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Abstract 17 

Aim: Employ phylogeographic analyses of a widespread species complex to examine the role of historical and 18 
evolutionary processes in the origin and maintenance of high species diversity in the Neotropical montane region. 19 
 20 
Location: Neotropical highlands. 21 
 22 
Taxon: Henicorhina wood-wrens (Aves, Troglodytidae). 23 
 24 
Methods: We collected mtDNA sequence data for 288 individuals thoroughly covering the range of the Henicorhina 25 
leucophrys complex from Mexico to Bolivia. Sequences were employed to characterize population structure, infer 26 
phylogenetic relationships among populations and their divergence times, examine lineage accumulation through time, 27 
and identify presumptive species using coalescent methods. We also explored the origin of elevational and latitudinal 28 
replacements involved in spatial changes in species assemblages in the Andes. 29 
 30 
Results: We found remarkable genetic structure within the complex, which consists of numerous lineages reaching 31 
>12% sequence divergence; most divergent populations occur in areas separated by topographic barriers but several of 32 
them, typically not sister to each other, co-occur with elevational segregation on mountain slopes or replace each other 33 
with latitude along the Andes. Some close relatives occur in areas separated by thousands of kilometers, with more 34 
distant relatives occupying intervening areas. The complex likely originated in the Mexican highlands and expanded 35 
extensively in South America while diverging rapidly at a constant rate into many different lineages which have 36 
persisted for millions of years. Coalescent analyses consistently revealed that the complex may comprise more than 30 37 
species; while we do not suggest these presumptive species should be recognized by taxonomists in the absence of 38 
additional data, H. leucophrys is a distant outlier among New World birds in terms of high lineage diversity within a 39 
single recognized species. 40 
 41 
Main Conclusions: Our study captured wood-wren lineages in the act of building up diversity via divergence and 42 
persistence in allopatry, achievement of secondary sympatry, and coexistence at the landscape scale mediated by 43 
ecological and evolutionary divergence. Although dispersal by wood-wrens is restricted at present and this likely 44 
accounts for strong population structure across topographic barriers, their ranges have been dynamic, managing to 45 
disperse over much of the montane Neotropics. Phases of expansion and contraction of ranges and localized extinctions 46 
of populations likely account for phylogeographic patterns which are precursors to the origin of new species and the 47 
accumulation of diversity in tropical mountains. 48 
 49 
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Introduction 52 

Mountains in the tropics contribute disproportionately to regional species richness given their area in comparison to 53 
lowlands, and are often considered global hotspots of biological diversity and endemism (Stattersfield et al., 1997; 54 
Orme et al., 2005; Fjeldså et al., 2012). Tropical mountains exhibit particularly high beta diversity (i.e. species 55 
turnover in space) because (1) species assemblages shift along elevational gradients, and (2) related species occupy 56 
similar elevations in different mountains or in sectors of a mountain separated by geographic barriers. While 57 
knowledge of the biodiversity of mountains has advanced conceptually (Graham et al., 2014; Bertuzzo et al., 2016; 58 
Badgley et al., 2017) and empirically (e.g., Patterson et al., 1998; Jankowski et al., 2009; McCain, 2009; Price et al., 59 
2014; Peters et al., 2016; Quintero & Jetz, 2018), accounting for species richness in montane systems remains difficult. 60 
In particular, although climate and available energy have an imprint globally on the distribution of life (Francis & 61 
Currie, 2003; Hawkins et al., 2003), they cannot predict the agglomeration of range-restricted species in tropical 62 
mountains (Rahbek & Graves, 2001; Jetz & Rahbek, 2002; Rahbek et al., 2007; but see Ruggiero & Hawkins, 2008). 63 
Because the high richness and uniqueness of mountains in the tropics may instead reflect high speciation rates or low 64 
extinction rates (Jetz et al., 2004; Badgley et al., 2017), considering evolutionary processes is crucial to a better 65 
understanding of montane diversity (Graham et al., 2014; Laiolo et al., 2018; Quintero & Jetz, 2018). 66 

Dozens of studies have used phylogenetic and population genetic perspectives to probe into evolutionary processes 67 
underlying patterns of avian diversity in the Neotropical mountains. Birds have diversified rapidly in the Andes, with 68 
pivotal roles of features of the landscape (e.g., low-lying valleys, high-elevation passes) and of climatic changes as 69 
drivers of divergence (Pérez-Emán, 2005; Weir, 2006; Cadena et al., 2007; Ribas et al., 2007; Sedano & Burns, 2010; 70 
Chaves et al., 2011; Gutiérrez-Pinto et al., 2012; Valderrama et al., 2014; Benham et al., 2015; Sánchez-González et 71 
al., 2015; Winger & Bates, 2015; Prieto-Torres et al., 2018). Allopatric differentiation of lineages separated by barriers 72 
to dispersal is predominant (Hazzi et al., 2018), whereas evidence for speciation in parapatry along mountain slopes 73 
remains elusive (Patton & Smith, 1992; García-Moreno & Fjeldså, 2000; Cadena et al., 2012; Caro et al., 2013). Thus, 74 
the replacement of closely related species along elevational gradients, a salient geographic pattern in tropical avifaunas 75 
(Terborgh, 1971, 1977), appears to result largely from populations coming into secondary contact after allopatric 76 
divergence (Diamond, 1973; Cadena, 2007; Freeman, 2015). However, with hundreds of bird species living in the 77 
Neotropical mountains, much remains to be learned about the histories of individual clades and about how such 78 
histories collectively resulted in the patterns of diversity we observe today. 79 

Before conducting analyses seeking to characterize and account for patterns of diversity one must have proper 80 
knowledge of what species exist and where they occur (Fine, 2015). Traditionally, the species-level taxonomy of birds 81 
was considered well-known (Scheffers et al., 2012), with suggestions that the inventory of species was essentially 82 
complete by the mid 20th century (Mayr, 1946). This, however, proved incorrect: multiple avian species have been 83 
discovered and described over recent decades, and analyses of novel data sets (notably, of vocal and genetic variation) 84 
have revealed that species-level diversity was seriously underestimated (Fjeldså, 2013). The extent to which avian 85 
taxonomy will require revision depends on how one delimits species (Tobias et al., 2010; Gill, 2014; Toews, 2015; 86 
Barrowclough et al., 2016; Remsen, 2016), but clearly there are more species of birds than traditionally thought, 87 
particularly in the tropics. Although problems with species delimitation are unlikely to affect assessments of patterns 88 
in local (alpha) diversity of birds, inadequate knowledge of species limits may seriously influence perceptions of 89 
patterns in species turnover in space and hence regional and global patterns of diversity (beta and gamma diversity). 90 
Alternative approaches for species delimitation may also influence inferences about biogeographic history (Smith et al., 91 
2018). 92 

Birds in which species diversity is likely greater than traditionally thought are those in which plumages vary subtly 93 
(in which case one would expect species recognition to be based more on vocal cues), and in which ecologically 94 
relevant traits (body size, habitat, dispersal ability) may be conducive to population isolation (Burney & Brumfield, 95 
2009; Salisbury et al., 2012; Smith et al., 2014; Harvey et al., 2017a). Here, we analyze the phylogeography of the 96 
Grey-breasted Wood-wren complex (Henicorhina leucophrys, Troglodytidae), a group of small, drably colored and 97 
highly vocal songbirds of forest interior, with poor dispersal abilities. Because the complex is broadly distributed from 98 
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Mexico to Bolivia and restricted to montane forest habitats, it is an appropriate system in which to ask questions 99 
relevant to understanding the role of evolutionary processes in establishing patterns of diversity in Neotropical 100 
mountains. We used extensive geographic sampling to reconstruct the phylogenetic relationships of populations in the 101 
complex and to characterize patterns of genetic variation with the goals of (1) gaining insight about the tempo and 102 
mode of evolutionary differentiation and on the role of colonization of new regions in diversification, (2) understanding 103 
the role of geographic isolation in the differentiation of lineages, and (3) exploring the origin of elevational 104 
replacements leading to changes in species assemblages with elevation. We also examined the extent to which current 105 
taxonomy adequately reflects true diversity and reflected on the influence of cryptic differentiation for inferences about 106 
diversification processes and patterns of diversity in the tropics. 107 

Methods 108 

Study system 109 

Henicorhina wrens (Troglodytidae) range widely in the Neotropical region. Traditionally, taxonomists recognized two 110 
widespread species, the White-breasted Wood-Wren (H. leucosticta) and the Grey-breasted Wood-Wren (H. 111 
leucophrys). Two species with restricted ranges, Bar-winged Wood-Wren (H. leucoptera) from southern Ecuador and 112 
northern Peru (Fitzpatrick et al., 1977), and Munchique Wood-Wren (H. negreti) from western Colombia (Salaman et 113 
al., 2003), were later described. More recently, another narrow endemic formerly considered a subspecies of H. 114 
leucophrys, Hermit Wood-Wren (H. anachoreta) from northern Colombia, was elevated to species status (Cadena et 115 
al., 2016). Preliminary data on phylogenetics and population structure of wood-wrens based on mitochondrial DNA 116 
sequences suggest that both H. leucosticta and H. leucophrys are paraphyletic (H. leucoptera is nested within H. 117 
leucosticta and H. anachoreta is nested within H. leucophrys), and both comprise multiple distinct lineages (Dingle et 118 
al., 2006; Becker et al., 2007; Caro et al., 2013; Aguilar et al., 2014; Smith et al., 2014). However, no comprehensive 119 
analysis of genetic variation across the range of either widespread species has been conducted. 120 

Wood-wrens segregate ecologically by elevation. Overall, H. leucosticta is a lowland species replaced in montane areas 121 
by H. leucophrys; their replacement is sharp and likely mediated by interspecific competition (Jankowski et al., 2010). 122 
In the isolated Cordillera del Cóndor of southern Ecuador and northern Peru, H. leucophrys also replaces H. 123 
leucosticta in montane areas but is absent from higher elevations where H. leucoptera occurs (i.e. the three species 124 
turn over along the elevation gradient; Fitzpatrick et al., 1977; Dingle et al., 2006). Likewise, in part of the western 125 
slope of the Colombian Andes, H. negreti replaces H. leucophrys (subspecies brunneiceps) at higher elevations, and is 126 
in turn replaced by nominate H. leucophrys east of the ridgeline on the eastern slope of the cordillera (Salaman et al., 127 
2003). In addition, two populations of H. leucophrys differing in mtDNA sequences, morphology, and songs are 128 
parapatrically distributed along an elevational gradient in Ecuador (Dingle et al., 2008; Dingle et al., 2010), but 129 
nuclear gene flow indicates they are conspecific (Halfwerk et al., 2016). A similar scenario with populations differing 130 
genetically, morphologically and vocally, and turning over along an elevational gradient exists in the Sierra Nevada de 131 
Santa Marta, northern Colombia (Caro et al., 2013; Burbidge et al., 2015); because there is little to no hybridization, 132 
these populations are now treated as separate species, with H. anachoreta sharply replacing H. leucophrys at higher 133 
elevations (Cadena et al., 2016). 134 

Sampling 135 

We focused on the H. leucophrys complex, i.e. the clade defined by the most recent common ancestor of populations 136 
referable to H. leucophrys in current taxonomy and H. anachoreta (Dingle et al., 2006; Caro et al., 2013). Although H. 137 
negreti was not sampled in previous molecular analyses, we consider it part of the complex based on phenotypic traits 138 
(Salaman et al., 2003) and our data (see below). The H. leucophrys complex is widespread in Neotropical mountains, 139 
ranging from Mexico to Bolivia (Figure 1); as currently circumscribed, it consists of 19 taxa including H. anachoreta, 140 
H. negreti, and 17 subspecies of H. leucophrys (Kroodsma & Brewer, 2005). For phylogeographic analyses, we sought 141 
to sample as thoroughly as possible across geography and taxonomy. Combining sequences generated for this study 142 
and published sequences available in GenBank (total 288 individuals), we managed to cover nearly all of the 143 
distribution range of the complex and all named taxa, with multiple individuals and localities per taxon whenever 144 
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possible (Figure 1; Supplementary Table 1). Sampling in Middle America covered all the major montane areas where 145 
members of the complex occur; within South America sampling was especially thorough in Venezuela, Colombia and 146 
Ecuador, and less so in the southern part of the range (i.e. Peru and Bolivia). As outgroups for phylogenetic analyses, 147 
we used specimens of H. leucosticta and H. leucoptera, and of species of Microcerculus, Campylorhynchus, 148 
Cistothorus, Troglodytes, Cantorchilus and Cyphorhinus (see Barker, 2017 for an overview of relationships among 149 
wren genera), for a grand total of 300 individuals considered in analyses.  150 

DNA extraction and sequencing 151 

We extracted DNA using DNeasy tissue extraction kits (Qiagen, Valencia, CA) following the manufacturer’s protocol. 152 
We then amplified an 842 base-pair region of the mtDNA gene ATPase 6/8 using primers described by Joseph et al. 153 
(2004). We chose to sequence this region because it has been employed in earlier studies of Henicorhina (Dingle et al., 154 
2006; Dingle et al., 2008; Caro et al., 2013), which enabled us to include published sequences in analyses. Fragments 155 
were amplified via polymerase chain reaction (PCR) in 12.5 μl reactions with denaturation at 94 °C for 10 min, 40 156 
cycles of 94 °C for 30 s, 54 °C for 45 s, and 72 °C for 2 min, followed by 10 min elongation at 72 °C and 4 °C soak. 157 
PCR products were sequenced at the Barrick Museum of Natural History (University of Nevada, Las Vegas), 158 
Universidad de los Andes (Bogotá, Colombia), or the High-Throughput Genomics Unit at the University of 159 
Washington. Chromatograms were aligned using Sequencher v4.9 (GeneCodes Corporation, Ann Arbor, MI). 160 

Analyses 161 

Gene trees 162 

Before phylogenetic analyses, we determined the best-fit model of evolution to be GTR + G with jModeltest v2. 1. 7 163 
(Posada, 2008). We then used Bayesian (BEAST v1.8.4; Drummond et al., 2012) and maximum-likelihood (RAxML v 164 
8.2.4; Stamatakis, 2006) methods to estimate phylogenetic trees. For the Bayesian analyses we ran 50 million 165 
generations, sampling trees and parameters every 5000 generations. A relaxed uncorrelated lognormal clock with a rate 166 
of 2% and a birth-death speciation tree prior (Ritchie et al., 2017) were applied. We confirmed likelihood stationarity 167 
and adequate effective sample sizes above 200 for all estimated parameters using Tracer v1.6.0 168 
(http://tree.bio.ed.ac.uk/software/tracer). The parameter values of the samples from the posterior distribution on the 169 
maximum clade credibility tree were summarized after discarding the first 5 million generations (10%) as burn-in 170 
using TreeAnnotator v1.8.4 (Drummond et al., 2012). Maximum-likelihood analyses were conducted using a 171 
GTRGAMMA model and run for 1000 nonparametric rapid bootstrap replicates to provide an assessment of nodal 172 
support. 173 

Both Bayesian and maximum-likelihood analyses were first done with a dataset containing all ATPase sequences (n = 174 
300), then repeated with a reduced data set containing only individuals having unique haplotypes (n = 184), and then 175 
reduced further by removing all non-Henicorhina taxa (i.e. outgroups). Trees constructed using the latter data set (n 176 
= 178) were set aside for use in species delimitation analyses described below. To visualize and annotate trees and to 177 
produce figures, we employed R packages ggtree (Guangchuang et al., 2017) and phytools (Revell, 2012), and QGIS v 178 
2.18.20 with the Qgis2threejs plugin (http://qgis.osgeo.org). 179 

Species delimitation 180 

Given uncertainty about species diversity in the H. leucophrys complex, we employed two coalescent approaches using 181 
mtDNA data to identify distinct lineages which may be considered presumptive species worthy of additional study 182 
with other sources of information (Carstens et al., 2013; Sukumaran & Knowles, 2017): (1) multi-rate Poisson Tree 183 
Processes (mPTP v0.2.0; Kapli et al., 2017) and (2) a Bayesian implementation of the General Mixed Yule Coalescent 184 
Model (bGMYC v1.0.2; Reid & Carstens, 2012). The trees generated by BEAST using the unique haplotype dataset 185 
were used as input for these analyses. 186 
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For the mPTP analysis we ran five replicate mcmc chains of 10,000,000 generations, sampling every 10,000 with a 187 
burn-in of 1,000,000 (10%) using the maximum clade credibility tree obtained as described above. Minimum branch 188 
length was calculated using the minbr_auto function prior to the analysis. We ran bGMYC with 100 of the 10,000 189 
gene trees estimated in the BEAST analysis, after removing 10% as burn-in; this approach accounts for error in gene-190 
tree estimation by integrating over uncertainty in tree topology and branch lengths. For each tree we ran an MCMC 191 
chain of 50,000 steps with 40,000 steps of burn-in and a thinning interval of 100 steps. We focused our results and 192 
discussion on lineages (i.e. presumptive species) defined using a threshold of 0.5 on probability of membership of 193 
individuals (Gehara et al., 2017). However, we also considered more conservative approaches where presumptive 194 
species were identified as clusters in the gene tree with posterior probabilities of belonging to the same species ≥ 0.90 195 
or ≥ 0.95, which allowed us to compare our results to similar work on other birds (Smith et al., 2014; Harvey et al., 196 
2017b; Smith et al., 2017). 197 

Diversification through time 198 

To describe patterns of lineage accumulation over time, we constructed lineage-through-time (LTT) plots and 199 
estimated the gamma statistic (Pybus et al., 2000). We accounted for phylogenetic uncertainty by performing these 200 
analyses on a sample of credible trees in the posterior distribution obtained from the BEAST analysis. We employed 201 
the 100 trees constructed using only unique haplotypes as input for the bGMYC analyses and trimmed them to 202 
include 39 tips corresponding to the presumptive species recognized under the 0.5 threshold. Then we used functions 203 
implemented in R packages ape (Paradis et al., 2004) and paleotree (Bapst, 2012) to build an LTT plot with a 95% 204 
confidence interval and to calculate the gamma statistic for each tree. We also examined diversification dynamics 205 
employing Bayesian Analysis of Macroevolutionary Mixtures (program BAMM v 2.5.0; Rabosky et al., 2013). Because 206 
results were qualitatively similar between methods, we report only those obtained using the simpler approach 207 
implemented in ape. 208 

Results 209 

We found substantial genetic differentiation among populations in the H. leucophrys complex. In total, we recovered 210 
172 haplotypes among the 288 individuals analyzed. Several haplotypes were highly divergent from each other, with 211 
uncorrected genetic distances between them reaching >12 % (i.e. between individuals from Sierra Madre del Sur of 212 
Mexico and from the east slope of the Cordillera Occidental of Colombia). Genetic variation was highly structured 213 
spatially, but was not readily accounted for by geographic distance among populations. We did not conduct formal 214 
analyses of isolation by distance, but genetic distances among isolated populations from adjacent mountains were often 215 
much greater than genetic distances observed over larger distances in more continuous ranges. For instance, mean 216 
genetic distances among the five montane areas of Venezuela that we sampled was 7.3% (range 6.1%-8.3%), whereas 217 
genetic distances within montane regions extending over comparable distances were much lower, e.g. reaching only 218 
3.5% in the Sierra Madre Oriental of Mexico or 1.7% in the Talamanca-Chiriquí mountains of Costa Rica and 219 
Panama. 220 

Maximum-likelihood and Bayesian phylogenetic analyses recovered similar overall patterns (Figure 2., Supplementary 221 
Figures 1-2). The deepest split in gene trees separates clades corresponding to Mexican populations from the Sierra 222 
Madre del Sur and the western reaches of the Trans-Mexican Volcanic Belt from a large and strongly supported clade 223 
including the remainder of populations in the complex. Within the latter clade, the earliest diverging group occurs in 224 
eastern Mexico and consists of three subclades, each corresponding to a unique region within the Sierra Madre 225 
Oriental. Sister to this group is a clade divided in two main groups (albeit without strong support, i.e. 0.88 posterior 226 
probability, 68% ML bootstrap in analyses using only unique haplotypes): one includes samples from lower Central 227 
America (Costa Rica and Panama, subspecies collina), whereas the other includes all South American populations of 228 
H. leucophrys, the Colombian endemic species H. anachoreta and H. negreti, and a clade formed by samples of H. 229 
leucophrys from Chiapas (Mexico), Guatemala, and El Salvador (subspecies castanea and composita). The latter clade, 230 
of somewhat uncertain affinities within an otherwise South American group (it was recovered as sister to H. negreti 231 
with 0.95 posterior probability and 56% ML bootstrap in analyses using only unique haplotypes), is the only exception 232 
to the pattern in which Mexican and Central American populations are the earliest diverging lineages in the complex.  233 
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Basal relationships among major South American lineages were unresolved or poorly supported, yet some patterns in 234 
the region are noteworthy. Whereas populations from some isolated montane systems (e.g. the Serranía de Perijá, or 235 
the Venezuelan Cordillera de la Costa and Sierra de San Luis) formed distinct clades, this was not the case for the 236 
main cordilleras of the northern Andes, resulting in complicated patterns of area relationships. For example, several 237 
populations from the western slope of the Andes from Colombia through Ecuador and into northwestern Peru formed 238 
a large clade (clade i. in Figure 2), but this clade was not exclusive because it also included some -but not all- 239 
populations from the northern sector of the Cordillera Central of Colombia and did not cluster all populations from 240 
the western Andes: H. negreti and lineages of H. leucophrys from the northern and southern sectors of the Cordillera 241 
Occidental of Colombia and from western Ecuador occupied different positions in the tree. Likewise, birds from the 242 
Cordillera Oriental of the Colombian Andes formed multiple distinct clades seemingly distantly related to each other, 243 
and populations from the Central and Southern Andes (i.e. from Bolivia and Peru south of the Marañón Valley or 244 
North Peru Low) formed at least two highly divergent clades with differing affinities. Given weak support for deep 245 
branches in South America we do not elaborate further on relationships among major biogeographic areas, but do 246 
emphasize the complexity of phylogeographic pattern and the strong genetic structure existing over relatively fine 247 
spatial scales throughout the continent. 248 

Part of the complexity in phylogeographic pattern related to occurrence of phylogenetically distant groups in the same 249 
regions can be understood by examining elevational distributions: lineages known to replace each other along 250 
elevational gradients in northern South America are not sister to each other (Figure 3). This was true of taxa 251 
occurring in the Ecuadorean Andes (H. l. hilaris and nominate H. l. leucophrys), the Santa Marta mountains (H. l. 252 
bangsi and H. anachoreta), and in the western slope of the Colombian Andes (H. l. brunneiceps and H. negreti). Our 253 
data further revealed a previously unknown case of cryptic replacement of mtDNA lineages along an elevational 254 
gradient in the Venezuelan Andes. The lineage occurring in the Tamá massif near the Colombia-Venezuela border 255 
crosses the Táchira depression to the northeast into the Cordillera de Mérida where we found it from c. 1520 m to c. 256 
1920 m. Only a small distance upslope in this range, a different lineage occupied elevations from c. 2100 m to c. 2750 257 
m. Divergence in mtDNA sequences between lineages replacing each other with elevation was substantial, in all cases 258 
exceeding 5% uncorrected p distances (Figure 3). 259 

In addition to examples of elevational parapatry, our analyses revealed cases where lineages may meet in contact zones 260 
along a latitudinal axis. For instance, two lineages differing in c. 7% uncorrected p-distance replace each other along 261 
the northern sector of the Cordillera Central of the Colombian Andes. One of these lineages occurs in the northern tip 262 
of the cordillera in Antioquia, whereas the other is also found in Antioquia, where we suspect it might range north to 263 
the southern extreme of the Aburrá Valley in the outskirts of the city of Medellín. Individuals occupying the northern 264 
extreme of the Cordillera Central are most closely allied to geographically distant populations from the western slope 265 
of the Andes (i.e. subspecies hilaris and brunneiceps), which tend to occur at lower elevations and are replaced upslope 266 
by nominate H. leucophrys in Ecuador or H. negreti in southwest Colombia. Several other examples of distinct 267 
lineages occurring at different latitudes within mountain systems exist in the Cordillera Oriental of Colombia and 268 
along the Andes of Ecuador (Figure 2). 269 

Coalescent approaches to delimit species produced consistent results: both mPTP and bGMYC (the latter with a 0.50 270 
probability threshold to define group membership) recovered H. anachoreta and H. negreti as distinct species, and 271 
both methods identified 37 additional lineages in the H. leucophrys complex which may prove to be distinct species 272 
(Figure 2, Supplementary Figure 3). Although methods did not exactly agree in how they assigned individuals to 273 
presumptive species, congruence was remarkable. The only differences were that in the Cordillera de Mérida, 274 
Venezuela, mPTP recognized three presumptive species while bGMYC recognized two, and that in a clade from 275 
northern Peru and southeast Ecuador mPTP recognized a single presumptive species and bGMYC recognized two 276 
(Figure 2). Applying more stringent probability thresholds to delimit species in bGMYC analyses resulted in the 277 
inference of slightly lower numbers of presumptive species: 36 and 35 with 0.90 and 0.95 thresholds, respectively. In 278 
general, presumptive species appear to have restricted ranges (Figure 4, Supplementary Figure 4); in some cases, 279 
particular mountain systems harbor a single presumptive species (e.g. Sierra Madre del Sur and Trans-Mexican 280 
Volcanic Belt in Mexico, Cordillera de la Costa and Sierra de San Luis in Venezuela), but more than one presumptive 281 
species may also occur within a region (e.g. Sierra Madre Oriental of Mexico, Sierra Nevada de Santa Marta in 282 
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Colombia) and a few of them have ranges encompassing various montane areas (e.g. across cordilleras of Costa Rica 283 
and Panama). The diversity of presumptive species is especially remarkable in northern South America, with 7-8 284 
identified in Venezuela, 15 in Colombia, and 7-8 in Ecuador. Because our sampling was sparser in Peru and Bolivia, 285 
our figures for these countries are likely underestimates of presumptive species richness. 286 

Our estimates of divergence times obtained from the BEAST analysis of unique haplotypes indicate that the H. 287 
leucophrys complex diverged from its sister group (i.e. the clade formed by H. leucosticta and H. leucoptera) 288 
approximately 16.8 million years before present (13.0-20.5 95% highest posterior density, HPD), with the crown age of 289 
extant populations dating to 10.6 m.a. (8.4-13.1 95% HPD). Over this period, the complex has diversified into 290 
multiple lineages; we found it minimally consists of 10 lineages of at least 5 million years of age and of 26 lineages of 291 
at least 2 million years of age (Figure 2, Supplementary Figure 3). The estimated age of the node including all South 292 
American populations as well populations from Chiapas, Guatemala, and El Salvador is 6.2 m.a. (5.2-7.3 95% HPD), 293 
whereas that of the node including all South American populations excluding H. negreti is 5.8 m.a. (4.9-6.7 95% 294 
HPD). 295 

Analyses of lineage accumulation over time based on presumptive species identified by bGMYC suggested that rates of 296 
diversification in the H. leucophrys complex may have declined over time, with a significantly negative gamma 297 
statistic (Figure 5). However, through much of the history of the complex, diversification appears to have been nearly 298 
constant and exponential, with an apparent downturn in the last million years most likely reflecting that our species 299 
delimitation analyses recognized no species younger than this age. 300 

Discussion 301 

Phylogeography: bridges, barriers and the distribution of genetic variation. 302 

As evidenced by the branching pattern in the gene tree with deep splits involving populations from the north, the H. 303 
leucophrys complex likely originated in the Mexican highlands ca. 8 to 13 m.a., from where it expanded south through 304 
Central America, then colonizing South America. Other birds ranging broadly in montane forests also originated in 305 
the northern Neotropics, including single species as well as clades which diversified in Central and South America 306 
(Pérez-Emán, 2005; Cadena et al., 2007; Weir et al., 2008; Sánchez-González et al., 2015). Molecular-based estimates 307 
of when did birds colonize South America from the north vary (Bacon et al., 2015; Barker et al., 2015); our results 308 
indicate colonization by the H. leucophrys complex occurred slightly earlier (ca. 7 to 5 m.a.) than a pulse of avian 309 
interchange via the Isthmus of Panama 4 to 2 m.a. (Smith & Klicka, 2010). Our estimates of the age of the H. 310 
leucophrys complex and of the timing of events like its colonization of South America are old relative to what one 311 
would expect given published estimates of divergence times among wren genera (Barker, 2017). However, such 312 
estimates were derived assuming that Certhia and Troglodytes diverged ca. 16 m.a. (Moyle et al., 2016), while 313 
analyses integrating more extensive fossil evidence suggest such divergence occurred much earlier, ca. 27 m.a. 314 
(Claramunt & Cracraft, 2015). The time frame for wren diversification implied by the latter analysis is more 315 
congruent with our estimated ages for nodes in Henicorhina and with previous work in other wren genera based on 316 
mtDNA data (Barker, 2007).  317 

Poorly supported relationships among South American clades associated with short internodes subtending long 318 
branches are common to H. leucophrys and other birds colonizing South America from the north (e.g., Pérez-Emán, 319 
2005; Cadena et al., 2007). This indicates range expansions and ensuing rapid diversification of lineages in geographic 320 
isolation, a pattern also documented in montane clades with South American (Chaves et al., 2011) or uncertain 321 
geographic origins (Gutiérrez-Pinto et al., 2012). Rapid range expansions occurring in concert across birds may 322 
indicate that geological changes like closure of the Isthmus of Panama and uplift of mountains increased connectivity 323 
among formerly isolated regions, enabling subsequent diversification of various taxa over the vast South American 324 
landscape; climatic changes driving population isolation likely facilitated such diversification (Barrantes, 2009; 325 
Ramírez-Barahona & Eguiarte, 2013). 326 
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Genetic divergence associated with landscape features isolating montane habitats is another pattern shared by the H. 327 
leucophrys complex and co-distributed clades (Weir, 2009). Such features include lowland areas in Central America 328 
(Cadena et al., 2007; Barber & Klicka, 2010), inter-Andean valleys like the Magdalena and Marañón (Gutiérrez-Pinto 329 
et al., 2012; Benham et al., 2015), and alpine areas separating slopes of cordilleras (Parra et al., 2009; Valderrama et 330 
al., 2014). For many Neotropical montane birds that have been studied, genetic structure across geographic barriers 331 
coincides with plumage differences (Cadena et al., 2011; Winger & Bates, 2015; Winger, 2017). Phenotypic differences 332 
among distinct lineages of H. leucophrys, however, are either subtle or appear to be nonexistent (Kroodsma & Brewer, 333 
2005). Reduced gene flow across barriers may have influenced vocal differentiation of wood-wrens more strongly, but 334 
given their complex songs, confirming it awaits studies documenting repertoires of individuals as well as variation 335 
within and among populations. Such data are relevant given uncertainty about species limits in the complex (see 336 
below) because vocalizations likely play a critical role in species recognition (Caro et al., 2013; but see Halfwerk et al., 337 
2016). 338 

In sum, our study and other phylogeographic analyses point to geological and climatic dynamics of the montane 339 
Neotropics as drivers of avian speciation both by (1) promoting dispersal across formerly isolated areas and (2) 340 
spurring diversification linked to the origin of new habitats resulting from uplift processes and vicariance. 341 
Furthermore, because wood-wrens live in rugged landscapes and disperse little, their populations may become isolated 342 
and diverge even without marked geological or climatic changes (Smith et al., 2014). Beyond patterns common to the 343 
H. leucophrys complex and other tropical montane birds, two aspects appear unique to our study system. First, the 344 
degree of genetic structure within a single recognized species we uncovered far exceeds that observed in other montane 345 
birds. Second, our finding that distinct mtDNA lineages which likely diverged in allopatry have come into contact in 346 
various regions and some coexist segregated by elevation is novel. Because the extreme genetic structure we uncovered 347 
may imply that H. leucophrys comprises more species than traditionally thought and because secondary sympatry of 348 
divergent populations is crucial to the buildup of species richness, these results have implications for understanding 349 
tropical diversity and the historical and evolutionary processes generating and sustaining it.  350 

Extreme population structure, cryptic divergence, and patterns in tropical diversity 351 

We uncovered genetic structure in the H. leucophrys complex across well-known geographic barriers (Hazzi et al., 352 
2018), but also over fine scales in ways not associated with divergence in other tropical montane birds. For example, 353 
in the Cordillera Occidental and Cordillera Central of Colombia, where other birds show little to no population 354 
structure (Cadena et al., 2007; Gutiérrez-Pinto et al., 2012; Isler et al., 2012; Valderrama et al., 2014), we found six 355 
mtDNA lineages of at least 1 million years of age. These lineages and others have restricted ranges, and some of their 356 
boundaries reflect topographic or climatic breaks (Graham et al., 2010; Supplementary Figure 4). Traits affecting 357 
dispersal abilities and dependence on closed understory habitats mediate divergence across putative barriers and thus 358 
diversification in topographically complex landscapes (Burney & Brumfield, 2009; Smith et al., 2014). Because wood-359 
wrens are small-bodied, have small and rounded wings and live in dark forest understory, they likely disperse little 360 
(Moore et al., 2008), and this may account in part for their exceptionally strong population structure (Claramunt et 361 
al., 2012; Salisbury et al., 2012; but see Smith et al., 2017). Deep phylogeographic structure also exists in other small-362 
bodied wrens (i.e. other Henicorhina, Cistothorus, Troglodytes; Dingle et al., 2006; Campagna et al., 2012; Galen & 363 
Witt, 2014; Robbins & Nyári, 2014), suggesting that their biology predisposes populations to become isolated and 364 
diverge. 365 

Regardless of the ultimate causes of population structure, we discovered heretofore underappreciated diversity within a 366 
taxon traditionally treated as a single species. Although our study employed only one molecular marker, some of the 367 
lineages we recovered coexist as distinct phenotypic entities exhibiting behavioral barriers to hybridization (Salaman 368 
et al., 2003; Caro et al., 2013; Burbidge et al., 2015), implying that several species are involved. Genetic distances 369 
(i.e., divergence times) are not appropriate surrogates for reproductive isolation (Roux et al., 2016), but we note that 370 
wood-wren lineages demonstrating barriers to gene flow in sympatry (i.e. anachoreta and l. bangsi; negreti and l. 371 
brunneiceps; negreti and nominate leucophrys) last shared ancestors more recently than many other lineages in the 372 
complex. It is also remarkable that the phylogeography of H. leucophrys resembles that of Atlapetes brushfinches 373 
(Emberizidae), which also have a northern origin and montane distribution through the Neotropics, and which have 374 
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diverged into numerous lineages upon colonizing South America (Sánchez-González et al., 2015; J. L. Pérez-Emán, 375 
unpubl. data). In contrast to H. leucophrys, Atlapetes diversified extensively in plumage and this has arguably 376 
influenced taxonomy, with researchers recognizing 28 species in the group (Remsen et al., 2018). Just as lineages of 377 
the H. leucophrys complex replace each other in space, species of Atlapetes are for the most part allopatric or replace 378 
each other sharply along elevational or latitudinal axes in the Andes (Remsen & Graves, 1995), with their ranges often 379 
matching those of lineages of H. leucophrys uncovered by our study. This comparison serves to illustrate what might 380 
be a more general situation in which clades with roughly similar ages and genetic structure (South American Atlapetes 381 
are actually younger than South American H. leucophrys) may be split to different degrees by taxonomists because of 382 
differences among clades in the traits birds employ for signaling and in the lability of such traits. In other words, birds 383 
like wood-wrens may be under split owing to their conserved plumage and because the role of vocalizations in species 384 
recognition remains understudied (see also D'Horta et al., 2013).  385 

Our coalescent analyses indeed suggest that taxonomy underestimates species diversity in the H. leucophrys complex: 386 
we consistently identified 39 presumptive species across methods. Even the 35 presumptive species identified by 387 
bGMYC using a more conservative probability threshold of 0.95 represents a quite remarkable figure relative to 388 
similar studies conducted in the Neotropics. In 27 clades of lowland birds ranging from Central America across the 389 
Andes through much of Amazonia and even into the Atlantic Forest (Smith et al., 2014), the mean number of species 390 
identified using bGMYC also with a 0.95 threshold was 5.3 (range 1-18); figures were slightly higher in understory 391 
birds (11 clades; mean = 6.6, range 3-11 presumptive species) but still much lower than our estimates for the H. 392 
leucophrys complex. Moreover, in 173 taxonomic species of birds from the New World subject to phylogeographic 393 
analyses employing mtDNA data, the largest number of presumptive species identified by bGMYC with a 0.90 394 
threshold was 23 (Harvey et al., 2017b; Smith et al., 2017), highlighting the H. leucophrys complex as a distinct 395 
outlier (Figure 6). This is despite our sparse sampling in the Peruvian and Bolivian Andes, where one would expect 396 
more lineages exist. We do not argue that all lineages we uncovered are species given existing evidence, but several are 397 
candidates for studies examining other molecular markers, morphology, voices, and behavior (Caro et al., 2013; 398 
Burbidge et al., 2015; Halfwerk et al., 2016). The allopatric ranges of most wood-wren lineages preclude tests of 399 
intrinsic barriers to gene flow, but given postzygotic isolation in other phenotypically cryptic, old lineages of 400 
Neotropical birds (Pulido-Santacruz et al., 2018), some of them may well be reproductively isolated. 401 

Even if hypothetical species our analyses flagged represent distinct lineages not yet reaching the status of “biological” 402 
species (Carstens et al., 2013; Sukumaran & Knowles, 2017), our work allows for conclusions about cryptic diversity 403 
which should be robust to analyses involving other data. First, regardless of the species concept one follows and of the 404 
criteria one uses to recognize species, there are more wood-wren species than traditionally thought. Second, the H. 405 
leucophrys complex comprises multiple independently evolving populations which have diverged to different degrees 406 
along the speciation continuum; if one embraces the generalized lineage concept, which views species as segments of 407 
metapopulation lineages and considers all other species “concepts” as contingent –albeit not necessary– properties of 408 
species one may use as criteria to recognize them (de Queiroz, 1998, 2007), then the complex is arguably a collection 409 
of several kinds of species, all of which represent fundamental evolutionary units. Finally, even if one takes a 410 
conservative standpoint and treats most of the lineages we uncovered as distinct populations of a single or a few 411 
species (Sukumaran & Knowles, 2017), the H. leucophrys complex has clearly differentiated into numerous lineages 412 
(especially following its colonization of South America) and such lineages have persisted over long periods. 413 

Because most wood-wren lineages are not sympatric (see below), our finding that the H. leucophrys complex probably 414 
comprises multiple species has no influence on local estimates of diversity. However, species richness and endemism at 415 
regional scales might need to be revised. For example, current taxonomy recognizes only one species (and only five 416 
subspecies) in the complex in Venezuela (Kroodsma & Brewer, 2005), yet we uncovered 7-8 presumptive species –each 417 
endemic to a particular montane system– in the country. If lineages identified as presumptive species are elevated to 418 
species status and similar patterns exist in other taxa not yet studied, then geographic variation in population 419 
structure may alter knowledge of spatial patterns of diversity (e.g., differences in species richness among cordilleras 420 
and slopes of cordilleras of Colombia; Kattan et al., 2004; Figure 4, Supplementary Figure 4). Alternative 421 
classifications also affect inferences about beta diversity; under current taxonomy, there is no species turnover along 422 
thousands of kilometers and across multiple geographic barriers from Mexico to Bolivia except for the local 423 
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replacements involving H. anachoreta and H. negreti. At the other extreme, if distinct lineages of H. leucophrys are 424 
species, then spatial turnover would be substantial even over relatively short distances (e.g., in Colombia), likely 425 
exacerbating differences among regions in beta diversity (Gaston et al., 2007; Fjeldså et al., 2012) and with potential 426 
conservation implications (Socolar et al., 2016). Recognizing distinct lineages as species would also alter the perceived 427 
role of features of montane landscapes setting range limits and thus explaining spatial turnover in assemblages 428 
(Graham et al., 2010). 429 

In addition to affecting perceptions of patterns of diversity, our results have implications for thinking about historical 430 
processes underlying such patterns. The accumulation of biological diversity via diversification within a region like the 431 
montane Neotropics requires that (1) populations become isolated to initiate divergence, (2) budding population 432 
isolates persist in time, (3) populations expand their ranges and come into secondary sympatry, and (4) newly 433 
sympatric populations are differentiated enough that they may coexist without coalescing owing to hybridization or 434 
without excluding each other via competition (Mayr, 1942; Ricklefs & Bermingham, 2007). In the following we discuss 435 
our results in the context of these steps. 436 

Lineage splitting, persistence, and the origin of diversity 437 

A leading explanation for high tropical diversity involves latitudinal differences in net diversification rates (Fischer, 438 
1960; Schluter & Pennell, 2017). In particular, rapid diversification may explain the high species richness and 439 
concentration of narrow-ranged species of birds in tropical mountains, which cannot be accounted for by area or 440 
contemporary climate (Jetz et al., 2004; Fjeldså et al., 2012). Although evidence that diversification rates vary with 441 
latitude remains mixed in birds (Ricklefs, 2006; Martin & Tewksbury, 2008; Jetz et al., 2012; Belmaker & Jetz, 2015) 442 
and other taxa (e.g. Pyron & Wiens, 2013; Pyron, 2014; Rolland et al., 2014; Schluter, 2016; Rabosky et al., 2018), 443 
tropical mountains are indeed hotbeds of rapid diversification (Madriñán et al., 2013). Furthermore, differences in the 444 
rate at which species originate may not be as important as the rate at which they go extinct in establishing broad-445 
scale patterns in avian diversity (Hawkins et al., 2006; Weir & Schluter, 2007; Pulido-Santacruz & Weir, 2016). 446 
Accordingly, the high diversity and endemism of tropical montane areas may reflect low extinction rates of species 447 
(Fjeldså et al., 2012). In turn, higher diversification rates at higher elevations in montane areas (Quintero & Jetz, 448 
2018) may reflect both high speciation and low extinction (Fjeldså & Irestedt, 2009). A complementary historical 449 
explanation for diversity in tropical mountains which is less commonly addressed in the literature is high persistence of 450 
budding populations, an important control of rates of speciation (Mayr, 1963; Dynesius & Jansson, 2014; Rabosky, 451 
2016).  452 

We found that the H. leucophrys complex radiated rapidly into multiple lineages, several of which have persisted for 453 
periods exceeding millions of years. Also, LTT plots suggest nearly constant rates of exponential accumulation of 454 
lineages over nearly 10 million years, with an apparent slowdown in diversification in the last million years. Although 455 
LTT plots with such a shape and their associated negative gamma statistic are often considered evidence of ecological 456 
limits to diversification (Rabosky & Hurlbert, 2015), we interpret the pattern more as an artifact of our methods 457 
resulting from (1) using species based on a model specifying a divergence threshold separating population-level 458 
processes (gene coalescence) from diversification dynamics (speciation and extinction) as units for analysis (Reid & 459 
Carstens, 2012), and (2) potential limitations in geographic sampling leading to failure to identify additional 460 
independent lineages of young age. Because the bGMYC analysis we employed to delimit presumptive species 461 
established an age cutoff of ca. 1 m.a. defining the units included in the LTT analysis, we simply conclude that 462 
diversification was nearly constant through much of the history of the H. leucophrys complex. To the extent that 463 
similar diversification dynamics may characterize evolutionary history of other Neotropical montane birds, high rates 464 
of lineage splitting (Harvey et al., 2017b) and high persistence of such lineages over time (Smith et al., 2017) have 465 
likely contributed to diversification and probably account for the high diversity of tropical montane systems and, more 466 
broadly, to large-scale biodiversity patterns such as latitudinal gradients in species richness. 467 

Range dynamics, secondary sympatry and the regional buildup of diversity 468 
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Our data revealed that mtDNA lineages in the H. leucophrys, which likely diverged in geographic isolation, have come 469 
into secondary sympatry. This is most evident where divergent mtDNA lineages not sister to each other segregate 470 
with elevation. In addition to previously documented cases of elevational replacements of lineages involving distinct 471 
taxa (i.e. different species or subspecies in the Sierra Nevada de Santa Marta, in western Colombia, and in western 472 
Ecuador), we discovered a novel elevational replacement of distinct lineages in the Mérida Cordillera of Venezuela 473 
where no phenotypic differences had been noted. Likewise, previous work in other wood-wrens revealed that although 474 
H. leucoptera is nested within H. leucosticta, the lineage of H. leucosticta replaced by H. leucoptera at higher 475 
elevations in the Cordillera del Cóndor east of the Andes is distantly related to it, whereas its closest relative 476 
seemingly occurs in the Chocó region west of the Andes (Dingle et al., 2006). The consistent pattern of elevational 477 
replacements involving fairly distant relatives as opposed to sister lineages fits the hypothesis that evolutionary 478 
divergence in tropical montane birds occurs largely in allopatry and not in parapatry along mountain slopes (Patton & 479 
Smith, 1992; García-Moreno & Fjeldså, 2000; Caro et al., 2013). 480 

In addition to documenting elevational replacements, we found evidence of regional co-occurrence of lineages replacing 481 
each other with latitude (e.g. along the cordilleras of Colombia and Ecuador). More fine-scaled sampling is required to 482 
determine whether geographic gaps separate the ranges of such lineages or if they come into close contact. Part of the 483 
observed genetic differentiation along the latitudinal axis may reflect the propensity of the linear distributions of 484 
tropical montane birds to become fragmented (Graves, 1988). However, some lineages replacing each other with 485 
latitude in a region are not sisters and may even be distantly related, which suggests range expansions and secondary 486 
contact rather than primary divergence along cordilleras.  487 

Other intriguing phylogeographic patterns aside from secondary contact of lineages in elevational or latitudinal 488 
parapatry speak to the dynamism of geographic ranges over broad scales. For example, we found that populations of 489 
H. leucophrys from southern Mexico (Chiapas), Guatemala and El Salvador are not closely related to other Middle 490 
American populations; within a large, otherwise South American clade, these specimens appeared closest to H. negreti, 491 
a species endemic to western Colombia whose northernmost records are ca. 1700 km south of montane El Salvador. 492 
Likewise, the only sequence analyzed from Bolivia is a long branch more closely allied to lineages from northern South 493 
America (Colombia and Venezuela) than to geographically much closer lineages from Peru. Because closest relatives 494 
may occur in distant areas, spatial patterns of genetic variation are not easily accounted for by geography (e.g. by 495 
isolation-by-distance; Seeholzer & Brumfield, 2018). Given that such patterns are unlikely evidence of long-distance 496 
dispersal and are not unique to wood-wrens in the region (Cadena et al., 2007), considering dynamics of expansion and 497 
contraction of geographic ranges involving localized extinctions is crucial to understand biogeographic and 498 
demographic processes underlying the distribution of genetic and species diversity in Neotropical birds. 499 

Shifting climatic conditions affecting habitat connectivity drive changes in species ranges, thereby influencing 500 
phylogeographic patterns and the buildup of montane diversity (Ramírez-Barahona & Eguiarte, 2013; Flantua & 501 
Hooghiemstra, 2018). Species ranges may also experience phases of expansion and contraction linked to shifts in 502 
ecological specialization and interactions with natural enemies (i.e. the taxon cycle; Wilson, 1959; Ricklefs & 503 
Bermingham, 2002). Although taxon cycles are more evident in insular settings with discrete populations and areas 504 
(e.g., Ricklefs & Bermingham, 1999; Jønsson et al., 2014), they may also take place in continents (Graves, 1982). In 505 
fact, lineages experiencing the taxon cycle may account for what one might call continental great speciators like 506 
Henicorhina wood-wrens, which occur widely in space -revealing an ability to expand their ranges- yet split into 507 
isolated populations at a fast rate due to cessation of gene flow (cf. Diamond et al., 1976). Wood-wrens disperse little 508 
at present because of their morphology and ecology, which arguably explain their remarkable patterns of genetic 509 
structure reflecting long-term population isolation. However, our findings that wood-wrens dispersed throughout much 510 
of the montane Neotropics from a northern area of origin and that several lineages achieved secondary sympatry 511 
indicate that episodes of range expansion interspersed with periods of divergence occurred at various moments, 512 
possibly in sync with morphological or behavioral changes influencing their abilities to disperse (Pigot & Tobias, 2015; 513 
Hosner et al., 2017). Furthermore, gaps separating the ranges of closely related lineages of wood-wrens arguably reflect 514 
extinctions of intervening populations of formerly widespread lineages, which left vacant spaces that could, in turn, 515 
become occupied by other expanding lineages. 516 
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Phylogeographers will often not detect range dynamics embodied in the taxon cycle because incomplete reproductive 517 
isolation between young lineages can result in homogenization of gene pools upon secondary contact (Kearns et al., 518 
2018). Furthermore, niche similarities between incipient species achieving contact may preclude long-term sympatry 519 
owing to interspecific competition (Pigot & Tobias, 2013). Irrespective of whether the patterns we observed resulted 520 
from the taxon cycle, we identified aspects making the H. leucophrys complex well suited for further work on the 521 
origins of tropical diversity and its accumulation over time and space. Our results and other work on the complex 522 
reveal that the completion of reproductive isolation between lineages meeting in secondary sympatry seemingly 523 
exhibits a continuum ranging from neutral divergence with no obvious phenotypic differences (forms in montane 524 
Venezuela), to phenotypic and behavioral divergence with persistent interbreeding (hilaris and nominate leucophrys in 525 
Ecuador), to completed speciation with little to no hybridization (anachoreta and negreti vs. various forms of 526 
leucophrys in Colombia; Salaman et al., 2003; Dingle et al., 2008; Dingle et al., 2010; Caro et al., 2013; Burbidge et 527 
al., 2015; Halfwerk et al., 2016). Furthermore, divergence in elevational ranges occurring during periods of isolation 528 
(Cadena, 2007; Tobias et al., 2014) or arising in secondary sympatry (Diamond, 1973; Freeman, 2015) has enabled 529 
coexistence of lineages at the landscape scale in various regions. Given that range boundaries may be maintained –and 530 
possibly reinforced– evolutionarily by phenotypic and behavioral barriers to interbreeding and ecologically by 531 
competition (Jankowski et al., 2010), our study has uniquely captured wood-wren populations in the act of building up 532 
diversity via divergence and persistence in allopatry, achievement of secondary sympatry, and coexistence mediated by 533 
ecological and evolutionary divergence. Comparative work on the structure and dynamics of contact zones between 534 
lineages should provide rich insights into the origin and maintenance of high diversity in tropical mountains. 535 

 536 
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 905 
 906 

Figure 1. Geographic distribution of wood-wrens in the Henicorhina leuocophrys complex in the Neotropical montane 907 
region and localities where specimens were sampled for our phylogeographic analyses. The complex currently 908 
comprises three species: the widely distributed H. leucophrys ranging from Mexico to Bolivia and two narrow endemics 909 
from Colombia (H. anachoreta in the Sierra Nevada de Santa Marta and H. negreti on the western slope of the 910 
Cordillera Occidental). Distribution maps were obtained from BirdLife International (H. leucophrys) and Velásquez-911 
Tibatá et al. (2013; H. negreti), or generated for this study based on information on elevational range (H. anachoreta; 912 
Cadena et al., 2016). Illustrations by F. Ayerbe. 913 
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 915 

 916 

Figure 2. Phylogenetic relationships and divergence times among unique mtDNA haplotypes in the H. leucophrys 917 
complex inferred using BEAST suggest (1) paraphyly of H. leucophrys with respect to H. anachoreta and H. negreti, 918 
(2) a northern origin for the complex with subsequent colonization of South America, and (3) marked population 919 
genetic structure partly attributable to geographic isolation mediated by physical barriers. Color shading on nodes 920 
corresponds to posterior probabilities ≥ 0.85. Black vertical lines indicate geographic regions; note that all deep 921 
branches correspond to clades from mountain regions in Mexico and Central America and that South American 922 
populations are also strongly structured. Green vertical lines signal presumptive species identified using multi-rate 923 
Poisson Tree Processes (mPTP, left) and the Bayesian General Mixed Yule Coalescent Model (bGMYC, right); results 924 
of these analyses were almost identical, with only minor discrepancies in two clades marked with asterisks. Haplotypes 925 
are numbered at the tips of the tree; information on specimens having each haplotype is provided in Supplementary 926 
Table 1. 927 

928 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/376681doi: bioRxiv preprint 

https://doi.org/10.1101/376681
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

 929 

 930 

Figure 3. Elevational replacements involving distinct lineages of the H. leucophrys complex in montane South 931 
America. Lineages replacing each other with elevation in a region share colors in the map, the phylogeny (modified 932 
from Supplementary Figure 1, nodes indicated with grey dots have ≥0.85 posterior probability support), and the close-933 
up view of mountain slopes, where different shades are used for each lineage (arrows on the map show the direction 934 
from which mountains are seen in panes A-D). In at least three regions (A,C, D), elevational replacements do not 935 
involve sister taxa with the only possible exception being the novel case of cryptic replacement of lineages in the 936 
Cordillera de Mérida, Venezuela (B), where affinities of lineages to each other and to those from other regions are not 937 
strongly supported. Lineages involved in elevational replacements are deeply divergent from each other (panes show 938 
mean uncorrected p distances in ATPase genes), occur in close proximity, and correspond to different presumptive 939 
species identified by coalescent analyses (see text). 940 
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 942 

 943 

Figure 4. Geographic locations where we sampled 39 presumptive species in the H. leucophrys complex identified by 944 
coalescent analyses of mtDNA sequences. Dots and numbers on the tree (modified from Figure 2) correspond to 945 
species statistically inferred by the Bayesian General Mixed Yule Coalescent Model (bGMYC) with the threshold 946 
probability used to define group membership set at 0.50. Colors correspond to species epithets as per the current 947 
three-species taxonomy. Encircled numbers on the map indicate the number of presumptive species occurring in each 948 
country. Almost identical patterns were observed using the multi-rate Poisson Tree Processes (mPTP) method. For 949 
close-up views of geographic locations where each presumptive species was sampled, see Supplementary Figure 4. 950 
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 953 

Figure 5. Lineage-through time plot showing accumulation of lineages over time in the H. leucophrys complex. Black 954 
lines are estimates based on the maximum clade credibility tree and grey indicates the 95% credibility interval across 955 
100 trees for the plot and for estimates of the gamma statistic. The shape of the curve and the associated gamma 956 
statistic suggests that rates of lineage accumulation have declined over time, but note that because this analyses used 957 
results of bGMYC as input no presumptive species younger than 1 million years were considered. The pattern may 958 
also reflect incomplete sampling of young lineages particularly within South America. 959 
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 962 

Figure 6. Relative to the frequency distribution of the number of presumptive species identified by coalescent analyses 963 
of mtDNA sequence data within 173 taxonomic species of New World birds (data from Harvey et al. 2017, Smith et 964 
al. 2017), our result for the H. leucophrys complex is a distant outlier. Even if many lineages cannot be shown to be 965 
reproductively isolated from others, the data reveal a remarkable and previously undocumented degree of population 966 
genetic structuring. Illustration by F. Ayerbe. 967 
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 970 

Supplementary Figure 1. Phylogenetic relationships among individuals in the H. leucophrys complex inferred using 971 
Bayesian analysis of sequences of the ATPase 6&8 mitochondrial genes. The phylogeny is the maximum clade 972 
credibility tree obtained in BEAST. Nodal support (i.e, posterior probabilities ≥ 0.85) is shown using a grey scale. 973 
Nodes with a colored outline (green = H. leucophrys, blue = H. negreti, orange = H. anachoreta) were also recovered 974 
with strong support (≥ 80% boostrap) in maximum-likelihood analysis (Supplementary Figure 2). 975 
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 977 

Supplementary Figure 2. Phylogenetic relationships among individuals in the H. leucophrys complex inferred using 978 
maximum-likelihood analysis of sequences of the ATPase 6&8 mitochondrial genes. The phylogeny is the maximum-979 
likelihood tree obtained in RAxML. Nodal support (i.e, boostrap values ≥ 80%) is shown using a grey scale. Nodes 980 
with a colored outline (green = H. leucophrys, blue = H. negreti, orange = H. anachoreta) were also recovered with 981 
strong support (≥ 0.90 posterior probability) in Bayesian analysis (Supplementary Figure 1). 982 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/376681doi: bioRxiv preprint 

https://doi.org/10.1101/376681
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

c(
1:

nt
ip

)

se
q(

fro
m

 =
 0

, t
o 

= 
1,

 b
y 

= 
0.

05
)

p=
0.

95
−1

p=
0.

9−
0.

95
p=

0.
5−

0.
9

p=
0.

05
−0

.5
p=

0−
0.

05

 983 

Supplementary Figure 3. Results of species delimitation analysis in the H. leucophrys complex employing the Bayesian 984 
General Mixed Yule Coalescent Model (bGMYC). The phylogeny showing relationships among haplotypes is the 985 
maximum clade credibility obtained using BEAST and the table to the right is a sequence-by-sequence matrix in 986 
which cells are color-coded to indicate the posterior probability that each pair of sequences is conspecific. 987 
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Supplementary Figure 4. Close-up views of geographic locations where presumptive species in the H. leucophrys 996 
complex identified by coalescent analyses of mtDNA sequences were sampled. Maps showing known locations of each 997 
presumptive species are ordered roughly from North to South, and are numbered according to numbers on nodes in 998 
the tree in Figure 4; points on maps are colored based on the current three-species taxonomy recognizing H. 999 
leucophrys, H. negreti, and H. anachoreta. Some presumptive species have relatively large ranges (e.g. no. 6 across 1000 
Costa Rica and Panama) whereas others appear to be much more restricted, in some cases found at single localities so 1001 
far (e.g. no. 14 and 15 in the northern extreme of the Cordillera Central in Antioquia, Colombia).  1002 
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Supplementary Figure 5. Number of mtDNA lineages in the H. leucophrys complex of various ages (from 5 to 1 million 1006 
years ago [m.a.]). Vertical black lines correspond to the median number of lineages dating to at least each of the four 1007 
ages (i.e. splitting from their common ancestor with other lineages before each age) observed in a sample of 100 trees 1008 
in the posterior distribution obtained using BEAST; gray bars are the frequency distributions of number of lineages 1009 
per age across all trees. 1010 

1011 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/376681doi: bioRxiv preprint 

https://doi.org/10.1101/376681
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

Supplementary Table 1. (Provided as a separate .xlsx file). Information on specimens considered in phylogeographic 1012 
analyses including museum catalogue numbers, locality data, and GenBank accession numbers when available (those 1013 
for sequences generated for this study are pending). For each specimen, we also indicate the name used to refer to it in 1014 
Supplementary Figures 1 and 2, the ATPase 6/8 haplotype as shown in Figure 2, and the ID of the presumptive 1015 
species identified using bGMYC to which it belongs (Figure 3, Supplementary Figure 4). 1016 
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