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Abstract 35 

The perception of gender and age of unfamiliar faces is reported to vary 36 

idiosyncratically across retinal locations such that, for example, the same 37 

androgynous face may appear to be male at one location but female at another. Here 38 

we test spatial heterogeneity for the recognition of the identity of personally familiar 39 

faces in human participants. We found idiosyncratic biases that were stable within 40 

participants and that varied more across locations for low as compared to high 41 

familiar faces. These data suggest that like face gender and age, face identity is 42 

processed, in part, by independent populations of neurons monitoring restricted 43 

spatial regions and that the recognition responses vary for the same face across these 44 

different locations. Moreover, repeated and varied social interactions appear to lead 45 

to adjustments of these independent face recognition neurons so that the same 46 

familiar face is eventually more likely to elicit the same recognition response across 47 

widely separated visual field locations. We provide a mechanistic account of this 48 

reduced retinotopic bias based on computational simulations. 49 

Significance statement 50 

In this work we tested spatial heterogeneity for the recognition of personally familiar 51 

faces. We found retinotopic biases that varied more across locations for low as 52 

compared to highly familiar faces. The retinotopic biases were idiosyncratic and 53 

stable within participants. Our data suggest that, like face gender and age, face 54 
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identity is processed by independent populations of neurons monitoring restricted 55 

spatial regions and that recognition may vary for the same face at these different 56 

locations. Unlike previous findings, our data and computational simulation address 57 

the effects of learning and show how increased familiarity modifies the representation 58 

of face identity in face-responsive cortical areas. This new perspective has broader 59 

implications for understanding how learning optimizes visual processes for socially 60 

salient stimuli. 61 

Introduction 62 

We spend most of our days interacting with acquaintances, family and close friends. 63 

Because of these repeated and protracted interactions, the representation of 64 

personally familiar faces is rich and complex, as reflected by stronger and more 65 

widespread neural activation in the distributed face processing network, as compared 66 

to responses to unfamiliar faces (Gobbini and Haxby, 2007; Taylor et al., 2009; 67 

Gobbini, 2010; Natu and O’Toole, 2011; Bobes et al., 2013; Sugiura, 2014; Ramon and 68 

Gobbini, 2017; Visconti di Oleggio Castello et al., 2017a). Differences in 69 

representations are also reflected in faster detection and more robust recognition of 70 

familiar faces (Burton et al., 1999; Gobbini et al., 2013; Ramon et al., 2015; Visconti di 71 

Oleggio Castello and Gobbini, 2015; Guntupalli and Gobbini, 2017; Visconti di Oleggio 72 

Castello et al., 2017b).  73 

The advantage for familiar faces could originate at different stages of the face 74 

processing system. The classic psychological model by Bruce and Young (1986) posits 75 
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that recognition of familiar faces occurs when the structural encoding of a perceived 76 

face matches stored representations (Bruce and Young, 1986). In this model the 77 

stored representations of familiar faces consist of “an interlinked set of expression-78 

independent structural codes for distinct head angles, with some codes reflecting the 79 

global configuration at each angle and others representing particular distinctive 80 

features” (Bruce and Young, 1986, p. 309). Behavioral evidence supports the 81 

hypothesis that local features are processed differentially for personally familiar faces. 82 

For example, in a study of perception of gaze direction and head angle, changes in eye 83 

gaze were detected around 100ms faster in familiar than in unfamiliar faces (Visconti 84 

di Oleggio Castello and Gobbini, 2015). In another study, the advantage for personally 85 

familiar faces was maintained after face inversion, a manipulation that is generally 86 

thought to reduce holistic processing in favor of local processing (Visconti di Oleggio 87 

Castello et al., 2017b).  88 

Taken together, these results suggest that optimized processing of personally familiar 89 

faces could rely on local features. This could be sufficient to initially drive a differential 90 

response to personally familiar faces. In a study measuring saccadic reaction time, 91 

correct and reliable saccades to familiar faces were recorded as fast as 180 ms when 92 

unfamiliar faces were distractors (Visconti di Oleggio Castello and Gobbini, 2015). In 93 

an EEG study using multivariate analyses, significant decoding of familiarity could be 94 

detected at around 140 ms from stimulus onset (Barragan-Jason et al., 2015).  At such 95 

short latencies it is unlikely that a viewpoint-invariant representation of an individual 96 

face’s identity drives these differential responses. To account for facilitated, rapid 97 
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detection of familiarity, we have previously hypothesized that personally familiar 98 

faces may be recognized quickly based on diagnostic, idiosyncratic features, which 99 

become highly learned through extensive personal interactions (Visconti di Oleggio 100 

Castello and Gobbini, 2015; Visconti di Oleggio Castello et al., 2017b). Detection of 101 

these features may occur early in the face-processing system, allowing an initial, fast 102 

differential processing for personally familiar faces.  103 

Processes occurring at early stages of the visual system can show idiosyncratic 104 

retinotopic biases (Greenwood et al., 2017). Afraz et al. (2010) reported retinotopic 105 

biases for perceiving face gender and age that varied depending on stimulus location 106 

in the visual field and were specific to each subject. These results suggest that 107 

diagnostic facial features for gender and age are encoded in visual areas with limited 108 

position invariance. Neuroimaging studies have shown that face-processing areas 109 

such as OFA, pFus, and mFus have spatially restricted  population receptive fields that 110 

could result in retinotopic differences (Kay et al., 2015; Silson et al., 2016; Grill-Spector 111 

et al., 2017b). In addition, local facial features activate the OFA (and the putative 112 

monkey homologue PL, see Issa and DiCarlo, 2012): responses to face parts are 113 

stronger when they are presented in typical locations (de Haas et al., 2016), and 114 

population activity in the OFA codes the position and relationship between face parts 115 

(Henriksson et al., 2015).  116 

Here we hypothesized that detectors of diagnostic visual features that play a role in 117 

identification of familiar faces may also show idiosyncratic retinotopic biases and that 118 
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these biases may be tuned by repeated interactions with personally familiar faces. 119 

Such biases may affect recognition of the identities presented in different parts of the 120 

visual field and may be modulated by the familiarity of those identities. We tested this 121 

hypothesis by presenting participants with morphed stimuli of personally familiar 122 

individuals that were briefly shown at different retinal locations. In two separate 123 

experiments we found that participants showed idiosyncratic biases for specific 124 

identities in different visual field locations, and these biases were stable on retesting 125 

after weeks. Importantly, the range of the retinal biases was inversely correlated with 126 

the reported familiarity of each target identity, suggesting that prolonged personal 127 

interactions with the target individuals reduced retinal biases.  128 

We hypothesized that these biases could arise because neurons in face-processing 129 

areas have restricted receptive fields centered around the fovea (Afraz et al., 2010; 130 

Kay et al., 2015; Silson et al., 2016), resulting in an incomplete coverage of the visual 131 

field. Thus, identifying a particular face at different peripheral locations would rely on 132 

independent populations tuned to that face that cover a limited portion of the visual 133 

field biased toward the foveal region, leading to variations in identification across 134 

locations. To test this mechanism, we created a computational simulation in which 135 

increased familiarity with a specific identity resulted in changes of neural properties of 136 

the units responsive to that particular face. By either increasing the number of units 137 

responsive to a face or by increasing the receptive field size of those units, this simple 138 

learning mechanism accounted for the reduced biases reported in the two 139 

experiments, providing testable hypotheses for future work. 140 
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These findings support the hypothesis that asymmetries in the processing of 141 

personally familiar faces can arise at stages of the face-processing system where there 142 

is reduced position invariance and where local features are being processed, such as in 143 

OFA or perhaps even earlier. Our behavioral results show that prolonged, personal 144 

interactions can modify the neural representation of faces at this early level of 145 

processing, and our computational simulation provides a simple account of how this 146 

learning process can be implemented at the neural level. 147 

Materials and Methods 148 

 

Figure 1. Experimental paradigm. The left panel shows an example of the 
experimental paradigm, while the right panel shows the locations used in 
Experiment 1 (eight locations, top panel) and in Experiment 2 (four locations, 
bottom panel). 

Stimuli 149 

Pictures of the faces of individuals who were personally familiar to the participants 150 

(graduate students in the same department) were taken in a photo studio room with 151 

the same lighting condition and the same camera. Images of two individuals were 152 
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used for Experiment 1, and images of three individuals were used for Experiment 2. All 153 

individuals portrayed in the stimuli signed written informed consent for the use of 154 

their pictures for research and in publications.  155 

The images were converted to grayscale, resized and centered so that the eyes were 156 

aligned in the same position for the three identities, and the background was 157 

manually removed. These operations were performed using ImageMagick and Adobe 158 

Photoshop CS4. The resulting images were matched in luminance (average pixel 159 

intensity) using the SHINE toolbox (function lumMatch) (Willenbockel et al., 2010) 160 

after applying an oval mask, so that only pixels belonging to the face were modified. 161 

The luminance-matched images were then used to create morph continua (between 162 

two identities in Experiment 1, see Figure 2; and among three identities in Experiment 163 

2, see Figure 3) using Abrosoft Fantamorph (v. 5.4.7) with seven percentages of 164 

morphing: 0, 17, 33, 50, 67, 83, 100 (see Figures 2, 3). 165 

Experiment 1 166 

Paradigm 167 

The experimental paradigm was similar to that by Afraz et al., (2010). In every trial 168 

participants would see a briefly flashed image in one of eight locations at the 169 

periphery of their visual field (see Figure 1). Each image was shown for 50 ms at a 170 

distance of 7˚ of visual angle from the fixation point, and subtended approximately 4˚ 171 

x 4˚ of visual angle. The images could appear in one of eight locations evenly spaced 172 
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by 45 angular degrees around fixation. For Experiment 1, only the morph ab was used 173 

(see Figure 1). Participants were required to maintain fixation on a central red dot 174 

subtending approximately 1˚ of visual angle. 175 

After the image disappeared, participants reported which identity they saw using the 176 

left (identity a) and right (identity b) arrow keys. There was no time limit for 177 

responding, and participants were asked to be as accurate as possible. After 178 

responding, participants had to press the spacebar key to continue to the next trial. 179 

Participants performed five blocks containing 112 trials each, for a total of 560 trials. 180 

In each block all the images appeared twice for every angular location (8 angular 181 

locations x 7 morph percentages x 2 = 112). This provided ten data points for each 182 

percentage morphing at each location, for a total of 70 trials at each angular location.  183 

Before the experimental session participants were shown the identities used in the 184 

experiment (corresponding to 0% and 100% morphing, see Figure 2), and practiced 185 

the task with 20 trials. These data were discarded from the analyses. Participants 186 

performed two identical experimental sessions at least four weeks apart. 187 

Participants sat at a distance of approximately 50 cm from the screen, with their chin 188 

positioned on a chin-rest. The experiment was run using Psychtoolbox (Kleiner et al., 189 

2007) (version 3.0.12) in MATLAB (R2014b). The screen operated at a resolution of 190 

1920x1200 and a 60Hz refresh rate. 191 
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Subjects 192 

We recruited six subjects for this experiment (three males, including one of the 193 

authors, MVdOC). The sample size for Experiment 1 was not determined by formal 194 

estimates of power, and was limited by the availability of participants familiar with the 195 

stimulus identities. After the first experimental session, two participants (one male, 196 

one female) were at chance level in the task, thus only data from four subjects (two 197 

males, mean age 27.50 ± 2.08 SD) were used for the final analyses. 198 

All subjects had normal or corrected-to-normal vision, and provided written informed 199 

consent to participate in the experiment. The study was approved by the Dartmouth 200 

College Committee for the Protection of Human Subjects. 201 

Experiment 2 202 

Paradigm 203 

Experiment 2 differed from Experiment 1 in the following parameters (see Figures 1, 204 

3): 1. three morph continua (ab, ac, bc) instead of one; 2. images appeared in four 205 

locations (45˚, 135˚, 225˚, 315˚) instead of eight; 3. images were shown for 100 ms 206 

instead of 50 ms to make the task easier. 207 

All other parameters were the same as in Experiment 1. Participants had to indicate 208 

which of the three identities they saw by pressing the left (identity a), right (identity 209 

b), or down (identity c) arrow keys. 210 
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Participants performed ten blocks containing 84 trials each, for a total of 840 trials. In 211 

each block all the images appeared once for every angular location (4 angular 212 

locations x 7 morph percentages x 3 morphs = 84). We used 70 data points at every 213 

angular location to fit the model for each pair of identities. Thus, we used the 214 

responses to different unmorphed images for each pair of identities, ensuring 215 

independence of the models.  216 

Before the experimental session participants were shown the identities used in the 217 

experiment (corresponding to 0% and 100% morphing, see Figure 3), and practiced 218 

the task with 20 trials. These data were discarded from the analyses. Participants 219 

performed two experimental sessions at least four weeks apart. 220 

Subjects 221 

Ten participants (five males, mean age 27.30 ± 1.34 SD) participated in Experiment 2, 222 

five of which were recruited for Experiment 1 as well. No authors participated in 223 

Experiment 2. The sample size (n = 10) was determined using G*Power3 (Faul et al., 224 

2007, 2009) to obtain 80% power at � = 0.05 based on the correlation of the PSE 225 

estimates across sessions in Experiment 1, using a bivariate normal model (one-226 

tailed). 227 

All subjects had normal or corrected-to-normal vision, and provided written informed 228 

consent to participate in the experiment. The study was approved by the Dartmouth 229 

College Committee for the Protection of Human Subjects. 230 
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Familiarity and contact scales 231 

After the two experimental sessions, participants completed a questionnaire designed 232 

to assess how familiar each participant was with the identities shown in the 233 

experiment. Participants saw each target identity, and were asked to complete 234 

various scales for that identity. The questionnaire comprised the “Inclusion of the 235 

Other in the Self” scale (IOS) (Aron et al., 1992; Gächter et al., 2015), the “Subjective 236 

Closeness Inventory” (SCI) (Berscheid et al., 1989), and the “We-scale” (Cialdini et al., 237 

1997). The IOS scale showed two circles increasingly overlapping labeled “You” and 238 

“X”, and participants were given the following instructions: Using the figure below 239 

select which pair of circles best describes your relationship with this person. In the figure 240 

“X” serves as a placeholder for the person shown in the image at the beginning of this 241 

section, and you should think of “X” being that person. By selecting the appropriate 242 

number please indicate to what extent you and this person are connected (Aron et al., 243 

1992; Gächter et al., 2015). The SCI scale comprised the two following questions: 244 

Relative to all your other relationships (both same and opposite sex) how would you 245 

characterize your relationship with the person shown at the beginning of this section?, 246 

and Relative to what you know about other people's close relationships, how would you 247 

characterize your relationship with the person shown at the beginning of this section? 248 

Participants responded with a number between one (Not close at all) and seven (Very 249 

close) (Berscheid et al., 1989). The We-scale comprised the following question: Please 250 

select the appropriate number below to indicate to what extent you would use the term 251 

“WE” to characterize you and the person shown at the beginning of this section. 252 
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Participants responded with a number between one (Not at all) and seven (Very much 253 

so). For each participant and each identity we created a composite “familiarity score” 254 

by averaging the scores in the three scales.  255 

We also introduced a scale aimed at estimating the amount of interaction or contact 256 

between the participant and the target identity. The scale was based on the work by 257 

Idson and Mischel (2001), and participants were asked to respond Yes/No to the 258 

following six questions: Have you ever seen him during a departmental event?, Have you 259 

ever seen him during a party?, Have you ever had a group lunch/dinner/drinks with him?, 260 

Have you ever had a one-on-one lunch/dinner/drinks with him?, Have you ever texted 261 

him personally (not a group message)?, and Have you ever emailed him personally (not a 262 

group email)? The responses were converted to 0/1 and for each participant and for 263 

each identity we created a “contact score” by summing all the responses. 264 

For each subject separately, to obtain a measure of familiarity and contact related to 265 

each morph, we averaged the familiarity and contact scores of each pair of identities 266 

(e.g., the familiarity score of morph ab was the average of the scores for identity a and 267 

identity b).  268 

Psychometric fit 269 

For both experiments we fitted a group-level psychometric curve using Logit Mixed-270 

Effect models (Moscatelli et al., 2012)  as implemented in lme4 (Bates et al., 2015). For 271 

each experiment and each session, we fitted a model of the form 272 
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�� �  logit 	
�� � 
�
� � ������
�

���

�  

where k indicates the subject, n is the number of angular locations (n = 8 for the first 273 

experiment, and n = 4 for the second experiment), Ii
 is an indicator variable for the 274 

angular location, �i are the model fixed-effects, and zi are the subject-level random-275 

effects (random intercept) . From this model, we defined for each subject the Point of 276 

Subjective Equality (PSE) as the point x such that logit(x) = 0.5, that is for each angular 277 

location 278 

����
� � � 
�
� � ���
� � ���

�

� � ������  

Thus, the PSE for subject k at angular location i can be decomposed in a population-279 

level PSE and a subject-specific deviation from the population level, indicated with 280 

PSEp and ΔPSEk respectively. 281 

In Experiment 2 we fitted three separate models for each of the morph continua. In 282 

addition, prior to fitting we removed all trials in which subjects mistakenly reported a 283 

third identity. For example, if an image belonging to morph ab was presented, and 284 

subjects responded with c, the trial was removed.  285 

To quantify the bias across locations, we computed a variance score by squaring the 286 

Δ����, and summing them across locations, that is ���� �  ∑ �Δ������	
���  . Because 287 

this quantity is proportional to the variance against 0, throughout the manuscript we 288 

refer to it as ΔPSE variance. 289 
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Computational modeling 290 

To account for the retinotopic biases we simulated a population of neural units 291 

activated according to the Compressive Spatial Summation model (Kay et al., 2013, 292 

2015) and performed a model-based decoding analysis. This model was originally 293 

developed as an encoding model (Naselaris et al., 2011) to predict BOLD responses 294 

and estimate population receptive fields in visual areas and face-responsive areas 295 

such as OFA, pFus, and mFus (Kay et al., 2015). We refer to activations of neural units 296 

that can be thought as being voxels, small populations of neurons, or individual 297 

neurons. 298 

The CSS model posits that the response of a neural unit is equal to 299 

 � ! " �� 

with � �  # $��, � |��, ��, '����, ��(� (�, and $��, �|��, ��, '� being a 2D gaussian 300 

centered at ��, ��, with covariance Σ �  '�, and ���, �� being the stimulus converted 301 

into contrast map. The term g represents the gain of the response, while the power 302 

exponent n accounts for subadditive responses (Kay et al., 2013).  303 

We reanalyzed the data from the fMRI experiments in Kay et al. (2015) (pRF-304 

estimation experiment and face-task experiment) using the publicly available data 305 

(http://kendrickkay.net/vtcdata)  and code (http://kendrickkay.net/socmodel/) to 306 

obtain parameter estimates for three ROIs (Inferior Occipital Gyrus, IOG—also termed 307 

OFA—mFus, and pFus). The simulation results were similar using parameter estimates 308 

from both experiments, thus we describe the procedure for the face-task experiment 309 
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only because of the similarities with the behavioral experiments reported here. We 310 

refer the reader to their paper for more details on the experiments and data 311 

preprocessing. In the face-task experiment three participants saw medium-sized faces 312 

(3.2˚) in 25 visual field locations (5x5 grid with 1.5˚ spacing), and were asked to 313 

perform a 1-back repetition detection task on face identity while fixating at the center 314 

of the screen. The resulting 25 betas were used to fit the models. As in the original 315 

paper, negative beta estimates were rectified (set to 0) and the power exponent was 316 

set to n = 0.2 and not optimized because of the reduced number of stimuli. Model 317 

fitting was performed with cross-validation. Stimuli were randomly split into ten 318 

groups, and each group was left out in turn for testing. The parameter estimates were 319 

aggregated across cross-validation runs taking the median value. 320 

We simulated a population of N = Na + Nb neural units, where Na indicates the number 321 

of units selective to identity a, and Nb indicates the number of units selective to 322 

identity b. For simplicity we set Nb = 1 and varied Na, effectively changing the ratio of 323 

units selective to one of the two identities. We performed additional simulations 324 

increasing the total number of units and found consistent results, but here we report 325 

the simulation with  Nb = 1 for simplicity and consistency with the hypothesis of small 326 

neural populations responsive to specific identities. The stimuli consisted of contrast 327 

circles of diameter 4˚ centered at 7˚ from the center, and placed at an angle of 45˚, 328 

135˚, 225˚, and 315˚, simulating Experiment 2. We simulated the activation of the units 329 

assuming i.i.d. random noise normally distributed with mean of 0 and standard 330 

deviation of 0.1. 331 
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Each experiment consisted of a learning phase in which we simulated the (noisy) 332 

response to the full identities a and b in each of the four locations, with 10 trials for 333 

each identity and location. We used these responses to train a Support Vector 334 

Machine (Cortes and Vapnik, 1995) with linear kernel to differentiate between the two 335 

identities based on the pattern of population responses. Then, we simulated the 336 

actual experiment by generating responses to morphed faces. For simplicity, we 337 

assumed a linear response between the amount of morphing and the population 338 

response. That is, we assumed that if a morph with m percentage morphing towards b 339 

was presented, the population response was a combination of the responses to a and 340 

b, weighted by (1-m, m). The amounts of morphing paralleled those used in the two 341 

experiments (0, 17, 33, 50, 67, 83, 100). We simulated 10 trials for each angular location 342 

and each amount of morphing, and recorded the responses of the trained decoder. 343 

These responses were used to fit a logit model similar to the model used in the main 344 

analyses (without random effects), and to estimate the Point of Subjective Equality 345 

for each angular location. The sum of these squared estimates around 50% was 346 

computed and stored. 347 

We varied systematically the ratio Na/Nb of units responsive to identity a, ranging from 348 

1 to 9, and repeated 500 experiments for each ratio. For each experiment, parameter 349 

values (pRF location and size) were randomly sampled without replacement from the 350 

population of parameters previously estimated from the face-task experiment of Kay 351 

et al., 2015. We simulated attentional modulations by modifying the gain for the units 352 

responsive to identity a between 1 and 4 in 0.5 steps, and fixing the gain for identity b 353 
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to 1. As an alternative, we simulated the effect of increases in receptive field size for 354 

the units responsive to identity a by increasing their receptive field size from 0% to 355 

50% in 10% steps, while keeping the gain fixed to 1. We simulated receptive fields in 356 

this way from three face-responsive ROIs (IOG, mFus, and pFus). 357 

Code and data availability 358 

Code for the analyses, raw data for both experiments, single subject results, and 359 

simulations are available at [REDACTED] as well as Extended Data. 360 

Results 361 

Experiment 1 362 

In this experiment, participants performed a two-alternative forced-choice (AFC) task 363 

on identity discrimination. In each trial they saw a face presented for 50 ms, and were 364 

asked to indicate which of the two identities they just saw. Each face could appear in 365 

one of eight stimulus locations. Participants performed the same experiment with the 366 

same task a second time, at least 33 days after the first session (average 35 days ± 4 367 

days standard deviation). 368 

Participants showed stable and idiosyncratic retinal heterogeneity for identification. 369 

The PSE estimates for the two sessions were significantly correlated (see Table 1 and 370 

Figure 2B), showing stable estimates, and the within-subject correlations of ΔPSEs 371 

(see Methods) was significantly higher than the between-subject correlation 372 
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(correlation difference: 0.87 [0.64, 1.10], 95% BCa confidence intervals (Efron, 1987); 373 

see Table 2), showing that the biases were idiosyncratic (see Figure 2A for example 374 

fits for two different subjects). 375 

Table 1. 

Correlation of parameter estimates across sessions for the two experiments. 

Parameter r t df p 

Experiment 1   

PSE 0.89 [-0.23, 1] 4.86** 6 0.002831 

ΔPSE 0.71 [0.47, 0.84] 5.47*** 30 6.106e-06 

Experiment 2   

PSE 0.98 [0.93, 0.99] 15.22*** 10 3.042e-08 

ΔPSE 0.64 [0.5, 0.75] 9.02*** 118 3.997e-15 

Note: All confidence intervals are 95% BCa with 10,000 repetitions. 

* p < .05. ** p < .01. *** p < .001  

 376 

Table 2. 

Comparison of within-subjects correlations of parameter estimates across sessions with 

between-subjects correlations. 

Morph Within-subjects r Between-subjects r Difference 

Experiment 1 

ab 0.65
†
 [0.57, 0.8] -0.22 [-0.41, -0.01] 0.87

†
 [0.63, 1.1] 

Experiment 2 

ab 0.32 [-0.10, 0.62] -0.02 [-0.15, 0.11] 0.34 [-0.07, 0.69] 

ac 0.62
†
 [0.35, 0.79] -0.07 [-0.21, 0.08] 0.68

†
 [0.41, 0.92] 

bc 0.85
†
 [0.61, 0.95] -0.08 [-0.27, 0.12] 0.92

†
 [0.68, 1.15] 

Note: All confidence intervals are 95% BCa with 10,000 repetitions. 

† indicates that the CIs do not contain 0. 
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 377 

 

Figure 2. Stable and idiosyncratic biases in identification in Experiment 1. A) 
Psychometric fit for two subjects from both sessions. Colors indicate location (see 
colors in bottom left corner); actual data (points) are shown only for the extreme 
locations to avoid visual clutter. B) The parameter estimates across sessions (at 
least 33 days apart) were stable (r = 0.71 [0.47, 0.84], see Table 1). Dots represent 
individual parameter estimates for each location, color coded according to each 
subject. Correlations were performed on the data shown in this panel. C) Example 
morphs used in the experiment. Note that the morphs depicted here are shown for 
illustration only, and participants saw morphs of identities that were personally 
familiar to them. 

 378 

  379 
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Experiment 2 380 

In Experiment 1 participants exhibited stable, retinotopic biases for face identification 381 

that were specific to each participant. Experiment 1, however, used only two target 382 

identities, thus it could not address the question of whether the biases were specific to 383 

target identities or to general variations in face recognition that would be the same 384 

for all target faces. For this reason we conducted a second experiment in which we 385 

increased the number of target identities. In Experiment 2, participants performed a 386 

similar task as in Experiment 1 with the following differences. First, each face was 387 

presented for 100 ms instead of 50 ms in order to make the task easier, since some 388 

participants could not perform the task in Experiment 1; second, each face could 389 

belong to one of three morphs, and participants were required to indicate which of 390 

three identities the face belonged to; third, each face could appear in four retinal 391 

locations instead of eight (see Figure 1) to maintain an appropriate duration of the 392 

experiment. Each participant performed another experimental session at least 28 393 

days after the first session (average 33 days ± 8 days SD).  394 

We found that participants exhibited stable biases across sessions for the three 395 

morphs (see Table 1 and Figure 3). Interestingly, within-subjects correlations were 396 

higher than between-subjects correlations for the two morphs that included the 397 

identity c (morphs ac and bc), but not for morph ab (see Table 2), suggesting stronger 398 

differences in spatial heterogeneity caused by identity c. To test this further, we 399 

performed a two-way ANOVA on the PSE estimates across sessions with participants 400 

and angular locations as factors. The ANOVA was run for each pair of morphs 401 
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containing the same identity (e.g., for identity a the ANOVA was run on data from 402 

morphs ab and ac), and the PSE estimates were transformed to be with respect to the 403 

same identity (e.g., for identity b we considered PSEbc and 100 - PSEab). We found 404 

significant interactions between participants and angular locations for identity b (F(27, 405 

120) = 1.77, p = 0.01947) and identity c (F(27, 120) = 3.34, p = 3.229e-06), but not 406 

identity a (F(27, 120) = 1.17, p = 0.2807), confirming that participants showed increased 407 

spatial heterogeneity for identities b and c. The increased spatial heterogeneity for 408 

identities b and c, but not a, can be appreciated by inspecting the ΔPSE estimates for 409 

each participant. Figure 4A shows lower bias across retinal locations for morph ab 410 

than the other two morphs, suggesting more similar performance across locations for 411 

morph ab. To investigate factors explaining the difference in performance across 412 

spatial locations between the three identities, we compared the ΔPSE estimates with 413 

the reported familiarity of the identities. 414 

The variance of the average ΔPSE estimates across sessions for each subject was 415 

significantly correlated with the reported familiarity of the identities  416 

(r = -0.56 [-0.71, -0.30], t(28) = -3.59, p = 0.001248), showing that the strength of the 417 

retinal bias for identities was inversely modulated by personal familiarity (see Figure 418 

4B). We estimated personal familiarity by averaging participants’ ratings of the 419 

identities on three scales (Inclusion of the Other in the Self, the We-Scale, and the 420 

Subjective Closeness Inventory, see Methods for details). The three scales were highly 421 

correlated (min correlation r = 0.89, max correlation r = 0.96).  422 
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Because the amount of personal familiarity was correlated with the amount of contact 423 

with a target identity (r = 0.45 [0.17, 0.68], t(28) = 2.65,  424 

p = 0.01304), we tested whether a linear model predicting ΔPSE with both contact and 425 

familiarity as predictors could fit the data better. Both models were significant, but 426 

the model with two predictors provided a significantly better fit (X2(1) = 6.30, p = 427 

0.0121, log-likelihood ratio test), and explained more variance as indicated by higher 428 

R2: R2 = 0.45, adjusted R2 = 0.40 for the model with both Familiarity and Contact 429 

scores (F(2, 27) = 10.82, p = 0.0003539), and R2 = 0.32, adjusted R2 = 0.29 for the model 430 

with the Familiarity score only (F(1, 28) = 12.88, p = 0.001248). Importantly, both 431 

predictors were significant (see Table 3), indicating that familiarity modulated the 432 

variance of the ΔPSE estimates in addition to modulation based on the amount of 433 

contact with a person. After adjusting for the contact score, the variance of the ΔPSE 434 

estimates and the familiarity score were still significantly correlated (rp = -0.42 [-0.61, -435 

0.16], t(28) = -2.42, p = 0.02235). 436 

Table 3. Models predicting variance of the ΔPSE estimates across locations in Experiment 2. 

Model R2 Score � �p

2 t p 

1 0.32 Familiarity -0.0574 0.32 -3.59 0.0013 

2 0.45 Familiarity -0.0390 0.17 -2.38 0.0249 

  Contact -0.0452 0.19 -2.512 0.0183 

 437 
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Figure 3. Stable and idiosyncratic biases in identification in Experiment 2. A) 
Psychometric fit for one subject from both sessions for each of the morphs. Colors 
indicate location (see colors in bottom left corner); actual data (points) are shown 
only for the extreme locations to avoid visual clutter. B) The parameter estimates 
across sessions (at least 28 days apart) were stable (r = 0.64 [0.5, 0.75], see Table 1). 
Dots represent individual parameter estimates for each location, color coded 
according to each participant. Correlations were performed on the data shown in 
this panel. C) Example morphs used in the experiment. Note that the morphs 
depicted here are shown only for illustration (participants saw morphs of identities 
who were personally familiar). 

 438 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/253468doi: bioRxiv preprint 

https://doi.org/10.1101/253468
http://creativecommons.org/licenses/by/4.0/


Visconti di Oleggio Castello et al.   Retinotopic bias in face identification  

25 

 

 

Figure 4. The strength of idiosyncratic biases was modulated by personal 

familiarity. A) Individual subjects’ ΔPSE for each morph, averaged across sessions. 
Note the difference in variance across locations for the three different morphs (left 
to right)). B) The variance across locations of ΔPSE estimates was inversely 
correlated with the reported familiarity of the identities (left panel; r = -0.56 [-0.71, -
0.30]), even when adjusting for the Contact score (middle panel; rp = -0.42 [-0.61, -
0.16]). The right panel shows the scatterplot between the Contact score and the 
ΔPSE variance, adjusted for the Familiarity score, which were significantly 
correlated as well (rp = -0.44 [-0.62, -0.17]). See Methods for definition of the 
Familiarity score and the Contact score. Dots represent individual participant’s data, 
color coded according to morph type. Correlations were performed on the data 
shown in these panels. 

 439 
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Model simulation 441 

In two behavioral experiments we found a stable, idiosyncratic bias towards specific 442 

identities that varied according to the location in which the morphed face stimuli 443 

appeared. The bias was reduced with more familiar identities, showing effects of 444 

learning. To account for this effect, we hypothesized that small populations of 445 

neurons selective to specific identities sample a limited portion of the visual field 446 

(Afraz et al., 2010). We also hypothesized that with extended interactions with a 447 

person, more neural units become selective to the facial appearance of the identity. In 448 

turn, this increases the spatial extent of the field covered by the population and thus 449 

reduces the retinotopic bias.  450 

To quantitatively test this hypothesis, we simulated a population of neural units in 451 

IOG (OFA), pFus, and mFus activated according to the Compressive Spatial 452 

Summation model (Kay et al., 2013, 2015). The parameters of this model were 453 

estimated from the publicly available data from Kay et al. (2015). We simulated 454 

learning effects by progressively increasing the number of units selective to one of the 455 

two identities, and measuring the response of a linear decoder trained to distinguish 456 

between the two identities. As can be seen in Figure 5A, increasing the number of 457 

units reduced the overall bias (expressed as variance against 0.5 of the PSE estimates, 458 

see Methods for details) by increasing the spatial coverage (see Figure 5B).  459 

Interestingly, the larger bias was found within the simulated IOG. Inspecting the pRF 460 

coverage of the three ROIs revealed that the stimuli shown at 7˚ of eccentricity were 461 
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at the border of the receptive field coverage in IOG (Figure 5B) because of the smaller 462 

RF sizes (median value across voxels of 2.98˚ [2.85˚, 3.10˚], 95% bootstrapped 463 

confidence intervals), compared to those in pFus and mFus (3.87˚ [3.65˚, 4.05˚] and 464 

3.55˚ [3.35˚, 3.75˚] respectively). To quantify this difference, we computed the average 465 

proportion of units covering the stimulus locations in each ROI. As predicted from the 466 

smaller RF sizes, fewer units in IOG covered the area where the stimuli were 467 

presented (31.61%) compared to pFus (47.04%) and mFus (45.83%). These results 468 

suggest that a larger retinotopic bias would be expected to originate from units in 469 

IOG.. 470 

As alternative explanations, we tested whether differences in gain or increases in RF 471 

size could reduce the bias to a similar extent as increasing the number of units. Figure 472 

5C shows that modulating the gain failed to reduce the retinotopic bias in all 473 

simulated ROIs, while Figure 5D shows that increasing RF size of the units responsive 474 

to the more familiar identity can also reduce the retinotopic bias. 475 
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Figure 5. Simulating retinotopic biases and learning effects in face-responsive 

ROIs. We hypothesized that neural units (voxels, small populations of neurons, or 
individual neurons) cover a limited portion of the visual field, and that learning 
increases the number of neural units selective to a particular identity. A) Increasing 
the number of units selective to one identity reduces the retinotopic bias. Results of 
simulating 500 experiments by varying the ratio of neural units selective to one of two 
identities and fixing the gain to 1 for both identities. Dots represent median values 
with 95% bootstrapped CIs (1,000 replicates; note that for some points the CIs are too 
small to be seen). In all simulated ROIs the variance of the PSE around 50% decreases 
with increasing number of units selective to a, but remains larger in IOG because of its 
receptive field size. B)  Population coverage of the units in each ROI estimated from 
the face-task data in Kay et al. (2015) and used in the simulations. Circles at the 
periphery show the simulated stimulus locations. Each image is normalized to the 
number of units in each ROI. Receptive fields are computed with radius 2', following 
the convention in Kay et al., (2015). Percentages below each image show the average 
proportion of units whose receptive field cover the stimulus locations. Compared to 
pFus and mFus, fewer units cover the stimuli in IOG resulting in a larger bias across 
locations. C) Increasing the gain of the response to one identity fails to reduce the 
retinotopic bias. D) Increasing the receptive field size of the units responsive to one 
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identity reduces the retinotopic bias. In both C) and D) each dot represents median 
values of PSE variance for 500 simulated experiments. CIs are not shown to reduce 
visual clutter. 

 476 

Discussion 477 

Afraz et al. (2010) reported spatial heterogeneity for recognition of facial attributes 478 

such as gender and age, suggesting that relatively independent neural populations 479 

tuned to facial features might sample different regions of the visual field. Prolonged 480 

social interactions with personally familiar faces lead to facilitated, prioritized 481 

processing of those faces. Here we wanted to investigate if this learning of face 482 

identity through repeated social interactions also affects these local visual processes, 483 

by measuring spatial heterogeneity of identity recognition. We measured whether 484 

face identification performance for personally familiar faces differed according to the 485 

location in the visual field where face images were presented. We found that 486 

participants exhibited idiosyncratic, retinotopic biases for different face identities that 487 

were stable across experimental sessions. Importantly, the variability of the 488 

retinotopic bias was reduced with increased familiarity with the target identities. 489 

These data support the hypothesis that familiarity modulates processes in visual areas 490 

with limited position invariance (Visconti di Oleggio Castello et al., 2017a).  491 

These results extend the reports of spatial heterogeneity in visual processing to face 492 

identification. Similar biases exist for high-level judgments such as face gender and 493 

age (Afraz et al., 2010), as well as shape discrimination (Afraz et al., 2010), crowding, 494 
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and saccadic precision (Greenwood et al., 2017). Afraz et al.  (2010) suggested that 495 

neurons in IT exhibit biases that are dependent on retinal location because their 496 

receptive field sizes are not large enough to provide complete translational invariance, 497 

and stimuli in different locations will activate a limited group of neurons. In this work, 498 

we show that these perceptual biases for face processing not only exist for gender and 499 

age judgments (Afraz et al., 2010), but also for face identification and that these 500 

biases are affected by learning.  501 

Location-dependent coding in face-responsive areas 502 

Neurons in temporal cortex involved in object recognition are widely thought to be 503 

invariant to object translation, that is their response to an object will not be 504 

modulated by the location of the object in the visual field (Riesenhuber and Poggio, 505 

1999; Hung et al., 2005). However, evidence suggests that location information is 506 

preserved in activity of neurons throughout temporal cortex (Kravitz et al., 2008; 507 

Hong et al., 2016). Location information can be encoded as a retinotopic map, such as 508 

in early visual cortex, where neighboring neurons are selective to locations that are 509 

neighboring in the visual field. In the absence of a clear cortical retinotopic map, 510 

location information can still be preserved at the level of population responses 511 

(Schwarzlose et al., 2008; Rajimehr et al., 2014; Henriksson et al., 2015; Kay et al., 512 

2015).  513 

Areas of occipital and temporal cortices show responses to objects that are 514 

modulated by position (Kravitz et al., 2008, 2010; Sayres and Grill-Spector, 2008). In 515 
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particular, also face-responsive areas of the ventral core system (Haxby et al., 2000; 516 

Visconti di Oleggio Castello et al., 2017a) such as OFA, pFus, and mFus show 517 

responses that are modulated by the position in which a face appears. Responses to a 518 

face are stronger in these areas when faces are presented foveally rather than 519 

peripherally (Levy et al., 2001; Hasson et al., 2002; Malach et al., 2002). In addition, 520 

early face processing areas such as PL in monkeys or OFA in humans code specific 521 

features of faces in typical locations. Neurons in PL are tuned to eyes in the 522 

contralateral hemifield, with receptive fields covering the typical location of the eyes 523 

at fixation (Issa and DiCarlo, 2012). Similarly, OFA responses to face parts are stronger 524 

when they are presented in typical locations (de Haas et al., 2016), and OFA activity 525 

codes the position and relationship between face parts (Henriksson et al., 2015).  526 

The modulation of responses by object location in these areas seems to be driven by 527 

differences in receptive field sizes. In humans, population receptive fields (pRF) can be 528 

estimated with fMRI by modeling voxel-wise BOLD responses (Dumoulin and 529 

Wandell, 2008; Wandell and Winawer, 2011, 2015; Kay et al., 2013). These studies 530 

have shown that pRF centers are mostly located in the contralateral hemifield (Kay et 531 

al., 2015; Grill-Spector et al., 2017b), corresponding to the reported preference of 532 

these areas for faces presented contralaterally (Hemond et al., 2007). In addition, pRF 533 

sizes increase the higher in the face processing hierarchy, favoring perifoveal regions 534 

(Kay et al., 2015; Silson et al., 2016). The location-dependent coding of faces in these 535 

face-processing areas might be based on population activity, since these areas do not 536 

overlap with retinotopic maps in humans (for example, OFA does not seem to overlap 537 
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with estimated retinotopic maps, Silson et al., 2016, but see Janssens et al., 2014; 538 

Rajimehr et al., 2014; Arcaro and Livingstone, 2017; Arcaro et al., 2017 for work in 539 

monkeys showing partial overlap between retinotopic maps and face patches). 540 

Cortical origin of idiosyncratic biases and effects of familiarity 541 

Populations of neurons in visual areas and in temporal cortex cover limited portions of 542 

the visual field, with progressively larger receptive fields centered around perifoveal 543 

regions (Grill-Spector et al., 2017b). This property suggests that biases in high-level 544 

judgments of gender, age, and identity may be due to the variability of feature 545 

detectors that cover limited portions of the visual field (Afraz et al., 2010). While the 546 

results from our behavioral study cannot point to a precise location of the cortical 547 

origin of these biases, our computational simulation suggests that a larger bias could 548 

arise from responses in the OFA, given the estimates of receptive field size and 549 

eccentricity in this area (Kay et al., 2015; Grill-Spector et al., 2017b). We cannot 550 

exclude that this bias might originate in earlier areas of the visual processing stream. 551 

In this work, we showed that the extent of variation in biases across retinal locations 552 

was inversely correlated with the reported familiarity with individuals, suggesting that 553 

a history of repeated interaction with a person may tune the responses of neurons to 554 

that individual in different retinal locations, generating more homogeneous 555 

responses. Repeated exposure to the faces of familiar individuals during real-life social 556 

interactions results in a detailed representation of the visual appearance of a 557 

personally familiar face. Our computational simulation suggests a simple process for 558 
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augmenting and strengthening the representation of a face. Learning through social 559 

interactions might cause a greater number of neural units to become responsive to a 560 

specific identity, thus covering a larger area of the visual field and reducing the 561 

retinotopic biases. Our results showed that both ratings of familiarity and ratings of 562 

amount of contact were strong predictors for reduced retinotopic bias; however, 563 

familiarity still predicted the reduced bias when accounting for amount of contact. 564 

While additional experiments are needed to test whether pure perceptual learning is 565 

sufficient to reduce the retinotopic biases to the same extent as personal familiarity, 566 

these results suggest that repeated personal interactions can strengthen neural 567 

representations to a larger extent than mere increased frequency of exposure to a 568 

face. This idea is consistent with neuroimaging studies showing a stronger and more 569 

widespread activation for personally familiar faces compared to unfamiliar or 570 

experimentally learned faces (Gobbini and Haxby, 2006; Cloutier et al., 2011; Natu and 571 

O’Toole, 2011; Leibenluft et al., 2004; Gobbini and Haxby, 2007; Bobes et al., 2013; 572 

Ramon and Gobbini, 2017; Visconti di Oleggio Castello et al., 2017a) . 573 

Effects of attention 574 

Could differences in attention explain the modulation of retinotopic biases reported 575 

here? Faces, and personally familiar faces in particular, are important social stimuli 576 

whose correct detection and processing affects social behavior (Brothers, 2002; 577 

Gobbini and Haxby, 2007). Behavioral experiments from our lab have shown that 578 

personally familiar faces break through faster in a continuous flash suppression 579 

paradigm (Gobbini et al., 2013), and hold attention more strongly than unfamiliar 580 
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faces do in a Posner cueing paradigm (Chauhan et al., 2017). These results show that 581 

familiar faces differ not only at the level of representations, but also in allocation of 582 

attention. At the neural level, changes in attention might be implemented as 583 

increased gain for salient stimuli or increased receptive field size (Kay et al., 2015). In 584 

an fMRI experiment Kay et al. (2015) reported that population receptive field (pRF) 585 

estimates were modulated by the type of task. Gain, eccentricity, and size of the pRFs 586 

increased during a 1-back repetition detection task on facial identity as compared to a 587 

1-back task on digits presented foveally. 588 

To address differences in gain in our computational simulation, we modified the 589 

relative gain of units responsive to one of the two identities and found that it did not 590 

influence the PSE bias across locations. This bias was more strongly modulated by the 591 

number of units responsive to one of the identities. On the other hand, simulating 592 

increases in receptive field size  reduced the retinotopic bias almost as much as 593 

increasing the number of units. These simulations suggest two alternative, and 594 

possibly interacting, mechanisms that can reduce retinotopic biases in identification: 595 

recruitment of additional units selective to an identity or changes in RF properties. 596 

Additional experiments are needed to further characterize the differences in attention 597 

and representations that contribute to the facilitated processing of personally familiar 598 

faces. 599 

Implications for computational models of vision 600 
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Many computational models of biological vision posit translational invariance: 601 

neurons in IT are assumed to respond to the same extent, regardless of the object 602 

position (Riesenhuber and Poggio, 1999; Serre et al., 2007; Kravitz et al., 2008). Even 603 

the models that currently provide better fits to neural activity in IT such as 604 

hierarchical, convolutional neural networks (Yamins et al., 2014; Kriegeskorte, 2015; 605 

Yamins and DiCarlo, 2016) use weight sharing in convolutional layers to achieve 606 

position invariance (LeCun et al., 2015; Schmidhuber, 2015; Goodfellow et al., 2016). 607 

While this reduces complexity by limiting the number of parameters to be fitted, 608 

neuroimaging and behavioral experiments have shown that translational invariance in 609 

IT is preserved only for small displacements (DiCarlo and Maunsell, 2003; Kay et al., 610 

2015; Silson et al., 2016; for a review see Kravitz et al., 2008), with varying receptive 611 

field sizes and eccentricities (Grill-Spector et al., 2017a). Our results highlight the 612 

limited position invariance for high-level judgments such as identity, and add to the 613 

known spatial heterogeneity for gender and age judgments (Afraz et al., 2010). Our 614 

results also show that a higher degree of invariance can be achieved through learning, 615 

as shown by the reduced bias for highly familiar faces. This finding highlights that to 616 

increase biological plausibility of models of vision, differences in eccentricity and 617 

receptive field size should be taken into account (Poggio et al., 2014), as well as more 618 

dynamic effects such as changes induced by learning and attention (Grill-Spector et 619 

al., 2017a). 620 

Conclusions 621 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/253468doi: bioRxiv preprint 

https://doi.org/10.1101/253468
http://creativecommons.org/licenses/by/4.0/


Visconti di Oleggio Castello et al.   Retinotopic bias in face identification  

36 

 

Taken together, the results reported here support our hypothesis that facilitated 622 

processing for personally familiar faces might be mediated by the development or 623 

tuning of detectors for personally familiar faces in the visual pathway in areas that still 624 

have localized analyses (Gobbini et al., 2013; Visconti di Oleggio Castello et al., 2014, 625 

2017b; Visconti di Oleggio Castello and Ida Gobbini, 2015). The OFA might be a 626 

candidate for the cortical origin of these biases as well as for the development of 627 

detectors for diagnostic fragments. Patterns of responses in OFA (and neurons in the 628 

monkey putative homologue PL, Issa and DiCarlo, 2012) are tuned to typical locations 629 

of face fragments (Henriksson et al., 2015; de Haas et al., 2016). Population receptive 630 

fields of voxels in this region cover an area of the visual field that is large enough to 631 

integrate features of intermediate complexity at an average conversational distance 632 

(Kay et al., 2015; Grill-Spector et al., 2017b), such as combinations of eyes and 633 

eyebrows, which have been shown to be theoretically optimal and highly informative 634 

for object classification (Ullman et al., 2001, 2002; Ullman, 2007). 635 

Future research is needed to further disambiguate differences in representations or 636 

attention that generate these biases and how learning reduces them. Nonetheless, 637 

our results suggest that prioritized processing for personally familiar faces may exist 638 

at relatively early stages of the face processing hierarchy, as shown by the local biases 639 

reported here. Learning associated with repeated personal interactions modifies the 640 

representation of these faces, suggesting that personal familiarity affects face-641 

processing areas well after developmental critical periods (Arcaro et al., 2017; 642 

Livingstone et al., 2017). We hypothesize that these differences may be one of the 643 
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mechanisms that underlies the known behavioral advantages for perception of 644 

personally familiar faces (Burton et al., 1999; Gobbini and Haxby, 2007; Gobbini, 2010; 645 

Gobbini et al., 2013; Visconti di Oleggio Castello et al., 2014, 2017b; Ramon et al., 646 

2015; Visconti di Oleggio Castello and Gobbini, 2015; Chauhan et al., 2017; Ramon and 647 

Gobbini, 2017). 648 

  649 
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Legends 832 

Figure 1. Experimental paradigm. The left panel shows the experimental paradigm, 833 

while the right panel shows the locations used in Experiment 1 (eight locations, top 834 

panel) and in Experiment 2 (four locations, bottom panel). 835 

Figure 2. Stable and idiosyncratic biases in identification in Experiment 1. A) 836 

Psychometric fit for two subjects from both sessions. Colors indicate location (see 837 

colors in bottom left corner); actual data (points) are shown only for the extreme 838 

locations to avoid visual clutter. B) The parameter estimates across sessions (at least 839 

33 days apart) were stable (r = 0.71 [0.47, 0.84], see Table 1). Dots represent individual 840 

parameter estimates for each location, color coded according to each subject. 841 

Correlations were performed on the data shown in this panel. C) Example morphs 842 

used in the experiment. Note that the morphs depicted here are shown for illustration 843 

only, and participants saw morphs of identities that were personally familiar to them. 844 

Figure 3. Stable and idiosyncratic biases in identification in Experiment 2. A) 845 

Psychometric fit for one subject from both sessions for each of the morphs. Colors 846 

indicate location (see colors in bottom left corner); actual data (points) are shown only 847 

for the extreme locations to avoid visual clutter. B) The parameter estimates across 848 

sessions (at least 28 days apart) were stable (r = 0.64 [0.5, 0.75], see Table 1). Dots 849 

represent individual parameter estimates for each location, color coded according to 850 

each participant. Correlations were performed on the data shown in this panel. C) 851 

Example morphs used in the experiment. Note that the morphs depicted here are 852 

shown only for illustration (participants saw morphs of identities who were personally 853 

familiar). 854 

Figure 4. The strength of idiosyncratic biases was modulated by personal 855 

familiarity. A) Individual subjects’ ΔPSE for each morph, averaged across sessions. 856 

Note the difference in variance across locations for the three different morphs (left to 857 

right)). B) The variance across locations of ΔPSE estimates was inversely correlated 858 

with the reported familiarity of the identities (left panel; r = -0.56 [-0.71, -0.30]), even 859 

when adjusting for the Contact score (middle panel; rp = -0.42 [-0.61, -0.16]). The right 860 

panel shows the scatterplot between the Contact score and the ΔPSE variance, 861 

adjusted for the Familiarity score, which were significantly correlated as well (rp = -862 

0.44 [-0.62, -0.17]). See Methods for definition of the Familiarity score and the 863 

Contact score. Dots represent individual participant’s data, color coded according to 864 

morph type. Correlations were performed on the data shown in these panels. 865 

Figure 5. Simulating retinotopic biases and learning effects in face-responsive 866 

ROIs. We hypothesized that neural units (voxels, small populations of neurons, or 867 

individual neurons) cover a limited portion of the visual field, and that learning 868 

increases the number of neural units selective to a particular identity. A) Increasing 869 

the number of units selective to one identity reduces the retinotopic bias. Results of 870 

simulating 500 experiments by varying the ratio of neural units selective to one of two 871 
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identities and fixing the gain to 1 for both identities. Dots represent median values 872 

with 95% bootstrapped CIs (1,000 replicates; note that for some points the CIs are too 873 

small to be seen). In all simulated ROIs the variance of the PSE around 50% decreases 874 

with increasing number of units selective to a, but remains larger in IOG because of its 875 

receptive field size. B)  Population coverage of the units in each ROI estimated from 876 

the face-task data in Kay et al. (2015) and used in the simulations. Circles at the 877 

periphery show the simulated stimulus locations. Each image is normalized to the 878 

number of units in each ROI. Receptive fields are computed with radius 2', following 879 

the convention in Kay et al., (2015). Percentages below each image show the average 880 

proportion of units whose receptive field cover the stimulus locations. Compared to 881 

pFus and mFus, fewer units cover the stimuli in IOG resulting in a larger bias across 882 

locations. C) Increasing the gain of the response to one identity fails to reduce the 883 

retinotopic bias. D) Increasing the receptive field size of the units responsive to one 884 

identity reduces the retinotopic bias. In both C) and D) each dot represents median 885 

values of PSE variance for 500 simulated experiments. CIs are not shown to reduce 886 

visual clutter. 887 

Table 1. Correlation of parameter estimates across sessions for the two experiments. 888 

Table 2. Comparison of within-subjects correlations of parameter estimates across 889 

sessions with between-subjects correlations. 890 

Table 3. Models predicting variance of the ΔPSE estimates across angular locations in 891 

Experiment 2. 892 

Extended Data. The archive contains data from both experiments, as well as the 893 

analysis scripts. 894 
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Tables 896 

Table 1. 
Correlation of parameter estimates across sessions for the two experiments. 

Parameter r t df 

Experiment 1  

PSE 0.89 [-0.23, 1] 4.86** 6 

ΔPSE 0.71 [0.47, 0.84] 5.47*** 30 

Experiment 2  

PSE 0.98 [0.93, 0.99] 15.22*** 10 

ΔPSE 0.64 [0.5, 0.75] 9.02*** 118 

Note: All confidence intervals are 95% BCa with 10,000 repetitions. 

* p < .05. ** p < .01. *** p < .001  

 897 

Table 2. 
Comparison of within-subjects correlations of parameter estimates across sessions 
with between-subjects correlations. 

Morph Within-subjects r Between-subjects r Difference 

Experiment 1 

ab 0.65† [0.57, 0.8] -0.22 [-0.41, -0.01] 0.87† [0.63, 1.1] 

Experiment 2 

ab 0.32 [-0.10, 0.62] -0.02 [-0.15, 0.11] 0.34 [-0.07, 0.69] 

ac 0.62† [0.35, 0.79] -0.07 [-0.21, 0.08] 0.68† [0.41, 0.92] 

bc 0.85† [0.61, 0.95] -0.08 [-0.27, 0.12] 0.92† [0.68, 1.15] 

Note: All confidence intervals are 95% BCa with 10,000 repetitions. 

† indicates that the CIs do not contain 0. 
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Table 3. Models predicting variance of the ΔPSE estimates across angular locations in 

Experiment 2. 

Model R2 Score � �p

2 t p 

1 0.32 Familiarity -0.0574 0.32 -3.59 0.0013 

2 0.45 Familiarity -0.0390 0.17 -2.38 0.0249 

  Contact -0.0452 0.19 -2.512 0.0183 
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