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Abstract 

Background: The accuracy of microbial community surveys based on marker-gene and 

metagenomic sequencing (MGS) suffers from the presence of contaminants — DNA sequences 

not truly present in the sample. Contaminants come from various sources, including reagents. 

Appropriate laboratory practices can reduce contamination, but do not eliminate it. Here we 

introduce decontam (https://github.com/benjjneb/decontam), an open-source R package that 

implements a statistical classification procedure that identifies contaminants in MGS data based 

on two widely reproduced patterns: contaminants appear at higher frequencies in low-

concentration samples, and are often found in negative controls. Results: decontam classified 

amplicon sequence variants (ASVs) in a human oral dataset consistently with prior microscopic 

observations of the microbial taxa inhabiting that environment and previous reports of 

contaminant taxa. In metagenomics and marker-gene measurements of a dilution series, 

decontam substantially reduced technical variation arising from different sequencing protocols. 

The application of decontam to two recently published datasets corroborated and extended their 

conclusions that little evidence existed for an indigenous placenta microbiome, and that some 

low-frequency taxa seemingly associated with preterm birth were contaminants. Conclusions: 

decontam improves the quality of metagenomic and marker-gene sequencing by identifying and 

removing contaminant DNA sequences. decontam integrates easily with existing MGS 

workflows, and allows researchers to generate more accurate profiles of microbial communities 

at little to no additional cost. 
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Background 

High-throughput sequencing of DNA from environmental samples is a powerful tool for 

investigating microbial and non-microbial communities. Community composition can be 

characterized by sequencing taxonomically informative marker genes, such as the 16S rRNA 

gene in bacteria [1-4]. Shotgun metagenomics, in which all DNA recovered from a sample is 

sequenced, can also characterize functional potential [5-7]. However, the accuracy of marker-

gene and metagenomic sequencing (MGS) is limited in practice by several processes that 

introduce contaminants — DNA sequences not truly present in the sampled community.  

Failure to account for DNA contamination can lead to inaccurate data interpretation. 

Contamination falsely inflates within-sample diversity [8, 9], obscures differences between 

samples [8,10], and interferes with comparisons across studies [10,11]. Contamination 

disproportionately affects samples from low-biomass environments with less endogenous sample 

DNA [10, 12-16], and can lead to controversial claims about the presence of bacteria in low 

microbial biomass environments like blood and body tissues [12, 13, 15-17]. In high-biomass 

environments, contaminants can comprise a significant fraction of low-frequency sequences in 

the data [18], limiting reliable resolution of low-frequency variants and contributing to false-

positive associations in exploratory analyses [19].  

 Attempts to control DNA contamination before and after sequencing have had mixed 

success. One common practice is to process reagent-only [9,14, 20] or blank sampling instrument 

[21] negative control samples alongside biological samples at the DNA extraction and PCR 

steps. Contamination is often assumed to be absent if control samples do not yield a band on an 

agarose gel [22,23]. However, band-less samples can generate non-negligible numbers of 

sequencing reads [14,15], suggesting that gel-based quality control is insufficient.  
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There are two major types of contaminants in MGS experiments that arise from different 

sources. External contamination is contributed from outside the samples being measured, with 

potential sources that include research subjects’ or investigators’ bodies [24,25], laboratory 

surfaces and air [10,21,26], and, perhaps most importantly, sample collection instruments and 

laboratory reagents [9,12,14]. Internal or cross-contamination arises when samples mix with each 

other during sample processing [9] or sequencing [33]. Contamination can be reduced through 

laboratory techniques such as UV irradiation, "ultrapurification" and/or enzymatic treatment of 

reagents, and the separation of pre- and post-PCR areas [9,12,27,28]. However, even optimal lab 

practices do not completely eliminate DNA contamination [11,14]. 

 In silico contaminant removal can complement existing laboratory approaches, but 

distinguishing contaminating microbial DNA from true microbial sequences can be difficult and 

is not often performed [14,16]. Perhaps the most common in silico decontamination method in 

practice is the removal of sequences below an ad hoc abundance threshold [21,29-31].  However, 

abundance thresholds remove rare features truly present in the sample, and do not remove 

abundant contaminants that are the most likely to interfere with subsequent analysis. Another 

approach is the removal of sequences that appear in negative controls [e.g. 10, 32, 20]. However, 

cross-contamination between samples often causes abundant true sequences to be detected in 

negative controls [9,19, 33]. Finally, "blacklist" methods exclude sequences or taxa previously 

identified as contaminants, but do not identify study-specific contaminants and often remove true 

sequences. 

Despite the widespread problem of contamination, few software tools exist that directly 

address MGS contaminants. SourceTracker uses Bayesian mixtures to identify the proportion of 

a sample consistent with origin from external contaminating sources of known composition, but 
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does not identify specific contaminants [26]. The visualizations and summary statistics provided 

by the An’vio software package can be used to identify contaminant metagenome-assembled-

genomes (MAGs) [34], but this relies on user expertise to identify contaminant-specific patterns 

and does not apply to marker-gene data. Recently, a new method for identifying cross-

contaminants arising from index switching during sequencing has been developed for dual-

indexed MGS libraries, but this method does not apply to other types of contamination [33]. 

Here, we introduce and validate decontam, a simple-to-use open-source R package that 

identifies and removes external contaminants in MGS data. decontam implements two simple de 

novo classification methods based on widely reproduced signatures of external contamination: 1) 

Sequences from contaminating taxa are likely to have frequencies that inversely correlate with 

sample DNA concentration [8,14,16,30], and 2) sequences from contaminating taxa are likely to 

have higher prevalence in control samples than in true samples [10,31,32]. Frequency-based 

contaminant identification relies on auxiliary DNA quantitation data that is in most cases 

intrinsic to MGS sample preparation. Prevalence-based contaminant identification relies on 

sequenced negative controls [11,14]. decontam is not intended to detect cross-contamination, 

which presents with qualitatively different statistical patterns in MGS data. 

We validated decontam on marker-gene and metagenomics datasets generated by our 

laboratory and others. In an oral 16S rRNA gene dataset, decontam classifications were 

consistent with curated reference databases of common contaminating microbial genera and 

known oral microbes. In data generated by Salter et al., decontam selectively removed 

contaminants, thereby reducing technical variation due to sequencing center or DNA extraction 

kit in marker-gene and shotgun metagenomics data, respectively. The application of decontam to 

16S rRNA gene sequencing data generated from placenta biopsies corroborated the conclusion 
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that the data did not support the existence of a placenta microbiome [15]. decontam improved a 

recent exploratory analysis of associations between preterm birth and the vaginal microbiota by 

identifying run-specific contaminants [19]. Our results suggest that decontam distinguishes 

contaminants from non-contaminants across diverse studies, and that removal of these 

contaminants improves the accuracy of biological inferences in studies that use MGS methods to 

investigate microbial communities. 

 
Description of the Method 
 

Frequency-based contaminant identification. 

Let total sample DNA (T) be a mixture of two components (T = C + S): contaminating 

DNA (C) present in uniform concentration across samples, and true sample DNA (S) present in 

varying concentration across samples. Let the frequency of a sequence, or set of sequences, be its 

abundance divided by the total abundance of all sequences in the sample (alternative terms used 

equivalently include proportion and relative abundance). In the limit S >> C, the frequency of 

contaminating DNA (fC) is inversely proportional to total DNA T (Fig. 1), while the frequency of 

sample DNA (fS) is independent of T: 

 fC = C/(C+S) ~ 1/T  fS = S/(C+S) ~ 1 

For each sequence feature two models are compared: a contaminant model, in which 

expected frequency varies inversely with total DNA concentration, and a non-contaminant 

model, in which expected frequency is independent of total DNA concentration. More precisely, 

two linear models are fit to the log-transformed frequencies as a function of the log-transformed 

total DNA, a contaminant model with slope -1 and a non-contaminant model with slope 0. 

Samples in which the sequence feature is absent are omitted. The ratio R between the sums-of-
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squared-residuals of the contaminant and non-contaminant models is computed, and then the 

score statistic P is defined as the tail probability at value R of an F distribution with degrees of 

freedom equal to the number of samples in which the feature was present. The score statistic P 

ranges from 0 to 1. Small scores indicate the contaminant model is a better fit, and high scores 

indicate that the non-contaminant model is a better fit. 

Although inspired by the general linear F test, the frequency-based score statistic is not a 

p-value, i.e. it is not associated with any guarantees on the Type 1 error rate. The frequency-

based score statistic is best thought of as a transformation that takes as input two values — the 

ratio of the sum-of-squared-residuals, and the number of observations — and outputs a score that 

is a better classification statistic than the ratio of the sum-of-squared-residuals alone. This 

transformation differentiates between otherwise identical ratios of sum-of-squared-residuals that 

are supported by different numbers of observations, and appropriately outputs scores closer to 

the extremes (0/1) when non-unitary ratios are supported by more observations. 

Frequency-based contaminant identification is not recommended for extremely low-

biomass samples (C ~ S or C > S) because the simple approximations we are making for the 

dependence of contaminant frequency on total DNA concentration break down when 

contaminants comprise a large fraction of sequencing reads. 

 

Prevalence-based contaminant identification 

Once again, let total sample DNA (T) be a mixture of contaminating DNA (C) and true 

sample DNA (S), i.e. T = C + S. The results of MGS sequencing can be thought of as an 

incomplete sampling of T. Thus, in negative controls (S ~ 0) the likelihood of detecting any 

given contaminant sequence feature will be higher than in true samples (S > 0). That is, the 
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prevalence of contaminants will be higher in negative controls than in true samples due to the 

absence of competing DNA in the sequencing process.  

For each sequence feature, a chi-square statistic on the 2x2 presence-absence table in true 

samples and negative controls is computed, and a score statistic P is defined as the tail 

probability of the chi-square distribution at that value. The p-value from Fisher’s exact test is 

used as the score statistic instead if there are too few samples for the chi-square approximation. 

The score statistic ranges from 0 to 1. Small scores indicate the contaminant model of higher 

prevalence in negative control samples is a better fit. 

Although the prevalence-based score statistic is set equal to a p-value from the chi-square 

or Fisher's exact tests, it is used by decontam only as a score that effectively distinguishes 

between the contaminant and non-contaminant mixture components. This treatment is also 

recommended by the potential for cross-contamination to violate distributional assumptions 

related to independence between samples. 

 We recommend use of the prevalence method in very low biomass environments where a 

majority of MGS sequences might derive from contaminants rather than true inhabitants of the 

sampled environment (i.e. C ~ S or C > S). Even in the low-biomass regime, it is still expected 

that non-contaminants will appear in a larger fraction of true samples than in negative control 

samples. 

 

Sequencing Batches and Composite Identification 

Separately processed samples may have different contaminants [12,14,28,36]. decontam 

allows the user to specify processing batches, in which case score statistics are generated from 

each batch independently and then combined in a user-selectable fashion for classification (for 
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example, by taking the minimum score across batches). decontam also provides simple methods 

to combine scores from the frequency and prevalence methods into a composite score statistic. 

For example, the combined method uses Fisher's method to combine the frequency and 

prevalence score statistics (interpreted as tail probabilities) into a composite score statistic that is 

then used for classification. 

 

Classification 

A sequence feature is classified as contaminant or non-contaminant by comparing its 

associated score statistic P to a user-defined threshold P*, where P can be the frequency, 

prevalence, or composite score. If P < P*, the sequence feature is classified as a contaminant. 

The default classification threshold is P*=0.1, but we highly recommend that users inspect the 

distribution of scores in their data and consider adjusting P* based on specific dataset 

characteristics (see also Discussion). The threshold P*=0.5 has a particularly simple 

interpretation: In the frequency approach, sequence features would be classified as contaminants 

if the contaminant model is a better fit than the non-contaminant model, and in the prevalence 

approach sequence features would be classified as contaminants if present in a higher fraction of 

negative controls than true samples. 

 

The decontam R package 

The contaminant classification methods introduced here are implemented in the open-

source decontam R package available from GitHub (https://github.com/benjjneb/decontam) and 

the Bioconductor repository [35]. The primary function, isContaminant, implements frequency- 

and prevalence-based contaminant identification that can be applied to variety of sequence 
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features including amplicon sequence variants (ASVs), operational taxonomic units (OTUs), 

taxonomic groups (e.g. genera), orthologous genes, metagenome-assembled-genomes (MAGs), 

and any other feature with quantitative per-sample abundance that is derived from marker-gene 

or metagenomics sequencing data (see also Discussion). 

The primary input to isContaminant is a feature table of the abundances or frequencies of 

sequence features in each sample (e.g. an OTU table). In addition, isContaminant requires one of 

two types of auxiliary data for frequency- and prevalence-based contaminant identification, 

respectively: 1) Quantitative DNA concentrations for each sample, often obtained during 

amplicon or shotgun sequencing library preparation in the form of a standardized fluorescence 

intensity (e.g. PicoGreen), and/or 2) sequenced negative control samples, preferably DNA 

extraction controls to which no sample DNA was added. Contaminants identified by decontam 

can be removed from the feature table with basic R functions described in decontam vignettes. 

 The isNotContaminant function supports the alternative use case of identifying non-

contaminant sequence features in very low biomass samples (C > S). isNotContaminant 

implements the prevalence method, but with the standard prevalence score P replaced with 1-P, 

so low scores are now those associated with non-contaminants. isNotContaminant does not 

implement the frequency method for reasons described above, and classifies very low prevalence 

samples conservatively, i.e. as contaminants, as is appropriate for the low-biomass regime. 

 

Results 

 

decontam discriminates likely contaminants from likely inhabitants of the human oral 

cavity 
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As part of an ongoing study of the human oral microbiome [37], we processed 33 

reagent-only or blank-swab DNA extraction negative control samples alongside and in the same 

manner as 712 oral mucosa samples. We inspected the frequencies of amplicon sequence 

variants (ASVs) as a function of DNA concentration (range: undetectable-39 ng/uL) measured 

by fluorescent intensity after PCR and prior to sequencing. Two clear patterns emerged (Fig. 2a): 

ASV frequencies that were independent of DNA concentration, and ASV frequencies that were 

inversely proportional to DNA concentration [8,14,16,30], consistent with total DNA consisting 

of a mixture of contaminant and non-contaminant components. Taxonomic assignments for 

ASVs with inverse frequency patterns were consistent with contamination. For example, Seq3 

was a fungal mitochondrial DNA sequence, while Seq53 and Seq152 were assigned to the 

commonly contaminating genera Methylobacterium and Phyllobacterium [8,12,14,15].  

Taxonomic assignments of ASVs with frequencies independent of sample DNA concentration 

were consistent with membership in the oral microbiota. For example: Seq1, Streptococcus sp., 

Seq12, Neisseria sp., and Seq200, Treponema sp. [37-41]. The total concentration of 

contaminants assigned by the prevalence method was roughly constant and independent of total 

DNA concentration, consistent with our mixture model (Fig. S1). 

The distribution of scores assigned by decontam reflected the bimodal distribution 

expected from a mixture of contaminant and non-contaminant components (Fig. 2b), albeit with 

an additional mode near 0.5 consisting of low-prevalence taxa for which decontam has little 

discriminatory power. Most ASVs (Fig. 2b) and an even larger majority of total reads (Fig. S2) 

were assigned high scores suggesting non-contaminant origin. The distribution of scores from 

the combined method, which combines the frequency-based and prevalence-based scores into a 

composite score, had the cleanest bimodal distribution (Fig. 2b), suggesting it will provide the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/221499doi: bioRxiv preprint 

https://doi.org/10.1101/221499
http://creativecommons.org/licenses/by/4.0/


	 12	

most robust classifications when both DNA concentration and negative control data are 

available.  

To assess the classification accuracy of decontam, we generated two databases to serve 

as proxies for true oral sequences and contaminants (Methods). decontam assigned scores less 

than 0.5 to most ASVs from genera present in the contamination database, including features 

Seq3, Seq53, and Seq152 (Fig. 2a). In contrast, most ASVs from genera present in the oral 

database, including Seq1, Seq12, and Seq200 were assigned scores greater than 0.5 (Fig. 2a). 

ASVs belonging to genera found in both databases or neither database display a range of scores 

(Fig. S3), suggesting that the reference databases constructed here incompletely separate oral and 

contaminating genera. 

To quantitatively assess the accuracy of decontam we examined a restricted set of genera 

that were clearly and unambiguously classified as contaminants or oral taxa by our reference 

databases (Methods). The scores assigned by the frequency and prevalence methods to all ASVs 

are shown in Fig. 3A, with points colored if their genus has an unambiguous reference 

classification. Each panel represents a different sample prevalence threshold (e.g., whether the 

ASV was detected in 2, 3-5, 6, or 11+ samples). As expected, the power of decontam to 

discriminate between contaminants and non-contaminants increases with the number of samples 

in which each ASV was present (its prevalence). At high prevalence the frequency, prevalence 

and reference-based classifications are nearly identical. 

We developed receiver-operator-characteristic (ROC) curves of the classifier 

performance of the frequency, prevalence and combined methods on the subset of ASVs with 

unambiguous reference-based classifications, and using the reference-based classification as the 

ground truth. The sensitivity of all methods to detect contaminant ASVs reaches substantial 
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levels before significant degradation in specificity occurs (Fig. 3b). At the default threshold of 

0.1 (indicated by points in Fig. 3b) the frequency method has an ASV sensitivity/specificity of 

0.33/ 1.00, the prevalence method 0.61/ 0.95, and the combined method 0.45/0.99. Accuracy is 

far higher when accounting for the abundance of each ASV and evaluating performance on a 

per-read basis. At the default classification threshold of 0.1, the per-read sensitivity/specificity is 

0.97/1.0000 for the frequency method, 0.77/0.9994 (prevalence) and 0.98/0.9999 (combined). 

These results indicate that decontam has high classification accuracy on the abundant and 

prevalent sequence features that will most impact subsequent analysis. The classification 

accuracy of decontam may be even higher than reported here given our reliance on imperfect 

taxonomic assignments to set a ground truth. For example, the apparent high-prevalence false-

negative (the red point in the upper-right of the 11+ panel in Fig. 3a) was assigned to the genus 

Peptococcus, which is known to colonize the human mouth [42, 43]. However, Peptococcus was 

not present in our incomplete database of cultivated oral genera, so it was treated as a ground 

truth contaminant in our accuracy analysis. 

 

Application of decontam to a dilution-series test dataset. 

Salter et al. characterized a dilution series of a Salmonella bongori monoculture over a range of 

six 10-fold dilutions by 16S rRNA gene sequencing at three sequencing centers, and by shotgun 

metagenomics using four DNA extraction kits (one of which yielded little DNA and is 

excluded). Standard DNA quantitation data were not reported, so the reported 16S qPCR results 

(Fig. 2 from Ref. 14) were used to quantify sample DNA concentrations.  

 Over 50% of the contaminant (i.e. non S. bongori) amplicon reads and over 80% of the 

contaminant shotgun reads were correctly classified as contaminants by decontam's frequency 
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method at the default threshold P*=0.1, and sensitivity increased with higher values of P* (Fig. 

4). A smaller fraction of the unique sequence features (ASVs in the 16S rRNA gene data and 

genera in the shotgun data) were identified as contaminants due to the small number of samples 

in this dataset (six samples per batch) and the lower sensitivity of decontam on contaminants 

present in few samples (e.g. Fig 3a). Identifying contaminants on a per-batch basis was more 

effective than pooling data across sequencing centers and DNA extraction kits, which had 

different contaminant spectra (Fig. 4).  

 No Salmonella bongori reads were classified as contaminants under any P* threshold, 

and the S. bongori variants were assigned the highest scores (>0.98) in these datasets. Negative 

controls were not included in the shotgun metagenomics sequencing, and only a single negative 

control was included in the 16S rRNA gene sequencing, so we did not evaluate the prevalence 

method on this dataset. 

 Removal of contaminants identified by decontam significantly reduced batch effects 

between sequencing centers and DNA extraction kits (Fig. 5). As the classification threshold 

increased from P*=0.0 (no contaminants removed) to P*=0.1 (default) to P*=0.5 (aggressive 

removal), the multi-dimensional scaling ordination distance between samples from different 

batches decreased. This effect was most dramatic at the intermediate dilutions where both S. 

bongori and various contaminants comprised a significant fraction of the total sequences. 

 In a recent study, Karstens et al. performed an independent evaluation of the decontam 

frequency method on a more complex dilution series constructed from a mock community of 8 

bacterial strains.  They report that decontam correctly classified 74-91% of contaminant reads, 

and made no false-positive contaminant identifications [57]. 
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Identification of non-contaminant sequences in a low-biomass environment. 

 Recently, evidence from marker-gene sequencing of placental samples was used to 

propose that the human placenta harbors an indigenous microbiota [17]. However, contamination 

has since been proposed as an alternative explanation of those results [15,44]. To examine this 

question further, Lauder et al. performed 16S rRNA gene sequencing on placenta biopsy samples 

and multiple negative control samples using two different DNA extraction kits. They found that 

samples clustered by kit rather than by placental or negative control origin, suggesting that most 

sequences observed in the placenta samples derived from reagent contamination. 

 We used the prevalence method as implemented in the isNotContaminant function to 

further explore the possibility that some ASVs in the Lauder et al. dataset could be consistent 

with placental origin, despite being too rare to drive whole-community ordination results. The 

prevalence score statistic, unlike the frequency score statistic, can be interpreted as a p-value, 

which allowed us to select candidate non-contaminant ASVs based on a false discovery rate 

(FDR) threshold [56]. We found that six of the 810 ASVs present in at least five samples were 

identified as non-contaminants at an FDR threshold of 0.5 (Table 1). Five of those six ASVs 

matched Homo sapiens rather than any bacterial taxa. That is, five of the six ASVs classified by 

the prevalence method as non-contaminants were classified correctly, as those ASVs were truly 

present in the placental samples. However, these non-contaminants are not evidence of a 

placental microbiome, and instead the five Homo sapiens ASVs likely arose from off-target 

amplification of human DNA in the placenta biopsy. The other putative non-contaminant ASV 

was a Ruminococcaceae variant, a known member of human gut microbial communities [2], but 

we are unable to establish its ground truth. 

 

Table 1. Amplicon sequence variants from placenta samples classified by decontam as non-contaminants.  
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P (adjusted) Taxa Placenta (n=24) Negative (n=27) 

Saliva 
(n=12) 

Vagina 
(n=6) 

1 1.2 x 10-5 Homo sapiens 19 0 0 1 
2 0.11 Homo sapiens 11 0 0 0 
3 0.17 Homo sapiens 9 0 0 0 
4 0.17 Homo sapiens 9 0 0 0 
5 0.47 Ruminococcaceae sp. 8 0 0 0 
6 0.47 Homo sapiens 8 0 0 1 

810 ASVs present in at least 5 samples were evaluated by the prevalence method as implemented in the 

isNotContaminant function. The 6 ASVs classified as non-contaminants using an FDR threshold of 0.5 [56] are 

shown. Taxonomy was assigned by BLAST-ing sequences against the nt database. Prevalence is reported for each 

sample type included in the study. 

 

Reduction of false-positive associations between the gestational microbiota and preterm 

birth. 

 A recent exploratory analysis of associations between the gestational vaginal microbiota 

and preterm birth (PTB) identified a number microbial taxa seemingly associated with PTB [19]. 

However, the authors concluded that many of these significant associations were run-specific 

contaminants rather than true biological signal. We used decontam to further explore the 

possibility that some contaminant ASVs were significantly associated with PTB in this dataset.  

 We generated decontam scores using the prevalence, frequency, and combined methods, 

while specifying the sequencing runs as batches. The scores assigned by all methods showed the 

expected bimodal score distribution, and the combined method produced the clearest low-score 

peak (i.e. putative contaminant) (Figure S4). Scores assigned by the frequency and prevalence 

methods were broadly consistent, especially at low values (Figure S5). We generated a plot 

similar to the exploratory analysis presented in the original Callahan et al. paper, but colored 

ASVs by the scores assigned by the combined method (Fig. 6). Four of the ASVs most 

significantly associated with PTB were assigned scores less than 10-6, strongly supporting a 

contaminant origin. Representatives from the genera of those four ASVs have been previously 
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observed as contaminants (Herbaspirillum: refs. 12,14,45; Pseudomonas: refs. 8,9,12,14,31; 

Tumebacillus: refs. 12,46; Yersinia: ref. 47), corroborating decontam's classification. 

 
Discussion 
 

Previous work has established two common signatures of contaminants in MGS data: 

frequency inversely proportional to sample DNA concentration [8,14,16,30], and presence in 

negative controls [10,31,32]. Building on that work, we developed a simple model of the mixture 

between contaminant and sample DNA that serves as the basis of frequency-based and 

prevalence-based statistical classification procedures for identifying contaminants. These 

methods are implemented in the open source R package decontam, and can be used to diagnose, 

identify and remove contaminants in marker-gene and metagenomic sequencing datasets. 

The classification of contaminants by decontam was internally and externally consistent 

in real datasets. The independent frequency and prevalence methods produced largely consistent 

results, and the distribution of scores recapitulated the bimodal distribution expected from the 

proposed mixture model of total DNA. decontam classifications were consistent with literature 

expectations in a subset of genera that the literature unambiguously described as true inhabitants 

or contaminants. 

The classification accuracy of decontam increased with the number of samples in which 

a sequence feature appeared (its prevalence). The rate of false-positive contaminant identification 

was low for all features, consistent with the findings of an independent benchmarking study [57]. 

The sensitivity of contaminant identification increased substantially with feature prevalence. As 

a result, while the specificity and sensitivity of decontam on a per-feature basis were sometimes 

moderate, accuracy evaluated on a per-read basis reached exceptional levels. 
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In several example datasets, the application of decontam improved biological 

interpretation. Removal of contaminants identified by decontam reduced variation due to 

sequencing center and DNA extraction kit, an oft-cited issue in high-throughput marker-gene and 

metagenomics studies [14]. decontam corroborated recent conclusions that little evidence of an 

indigenous placenta microbiome existed in a marker-gene dataset from placenta biopsies, and 

extended that conclusion to rare sequences [15]. decontam identified several contaminant taxa in 

a recent study that a naïve exploratory analysis would have found to be significantly associated 

with preterm birth [19]. 

decontam improves on current in silico approaches to contaminant identification and 

removal. decontam identifies contaminants on a per-sequence-feature basis. decontam requires 

no external knowledge of the pool of potential contaminants. decontam's statistical classification 

approach avoids shortcomings of common ad hoc threshold approaches. For example, removal 

of all sequences detected in negative controls also removes abundant true sequences due to cross-

contamination among samples [49, 50]. Removal of sequences below an ad hoc abundance 

threshold sacrifices low-frequency true sequences and fails to remove the abundant contaminants 

most likely to interfere with downstream analysis. In contrast, decontam readily detects 

abundant and prevalent contaminants, while strongly limiting false positives. decontam can 

improve the quality of MGS data and subsequent analyses, at little or no cost to the investigator. 

  

Using decontam 

Experimental design 

decontam is applicable to any MGS dataset for which DNA quantitation data or 

sequenced negative controls are available. Simple experimental design choices can further 
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improve the performance of decontam. Because reagents contribute significantly to 

contamination [8, 14-16], negative controls should contain reagents and/or sterile sample 

collection instruments and should be processed and sequenced alongside true samples. The 

sensitivity of prevalence-based classification is limited by the number of negative controls, and 

there is often variation among the contaminants present in each, so we recommend sequencing 

multiple negative controls. A simulation analysis suggests that 5-6 negative control samples is 

sufficient to identify most contaminants (assuming a significantly larger number of true samples 

and a prevalence patterns similar to those seen in the oral dataset, Figure S6), although 

sensitivity continues to increase with more negative controls. We recommend investigators 

sequence negative controls for both amplicon and shotgun sequencing approaches, and even if 

quality checks indicate little or no DNA is present. 

In studies large enough to span multiple processing batches (e.g. sequencing runs), we 

recommend blocking or randomizing samples across the processing batches if possible. 

Contaminants are often batch-specific, and sample randomization will prevent the conflation of 

batch-specific contaminants with study outcomes if subsequent contaminant amelioration is not 

completely effective. 

 

Method choice  

The isContaminant function in decontam implements distinct frequency- and prevalence-

based methods for contaminant identification and can also use both methods in combination. 

Choice of method should be guided first by the auxiliary data available: frequency-based 

identification requires DNA quantitation data, and prevalence-based identification requires 

sequenced negative controls.  
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DNA concentrations measured from prepared amplicon or shotgun libraries prior to 

sequencing, often in the form of standardized fluorescent intensities, works effectively with the 

frequency method in our experience. More effort-intensive methods, such as qPCR, may 

improve accuracy further if those methods more accurately quantify total DNA [31]. Typically, 

sufficient variation in DNA concentration for the frequency method to discriminate between 

contaminants and non-contaminants arises naturally during sample preparation and processing. A 

positive control dilution series that covers a broad range of input DNA concentrations can 

guarantee a broad range of sample DNA concentrations [14].  

The sensitivity of prevalence-based contaminant identification is limited if few negative 

controls are sequenced. In very low biomass environments, where contaminant DNA may 

constitute a majority of sequencing reads, the implementation of the prevalence method in the 

isNotContaminant function can conveniently identify minority non-contaminants.  

The score distributions generated by the combined method, which combines the 

frequency and prevalence scores into a composite score, showed a (slightly) cleaner bimodal 

distribution than the frequency or prevalence methods alone in the datasets we examinere here 

(Figs. 2 and S4). Thus, we recommend generating and sequencing negative controls and using 

the combined approach when the necessary auxiliary data are available, although the frequency 

and prevalence methods are both independently effective as well. 

 

Choice of classification threshold 

decontam classifies sequence features as contaminants by comparing the score statistic P 

to a classification threshold P*. We recommend that investigators inspect the distribution of 

scores assigned by decontam, especially when decontam is being applied to large studies 
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spanning multiple batches such as sequencing runs, and consider non-default classification 

thresholds if so indicated. Typically, an appropriate classification threshold can be read directly 

off the score histogram. For example, the histogram of scores in Figure 2b showed clear 

bimodality between very low and high scores, indicating that thresholds in the range from 0.1 to 

0.5 would effectively identify the contaminants that make up the low-score mode. In the preterm 

birth dataset, the low-score mode in the score histogram was much narrower, indicating a 

threshold of 0.01 would be more appropriate (Fig. S4). Another useful visualization is a quantile-

quantile plot of scores versus the uniform distribution. 

The scores generated by decontam can also be used as quantitative diagnostics instead of 

as input to a binary classifier. As suggested by our re-analysis of the preterm birth dataset, the 

decontam scores associated with taxa found to be of interest in other analyses can inform 

subsequent interpretation of the results, and potentially indicate the need for additional 

confirmatory analyses. 

 

Application to heterogeneous samples 

decontam uses patterns across samples to identify contaminants, but that approach can be 

less effective when groups of samples have systematically different contaminant patterns. One 

such scenario arises from separate processing batches that result in batch-specific contaminants. 

decontam allows the user to specify such batches in the data, in which case scores are generated 

independently within each batch, with the smallest score across batches used for classification by 

default. Batched classification should be considered when major variation exists in sample 

processing steps – e.g. different sequencing runs or DNA extraction kits. 
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The assumptions of decontam, especially the frequency method, can be violated if 

bacterial biomass systematically differs between groups of samples. For example, if decontam 

were applied to a mixed set of stool (high biomass) and airway (low biomass) samples, real 

sequences in the airway samples could be classified as contaminants, because they have higher 

frequency in the low-concentration samples. Therefore, we recommend applying decontam 

independently to samples collected from different environments. Covariation between 

experimental conditions-of-interest and bacterial biomass could also impinge on the accuracy of 

contaminant classification, especially if using the frequency method. We have included the 

plot_condition function in the decontam R package as a convenient way to investigate possible 

relationships between important experimental conditions and total DNA concentration. 

 

Choice of Sequence Feature 

decontam can be applied to a variety of sequence features derived from MGS data (e.g. 

OTUs, ASVs, taxonomic groups, MAGs). decontam should work most effectively on sequence 

features that are sufficiently resolved such that contaminants are not grouped with real strains, 

while also not being overly affected by MGS sequencing noise. 

In marker-gene data, we expect the best performance will be achieved with post-

denoising ASVs [53, 58] as ASVs are less prone than OTUs to grouping contaminants with 

related real strains. A general recommendation for metagenomics studies is to use finer 

taxonomic groups (e.g. species rather than families) and narrower functional categories (e.g. 

genes rather than pathways). 

 

Limitations of decontam and Complementary Approaches 
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decontam assumes that contaminants and true community members are distinct from one 

another. This basic assumption is violated by cross-contamination — contaminant sequences 

arising from other processed samples [33,49,50]. decontam is not designed to remove cross-

contamination. MGS studies would benefit from the development of methods to address cross-

contamination, and some exciting progress in that area is beginning to be made [33]. 

decontam depends on patterns across samples to identify contaminants, and therefore has 

low sensitivity for detecting contaminants that are found in very few samples. Since very low-

prevalence sequences are often uninformative in downstream analyses, it might often be 

appropriate to combine decontam with the removal of low-prevalence sequences that may be 

enriched in contaminants that decontam did not detect. 

 

Conclusions 

Contaminant removal is a critical but often overlooked step in marker-gene and 

metagenomics (MGS) quality control [11,14,15,36,46]. Salter et al. and Kim & Hofstaedter et al. 

provide excellent pre-sequencing recommendations that reduce the impact of contamination, that 

can be complemented by in silico contaminant removal. Here we introduce a simple, flexible, 

open-source R package – decontam – that uses widely reproduced signatures of contaminant 

DNA to identify contaminants in MGS datasets. decontam requires only data that are in most 

cases already generated, readily fits into existing MGS analysis workflows, and can be applied to 

many types of MGS data. Together, our results suggest that decontam can improve the accuracy 

of biological inferences across a wide variety of MGS studies at little or no additional cost.  
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Methods 

Oral & control sample processing 

Sample DNA was extracted with the PowerSoilâ-HTP 96 well Soil DNA Isolation Kit (MO 

BIO Laboratories, Carlsbad, CA, USA) and then PCR amplified in 2-4 replicate 75-µL reactions 

using Golay barcoded primers targeting the V4 region of the bacterial 16S rRNA gene [51]. 

Amplicons were purified, DNA-quantitated using the PicoGreen fluorescence-based Quant-iT 

dsDNA Assay Kit (ThermoFisher catalog no. Q33120), and pooled in equimolar amounts. After 

ethanol precipitation and size-selection, amplicons were sequenced in duplicate on two lanes of 

an Illumina MiSeq v3 flowcell at the W.M. Keck Center for Comparative Functional Genomics 

(University of Illinois, Urbana-Champaign, USA). Negative controls were processed in parallel 

with samples beginning at the DNA extraction step (see also Supplemental Methods in 

Additional File 1).  

 

Amplicon Sequence Analysis 

Duplicate sequencing runs from the oral dataset were concatenated and demultiplexed using 

QIIME’s split_libraries_fastq.py script [52]. Demultiplexed fastq files from the oral, Salter and 

placenta datasets were then processed into amplicon sequence variants (ASVs) by DADA2 

version 1.8.0 [53]. The final table in the oral dataset consisted of 18,285,750 sequencing reads in 

2,420 unique ASVs across 767 samples. Taxonomy was assigned to each sequence using the 

assignTaxonomy function in the dada2 R package [59], and the non-redundant SILVA taxonomic 

training set (‘silva_nr_v128_train_set.fa’, https://www.arb-silva.de). Further analysis was 

performed using the phyloseq R package [54].  
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To improve taxonomic classification accuracy for oral genera, we classified oral sequences a 

second time using the Human Oral Microbiome Database (HOMD, ref 42, 

http://www.homd.org/, ‘HOMD_16S_rRNA_RefSeq_V14.5.fasta’). We compared SILVA and 

HOMD classifications at the genus level, and we resolved assignments for the 80 sequences on 

which SILVA and HOMD disagreed by NCBI BLAST results. 

 

Construction of oral and contamination databases 

The oral database contains bacterial genera confirmed to inhabit the human oral plaque 

microbiota by microscopic visualization [55, 39, 41], and genera cultivated from the human oral 

cavity [42]. These genera are listed with their literature citations in the ‘oral_database.csv’ file 

and the HOMD [42] as ‘named’ or ‘unnamed’ entries. The contamination database contains 

bacterial genera previously reported as contaminants in 16S rRNA gene negative controls. 

Contaminant genera are listed with their literature citations in the ‘contamination_database.csv’ 

file. Genera were categorized into three groups by comparison to the oral and contamination 

databases: Contaminant, if present in the contamination database and not in the oral database; 

Oral, if present in the oral database and not in the contamination database, and Ambiguous 

otherwise. Reference-based classification of ASVs was performed based on their assigned genus, 

and if no genus was assigned then the ASV was classified as Ambiguous.  

 

List of abbreviations 

MGS: marker-gene and metagenomic sequencing 

ASV: amplicon sequence variant 

MAG: metagenome-assembled genome 
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OTU: operational taxonomic unit 
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Figure 1. Mixture model of contaminants and non-contaminants in MGS experiments. Contaminant DNA is 
expected to be present in approximately equal and low concentrations across samples, while sample DNA 
concentrations can vary widely. As a result, the expected frequency of contaminant DNA varies inversely with total 
sample DNA concentration (red), while the expected frequency of non-contaminant DNA does not (blue).  
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Figure 2. Frequency patterns and decontam score distributions of microbial sequences from an oral mucosal 
16S rRNA gene dataset. (a) Frequency patterns of six sequences from a 16S rRNA gene study of human oral 
microbial communities. The frequencies of sequence variants Seq3, Seq152, and Seq53 vary inversely with sample 
DNA, a characteristic of contaminants. The frequencies of Seq1, Seq12, and Seq200 are independent of sample 
DNA concentration, a characteristic of genuine sample sequences. (b) Scores for each amplicon sequence variant 
(ASV) present in two or more samples were computed by the frequency, prevalence and combined methods as 
implemented in the isContaminant function in the decontam R package. The histogram of scores is shown, with 
color intensity depending on the number of samples (or prevalence) in which each ASV was present. 
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Figure 3. Classification accuracy of decontam on a subset of microbial sequences in an oral mucosa dataset 
belonging to contaminant and oral genera. (a) The scores assigned by the frequency and prevalence methods are 
plotted for each ASV present in two or more samples in the oral mucosa dataset. Points are colored if their genus 
can be unambiguously classified as oral or contaminant by comparison to a compiled reference database. (b) 
Receiver-operator-characteristic (ROC) curves are plotted for the frequency, prevalance and combined methods, and 
when evaluating sensitivity/specificity at the level of ASVs or at the level of reads (i.e. weighting by ASV 
abundance). Points show the default classification threshold of P*=0.1. 
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Figure 4. Proportion of contaminants in the S. bongori dilution series identified by the decontam frequency 
method. The frequency method was applied to all data pooled together (solid line), and on a per-batch basis (dashed 
line). Batches were specified as the sequencing centers for the 16S data, and the DNA extraction kits for the shotgun 
data. The fraction of contaminants identified (sensitivity) was evaluated on a per-read basis and on a per-variant 
basis (ASVs for 16S data, genera for shotgun data) over a range of classification thresholds. Green lines show 
maximum possible classifier sensitivity, given that decontam cannot identify contaminants only present in a single 
sample.  
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Figure 5. Multi-dimensional-scaling (MDS) ordination of sequenced samples of a monoculture of S. bongori, 
as a function of dilution and the contaminant classification threshold. A dilution series of 0, 1, 2, 3, 4, and 5 ten-
fold dilutions of a pure culture of Salmonella bongori was subjected to (a) amplicon sequencing of the 16S rRNA 
gene at three sequencing centers, and (b) shotgun sequencing using three different DNA extraction kits. 
Contaminants were identified by the decontam frequency method with a classification threshold of P*=0.0 (no 
contaminants identified), P*=0.1 (default), and P*=0.5 (aggressive identification). After contaminant removal, 
pairwise between-sample Bray-Curtis dissimilarities were calculated, and an MDS ordination was performed. The 
two dimensions explaining the greatest variation in the data are shown. 
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Figure 6. Diagnosing contamination in an exploratory analysis of the vaginal microbiota and preterm birth 
(PTB). The association between PTB and an increase in the average gestational frequency of various ASVs was 
evaluated in the two cohorts of women (Stanford and UAB) analyzed in Callahan & DiGiulio et al. The x- and y-
axes display the P-values of the association between increased gestational frequency and PTB (one-sided Wilcoxon 
rank-sum test) in the Stanford and UAB cohorts, respectively. Points are colored by the score assigned to them by 
the isContaminant function in the decontam R package, using the combined method. Several ASVs that were 
strongly associated with PTB in either the Stanford or UAB cohorts are clearly identified as contaminants with a 
decontam P value of less than 10-5 (genera in magenta text). 
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