bypassing of the 
fitness valley was driven by the evolutionary 
process called stochastic tunneling. This was 
originally proposed as a mathematical 
description of cancer initiation (42, 51), and the 
same mechanism was independently found in an 
analysis of the evolution of cis-regulatory 
elements (52). Taking cancer initiation as an 
example, its somatic evolution is characterized 
by a two-step process leading to biallelic loss-of-
function mutations at the tumor suppressor gene. 
The first mutation at a single allele is either 
selectively neutral or disadvantageous (through 
chromosomal instability) for cell proliferation, 
and the second mutation at the counterpart allele 
triggers increased proliferation as tumor cells. 
Through stochastic tunneling, the population of 
cells can shift from the all-intact state to the all-
tumor state without experiencing the all-
intermediate state. The situation is very similar to 

our model, except that the genes involved are 
more than one in our clonal robots. The 
population of robot swarms favored the neutral 
intermediate over the disadvantageous alternative, 
which was easily explained by the comparison of 
waiting time estimates between the two tunneling 
routes. The role of stochastic tunneling in the 
origins of more complex systems, especially 
those with recombination (21), epistasis (53–55), 
or indirect genetic effects (54, 55), deserves 
further study. 

A potential concern about applying our 
rather retrospective approach (i.e., the genetic 
encoding was made after the best set of 
behaviors thus far had been known heuristically, 
see Introduction) to real complex adaptive 
systems would be that biological systems cannot 
tell a priori what should serve as regulatory 
mechanisms before the emergence of a core 
system. Nevertheless, we can predict that 
complex adaptive systems should be found more 
frequently in systems allowing more capacity for 
neutral genetic variations as a source of 
exaptation. The role of cryptic genetic variations 
in the emergence of evolutionary novelty is well 
acknowledged in current evolutionary biology 
(56). Such cryptic variations would help a 
primitive system to avoid crossing the fitness 
valley by providing selectively neutral 
alternatives. In the context of social 
organizations, a previous theoretical study 
predicted that genes with social effects should 
harbor more variations within a population 
owing to weaker selection pressure on indirect 
genetic effects (57). Meanwhile, computational 
studies that focused on the architecture of 
biological systems, such as genetic and neural 
networks (58–60) and secondary structures of 
RNA molecules (61), have acknowledged the 
importance of neutral variations as evolutionary 
capacitors. By highlighting the importance of 
exaptation and neutral genetic variations for 
complex adaptive systems, our study bridges an 
apparent gap between computational and macro-
biological studies on the evolution of biological 
self-organization. Phylogenetic comparative 
methods might help to test our prediction 
empirically by reconstructing multi-trait 
evolutionary processes that lead to extant 
complex adaptive systems. 

Convergence of traffic rules between ants and 
robots. Our simulated robots favored the traffic 
rule under which inbound robots had priority 
over outbound robots on the trail. In real social 
insects, previous studies reported traffic-rule-like 
behaviors shown by ant foragers along their 
foraging trails (reviewed in Ref. 41). Examples 
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include three-lane bidirectional traffic flow (62), 
alternating clusters of inbound and outbound ants 
facing a traffic bottleneck (63), inbound leaf-
laden ants followed by unladen ants (64), and 
alternative route selection through inbound–
outbound behavioral interactions at the junction 
(65). In those examples, macroscopic traffic flow 
emerges from microscopic behavioral rules 
where inbound ants are given priority over less-
loaded outbound ants. Using embodied robots 
supplied with virtual food, our study 
demonstrated that such traffic rules do have an 
adaptive significance for efficient logistics, in 
addition to their mechanism (proximate cause) in 
which real inbound ants have less 
maneuverability due to food load (41). 

To obey the traffic rule, the trail-following 
robots (i.e., with state S3) need to put the priority-
giving behavior temporarily above the core 
pheromone responsiveness. This temporal 
irregularity becomes evident when the reaction 
“Leave” often moves the robot away from the 
pheromone trail (Supp. Movie 1). The priority-
giving behavior is released after the direct 
experience of collision with inbound robots, 
while the pheromone responsiveness can be 
regarded as following socially available 
information of food location. Therefore, the 
adaptive use of the traffic rule might be a 
situation whereby the robots flexibly prioritize 
direct social information (collision) over indirect 
social information (pheromone trail) depending 
on their internal state during behavioral decision-
making. Recent studies have revealed how ants 
make decisions under such conflicting 
information (reviewed in Ref. 66). The use of 
multiple information sources and their 
integration during collective decision-making 
would be of particular interest in future study. 

An advantage of taking constructive 
approaches with embodied agents is that we can 
incorporate physical consequences derived from 
properties of the agents and their abiotic and 
biotic interactions. Some of them might manifest 
as physical constraints hindering adaptation such 
as the overcrowding we observed, but a more 
positive aspect would be greater, often 
unpredictable, degrees of freedom (or 
evolvability) supplied to the dynamic systems. 
Previous studies of experimental evolution with 
swarm robots have revealed various aspects of 
such consequences, including coordinated 
behaviors (e.g., 67) and self-organized division 
of labor (68) (see also Introduction). The 
evolutionary convergence of traffic rules 
between ants and our robots, together with those 
earlier studies, clearly indicates that a 

collaboration between macro-biology and swarm 
robotics provides a promising avenue to 
elucidate the evolutionary and developmental 
processes leading to the complexity of social life, 
as well as a hopeful engineering application to 
solve our real-world problems. 

Methods 

The basic algorithm for the pheromone-mediated 
group foraging behavior (29) has been well 
validated by comparison of the dynamic 
properties between simulated and real robot 
systems (28, 29, 40). In brief, once a searching 
robot (state S1) finds food, it starts to secrete a 
chemical compound on the ground while 
returning to its nest with a virtual food item (state 
S2). If the robots can detect the resulting 
chemical trail as a trail pheromone, they then 
follow the trail toward the food (state S3, 
regarded as successful recruitment) (Fig. 1b). 
The priority-giving behavior is described in the 
main text. The real robot system, named 
ARGOS-02 (“Ant”elligent Robot Group 
Operating System, note that our system is 
different from another swarm robot system 
named ARGoS, 69), used an aqueous solution of 
ethanol as the trail pheromone. ARGOS-02 is a 
modified version of the original ARGOS-01 (28), 
using two sets (instead of the original one) of 
micro-pumps and tanks to secrete the pheromone 
at arbitrary concentrations. 

Experimental setup. A simulated swarm 
consisted of n = 30 robots, which were provided 
with a rectangular field of 900 mm × 9000 mm 
surrounded by walls, together with a food source 
(ø 300 mm) and a nest (ø 1000 mm) on opposite 
ends (Fig. 1a). The food emitted light, which a 
robot could detect within a radius of 600 mm 
from its center. The nest location was made 
available to all robots by provision of an infrared 
light directly above it. The initial positions of the 
robots were set randomly on the field, and each 
swarm was allowed to forage for 12 000 time 
steps (20 min for the real robots). 

Evolutionary simulations. The evolving 
population consisted of N = 200 non-interacting 
swarms (i.e., no resource competition among 
swarms). We assumed a Wright–Fisher 
population with a constant size. The genetic 
coding of the traits is described in the main text. 
As a prior state to the pheromone-related trait p, 
we implicitly assumed that the inbound robots 
had already secreted some chemical substance on 
the ground, and that pheromone communication 
was achieved upon acquisition of the detection 
ability as a cue (i.e., 0→1 mutation at p). This 
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assumption is based on the “sender–precursor 
model” of signal evolution (70). A swarm was 
selected as a clonal parent for the next 
generation’s swarm in proportion to its fitness, so 
that a swarm with the better foraging 
performance had the greater chance of being 
selected as a parent swarm. In the next 
generation, bi and p of all genomes in an 
offspring swarm mutated to the other value (0→1 
or 1→0) with a probability µ = 0.001. The low 
value of mutation rate, compared to conventional 
evolutionary simulation studies used in computer 
sciences, was intended to approximate to real 
biological systems (i.e., it should take relatively 
long generations for a polygenic system to reach 
the optimal state). On the basis of the preliminary 
observations that the genotype {1,0,1;1} is 
uninvadable by the other genotypes, each 
simulation run continued until the population 
became fixed at that genotype. Genotypes of the 
parent swarms of the genotype {1,0,1;1} that 
became fixed were determined by direct 
assessment of the genealogies. 

Analytical solutions of time to fixation. We 
considered the time until the genotype became 
fixed {1,0,1;1}, starting from the population of 
the genotype {1,0,0;0}. The time to fixation can 
be obtained analytically by using population 
genetic formulations (43). Four kinds of 
genotypes were considered: the original genotype 
{1,0,0;0}, the two intermediates {1,0,1;0} 
(neutral) and {1,0,0;1} (inferior), and the final 
genotype {1,0,1;1}. 

We calculated the time (generations) until 
the final genotype became fixed, starting from 
the population with the original genotype. The 
original-to-intermediate transition and the 
intermediate-to-final transition at a swarm occur 
with the same probability µ, which corresponds 
to the mutation rate of a single locus. We 
obtained distributions of the relative fitness 
(compared to the original) of the neutral 

intermediate (denoted by r0), the inferior 
intermediate (r–), and the final genotype (a) 
using data from our evolutionary simulations, as 
described in Supp. Note. 

The probability of tunneling can be given 
by T = Nμ[1 – U(rx)](1 – v1), where N is the 
number of swarms, U(rx) is the probability of 
fixation of the intermediate genotype with 
relative swarm fitness rx (x ∈ {0, –}), and v1 is 
the probability of non-appearance or extinction 
of the final genotype lineage arising from a 
single swarm of the intermediate genotype with 
relative swarm fitness rx (43). The expected time 
until the final genotype is given by: 
 

𝐸[𝑡] =
்

(்ାௌభ)
మ
+

ௌభ(ௌభାௌమା்)

ௌమ(்ାௌభ)
మ
  

 
where 𝑆ଵ  and 𝑆ଶ  describe the probabilities that 
primary and secondary mutations, respectively, 
become fixed. In the equation, the first term 
represents the contribution from tunneling paths 
(original → final) and the second term the 
contribution from the sequential paths (original 
→ intermediate → final) (43). Given that a 
shorter time results in a higher probability of 
realization, the evolutionary paths are expected 
to go through the intermediate genotype with the 
highest relative fitness when there are more than 
one candidate tunneling paths. See Supp. Note 
for details. 

The main codes of the simulations were 
implemented in C and R. To shorten the 
calculation time, we used parallel computation 
realized by OpenMP. The evolution of swarms 
was managed by Python programs. For the 
analytical calculation, we used Mathematica, 
especially for large matrix calculations. 

Code availability. The source code is 
available at https://github.com/SWARM-
ARGOS/.  
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