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Abstract 

Mapping the brain structures in three-dimensional accurately is critical for an in-depth 

understanding of the brain functions. By using the brain atlas as a hub, mapping detected datasets into a 

standard brain space enables efficiently use of various datasets. However, because of the heterogeneous 

and non-uniform characteristics of the brain structures at cellular level brought with the recently 

developed high-resolution whole-brain microscopes, traditional registration methods are difficult to 

apply to the robust mapping of various large volume datasets. Here, we proposed a robust Brain Spatial 

Mapping Interface (BrainsMapi) to address the registration of large volume datasets at cellular level by 

introducing the extract regional features of the anatomically invariant method and a strategy of 

parameter acquisition and large volume transformation. By performing validation on model data and 

biological images, BrainsMapi can not only achieve robust registration on sample tearing and streak 

image datasets, different individual and modality datasets accurately, but also are able to complete the 

registration of large volume dataset at cellular level which dataset size reaches 20 TB. Besides, it can 

also complete the registration of historical vectorized dataset. BrainsMapi would facilitate the 

comparison, reuse and integration of a variety of brain datasets. 
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Introduction 

Mapping brain structures in three-dimensional is necessary to thoroughly understand of the brain 

functions (Huang and Luo, 2015). Creating a comprehensive space to map various brains will 

encompasses complex spatiotemporal information that can greatly facilitate the comparison (Badea et 

al., 2007), reuse (Boline et al., 2008) and integration (Gupta et al., 2000) of brain datasets. Drawing a 

stereotaxic brain atlas (Dong, 2008; Goldowitz, 2010) provides a unified spatial reference for 

addressing this issue. However, with the rapid development of high-resolution whole-brain microscopic 

imaging (Gong et al., 2016; Li et al., 2010; Ragan et al., 2012), the obvious heterogeneous and 

non-uniform (Lawson et al., 1990) characteristics of brain structures at cellular level make it difficult to 

map various experimental datasets from different individuals, modalities to a standard anatomical 

coordinate space by using uniform registration methods (Klein et al., 2009), which used in previous 

macroscopic level datasets such as magnetic resonance imaging (MRI). In addition, with the produced 

large volume dataset during imaging, we urgently need a robust nonlinear registration pipeline that can 

register massive spatial information datasets, and accurately position at the cellular level. 

Previous studies (Kakadiaris et al., 2004; Maintz and Viergever, 1998; Ohnishi et al., 2016; Zitova 

and Flusser, 2003) have been conducted to solve the registration of three-dimensional whole-brain 

datasets, especially within the MRI field. Among these studies, gray-level based registration algorithms 

(Klein et al., 2009) can effectively achieve the nonlinear registration of MRI datasets with uniform 

signals. These methods can also be applied to optical microscopic images, e.g. Leonard et al. (Kuan et 

al., 2015) processed the serial two-photon (STP) datasets to obtain an average brain. However, the 

optical microscopy images are susceptible to sample preparation and imaging processes, which will 

lead to the calculation of energy function of gray-level based method falling into the local minimum. 

For more complex optical microscopy images, feature-based registration algorithms (Fürth et al., 2018; 

Sergejeva et al., 2015; Zitova and Flusser, 2003) are the better choice because the factors that affect 

registration accuracy can be changed from grayscale to the extracted feature information, and then the 

bottle neck evolves to how to accurately and objectively extract sufficient feature points. Ohnishi et al. 

(2016) completed the registration of two-dimensional microscopy images to MRI data by extracting 

manually feature points, but its number was limited and subjective. Wang et al. (2014) used automatic 

methods to extract feature points and achieved the registration of histopathological data, but the 

accuracy of automatic recognition was greatly affected by data quality. Fürth et al. (2018) combined the 

advantages of artificial and automatic methods and achieved the registration of two-dimensional 

continuous microscopy images to a brain atlas. Briefly, when neuroscientists are struggling to obtain a 
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valuable experimental dataset, they often find that the existing registration method is not very effective 

because of excessive reliance on image quality or experience.  

Another challenge is the TB-scale large volume whole-brain datasets brought by imaging at 

cellular level. Generally, registration tools widely used in the biomedical imaging field, such as ITK 

(Ibanez et al., 2005) can achieve nonlinear registration only at GB level, the maximum amount of data 

reported in the literature (Niedworok et al., 2016) is approximately 1 GB, specifically a 12.5 μm3 

resolution whole-brain dataset. Clearly, the current nonlinear registration algorithm is a global 

optimization solution that requires a large amount of memory consumption and iterative computation 

and is not suitable for block parallelism. Therefore, achieving robust nonlinear registration at cellular 

level with a TB-scale large volume dataset is difficult. 

Here, we proposed BrainsMapi, a robust registration interface to accurately map 

three-dimensional brain image datasets to the standard brain atlas at cellular level. It can be applied to 

various datasets with sample tearing and streak image datasets, different individual and modality 

datasets, and we have registered four types of datasets (MRI (Johnson et al., 2010), Nissl staining 

(Micro-Optical Sectioning Tomography, MOST) (Li et al., 2010), propidium iodide (PI) staining 

(Brain-wide Precision Imaging system, BPS) (Gong et al., 2016) and STP (Ragan et al., 2012)) to the 

Allen Common Coordinate Framework version 3 (Allen CCFv3) for a robust demonstration 

(Goldowitz, 2010; Kuan et al., 2015). The registration results were highly accurate at the brain region 

level (Dice score > 0.9), and there was no significant difference with manually results in the 

identifiable nuclei level at 10 μm resolution (P > 0.05). BrainsMapi can also process large volume 

three-dimensional brain image datasets, and we demonstrated the nonlinear registration of whole brain 

dataset with more than 10 tera voxels. In addition, It is compatible with historical data and are able to 

register existing labeled data, which can integrate datasets comprising neuroscience information from 

different experimental brains into a common brain space. 

Materials 

Model data 

To visually demonstrate the effectiveness and robustness of BrainsMapi, we designed five simple, 

cartoon models with smiley and crying faces. The process is as follows. 

(1) Fixed model: A round smiley face in which the eyebrows, eyes, and mouth were marked with 

different gray level values. 

(2) Model1: Manually designed a deformation, deformed the fixed model, and made it a crying 
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face. 

(3) Model2: Using the histograms of corpus callosum (cc), hippocampal region (HIP) and 

Cerebellum (CB) of the Allen CCFv3 Nissl stained dataset, randomly assigned the eyebrows, eyes, and 

mouth of Model1, respectively. 

(4) Model3: Added streak noise to Model2 horizontally and vertically by using a sine function. 

(5) Model4: On the basis of Model3, set a gray level of zero in a triangular area of the mouth to 

simulate a tearing condition for the samples. 

Biological datasets 

We employed 6 whole-brain datasets and 1 metadata to validate BrainsMapi. All of the animal 

experiments followed procedures approved by the Institutional Animal Ethics Committee of Huazhong 

University of Science and Technology. 

Dataset 1 is from the CCFv3 of Allen Institute. This dataset is the average brain obtained by 

continuously averaging the 1,675 STP image datasets. The downloads of the average brain, annotation 

file, and individual Nissl dataset at four resolution levels of 100 μm, 50 μm, 25 μm, and 10 μm are 

open available at http://brain-map.org. Here we chose the average brain dataset of 10 μm resolution. 

Dataset 2 is the image volumes representing the canonical Waxholm Space (WHS) adult 

C57BL/6J mouse brain. Five datasets are provided, and three of the datasets were acquired by Duke 

Center for in-vivo microscopy using three MRI imaging models T1, T2, and T2*, one is the Nissl 

stained dataset obtained by Drexel University, and one is the manually Labeled Atlas dataset. The 

datasets are available at https://www.nitrc.org/. Here we chose the T2*-weight MRI image dataset. 

Dataset 3 is the whole-brain image dataset of a Nissl stained C57BL/6 adult mouse imaged by 

MOST. The three-dimensional dataset with 1 μm axial resolution and 0.35 μm horizontal resolution 

was acquired in 7 days using the MOST automatic slicing imaging system. The coronal slice number 

and original data size were approximately 11,000 and 4 TB respectively. 

Dataset 4 is from the whole-brain dataset of dual-color labeled Thy1-GFP M-line transgenic mice 

imaged by BPS. The co-localized fluorescent-labeled neurons and counterstained cell bodies dataset in 

brain wide with 2 μm axial resolution and 0.32 μm horizontal resolution was acquired. The coronal 

slice number and original data size of one channel dataset were approximately 4,800 and 3 TB 

respectively. Here we chose the cytoarchitectonic channel dataset. In addition, we identified and 

reconstructed the barrel cortex neurons of the GFP channel. Approximately, a total of 40 neurons were 

used as Metadata 1 (Gong et al., 2016). 

Dataset 5 is the specifically selected problematic dataset, which contains streaks caused by uneven 

staining and illumination and sample tearing phenomenon. This dataset will be used for comparison of 
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later results. The imaging system and staining method are the same as those obtained by Dataset 4. The 

only difference is that the axial resolution is 1 μm. 

Dataset 6 is a collection of published article (Niedworok et al., 2016) from the Division of 

Neurophysiology, MRC National Institute for Medical Research, London. Briefly, it is a dataset of 

autofluorescent C57BL/6 mouse imaged by STP microscopy. The original dataset has an axial 

resolution of 5 μm and a coronal resolution of 0.32 μm. The dataset is available at 

http://www.swc.ucl.ac.uk/aMAP. 

Please refer to the SI Table 1 for the main information of all image datasets (SI Figure 1) and 

metadata. 

Computing Environments 

In this paper, we used two computing devices. A graphical workstation was equipped with 20 cores 

(Intel Xeon E5-2687w×2), and 128 GB of RAM. Another device is HPC Cluster with 20 nodes. Each 

node was equipped with 20 cores (Intel Xeon E5-2660 V3×2) and 128 GB of RAM and connected with 

the Lustre file system via a 10 Gb Ethernet. 

Methods 

The whole pipeline of BrainsMapi is shown in Figure 1. We proposed a regional feature extraction 

method that can accurately, objectively and sufficiently extract features. This method would not be 

affected by factors such as sample defect, image quality and imaging modality that are crucial for 

ensuring the robustness of registration. Based on these, with a parameter acquisition and 

high-resolution transformation strategy we achieve the whole-brain nonlinear registration of the TB 

scale dataset at single-cell resolution. We blocked a large volume dataset, and used high-performance 

compute to efficiently transform each block in parallel. The pipeline included image preprocessing, 

regional features extractions, accurate transformation acquisition and nonlinear transformation for a 

large volume dataset. We will describe the technical detail below. 

Image preprocessing 

Image preprocessing aims to obtain high quality images for good registration results (Figure 1 

Preprocessing). First, denoising the original image, such as brightness correction and light-field 

correction to reduce the uneven staining and illumination of optical microscopy imaging (Ding et al., 
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2013) was necessary, next, we performed a preliminary rotation on the dataset to ensure proper 

orientation with the reference image. Then the corrected dataset was sampled isotopically. Finally, we 

used the adaptive threshold method (Otsu, 1979) and morphological operations (hole filing, opening 

and closing operators) to extract the mouse outline and remove the background. 

Regional feature extractions 

The accuracy of feature selection has a direct relationship with the registration results. Here, using the 

advantages of brain anatomy information, we proposed a method to extract anatomically invariant 

regional features to register two brain datasets. The extracted regional features with anatomical 

meanings, that is, brain regions or nuclei that were also conservative to delineate the boundaries of 

conservative brain regions or nuclei in three-dimensional space. Compared to observing a single 

anatomical point in three-dimensional brain space, extracting the boundaries of anatomical regions is 

more accurate, objective, and contains information such as shape and size. 

Here, an interactive segmentation tool, Amira (version 6.1.1; FEI, Mérignac Cedex, France), was 

chosen to perform the feature extraction procedure (Figure 1 Extraction of regional features). Briefly, 

the selection of extracted brain regions and nucleus needs to follow these three criteria. 

(1) Distributed throughout the brain to ensure the accuracy of registration in brain-wide. 

(2) Easily identified anatomical features to ensure accuracy and objectiveness for feature 

extraction. 

(3) Selection of conservative brain regions or nuclei that are guaranteed to occur in every brain as 

the basis of registration to ensure the correctness of the registration. 

Based on the criteria, we selected following features in the whole-brain with the guidance of 

anatomists: Outline, anterior commissure, olfactory limb (aco)/ anterior commissure, temporal limb 

(act), CB, cc, caudoputamen (CP), fasciculus retroflexus (fr), HIP, medial habenula (MH), facial nerve 

(VIIn), mammillothalamic tract (mtt), paraventricular hypothalamic nucleus (PVH), pontine gray (PG), 

lateral ventricle (VL), and fourth ventricle (V4). We have shown these regions in SI Figure 3. The 

entire regional feature extraction step was performed at 10 μm resolution, and all features were saved 

in the 3D-TIF image file. 

Accurate transformation acquisition 

After accurately extracting features brain wide, we needed to map these features to acquire accurate 

transformation parameters (Figure 1 Transformation acquisition). The process of transformation 
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acquisition is an optimal problem. The moving image is warped to the fixed image by initial 

transformation parameters, and the similarity metric of moving and fixed images is used as an energy 

function. Iteratively, the transformation parameters are updated to achieve an optimal solution and 

obtain the corresponding transformation. The transformation is composed of linear and nonlinear 

parameters, where the linear parameter can be simply represented by matrix M describing the 

translation, rotation, and scaling of 12 degrees of freedom, and the displacement field φ can represent 

the nonlinear parameter. Here, we chose a recent nonlinear registration method, Symmetric 

Diffeomorphic Normalization (SyN) (Avants et al., 2008). SyN customizes the symmetry deformation 

based on the standard method of the Large Deformation Diffeomorphic Metric Matching (LDDMM) 

proposed by Beg (Beg et al., 2005). SyN can flexibly record the displacement for each pixel with a 

large deformation and produces a diffeomorphic transformation of symmetric and invertible. This 

symmetrical method of processing direct and inverse simultaneously is also reflected in its energy 

function (Equation 1). 
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��
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��   (1) 

Where φ1 and φ2 are the diffeomorphism field in opposite directions of domain Ω indexed by time 

t, t∈[0,1], and v1 and v2 are the velocity field in opposite directions. Physically, the distance drives each 

pixel to move, which is determined based on the image potential energy. When the original images are 

replaced by our extracted regional features, the movement of each pixel is determined by the potential 

energy of features, which will not be disturbed by large differences in image gray level and will not fall 

into local minimums caused by image noise. In short, when we replace I and J which represent the 

original images with the feature images I0 and J0, we can obtain accurate transformations. 

We used the five-pyramid strategy in both linear and nonlinear registration for acceleration, and 

mutual information was used as the similarity measure. The entire transformation acquisition step was 

approximately 3 hours. We obtained the linear matrix M, the nonlinear direct displacement field φ1 and 

the inverse field φ2. 

Furthermore, the displacement was presented in a grid form to intuitively illustrate the nonlinear 

deformation effect of the diffeomorphism method based on regional features (Figure 2). 

Three-dimensional nonlinear displacement (Figure 2B) and nonlinear registration results (Figure 2C) 

were obtained by the nonlinear registration on the linear results (Figure 2A). The global and local 

nonlinear deformation effects where be observed from the coronal, sagittal and horizontal sections 

respectively (Figure 2D). For comparison, we also show the registration effects with the atlas line 

superimposed the nonlinear results (Figure 2E). 
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Nonlinear transformation for a large volume dataset 

The existing nonlinear registration algorithms load the entire volume into memory for calculation. 

However, this strategy will dramatically increase the memory consumption and running time for the 

TB-scale dataset, simply stacking hardware cannot solve the problem of nonlinear registration of 

TB-scale dataset. Here, a parameter acquisition and high-resolution transformation strategy were 

proposed to achieve nonlinear registration of the TB scale dataset at single-cell resolution. 

First, the transformation parameters for the low-resolution dataset (10 μm isotropic) were obtained 

based on the above transformation strategy. Then we acquired the transformation parameters for the 

high-resolution dataset as follows:  

(1) For linear parameters, the linear matrix M (low-resolution) was multiplied with a scale matrix 

to produce the high-resolution linear matrix (M’); 

(2) Nonlinear parameters are represented by deformation fields, which express the displacement 

for each voxel in three-dimensional space in the form of three channels φx, φy, φz. By simply up 

sampling the low-resolution displacement will generate a TB-scale high-resolution displacement, 

which encounters storage and computation problems. Conversely, we directly calculated each voxel 

displacement (φx (x, y, z), φy (x, y, z), φz (x, y, z)) by interpolation during the transformation process 

according to low resolution displacement fields. 

P(x, y, z) dentes the space coordinate of voxel P before registration, and the coordinates after 

linear and nonlinear registration are P’ (x’, y’, z’) and P’’(x’’, y’’, z’’), respectively. The mapping 

relationship is shown in Equation 2. 

���, ��, ��� � ��, �, �� � ��
���� � �� � � � ����, �, ����� � �� � � � ����, �, ����� � �� � � � ����, �, �� �  (2) 

Based on the above mapping relationship, we established a transformation method for large 

volume datasets. Raw image sequences were partitioned into many cubes using TDat tools (Li et al., 

2017b) (Figure 1 Image blocking). The transformed space was precalculated according to the size of 

fixed images and scaling factor. Next, we applied transformation parameters for each block in 

transformed space separately. We loaded only a small range of data into memory to solve the 

contradiction of the TB-scale dataset and the limitation of memory. The details are as follows (Figure 1 

Block transformation). 

(1) For each block in transformed space, we obtained the corresponding blocks in their original 

space by transforming all points on six surfaces of the block with the mapping relationship (Equation 
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2). Then, the identified blocks (ROI blocks) in original space were loaded to memory. 

(2) For every voxel in a block, we calculated the spatial coordinate of the corresponding voxel in 

ROI blocks by the mapping relationship (Equation 2) and used the grayscale value of the coordinate as 

this voxel. 

(3) Each block was written to a disk in three-dimensional image format with gray values. 

After the process above, we acquired the registered three-dimensional image dataset at original 

resolution, which was in the TDat format. Finally, the registered two-dimensional image sequences of 

three anatomical sections (coronal, horizontal, sagittal) were generated by re-slicing (Figure 1 Blocked 

data re-slicing). 

During the process, parallel technologies of process-level message passing interface (MPI) and 

thread-level OpenMP were applied in data reading, writing and calculating operations in a 

multicomputer environment to efficiently achieve the nonlinear registration of the TB-scale 

whole-brain dataset. 

Vectorized dataset registration  

Integrating a dataset such as cells (Peng et al., 2017; Zhang et al., 2017), neurons (Gong et al., 2016; Li 

et al., 2017a), and vessels (Xiong et al., 2017) requires mapping them into a standard space. These 

vectorized datasets are constructed of point set and coordinates. Using neurons as an example, traced 

neurons were saved as SWC files in the form of sequence points. In the same manner as the image 

dataset transformation, we transformed each point, and realized the registration of these vectorized 

datasets. 

Multilevel quantitative evaluation 

Most evaluation methods (Christensen et al., 2006; Kim et al., 2015; Klein et al., 2009; Oh et al., 2014) 

use feature points or manual segmentation. According to the literature (Zitova and Flusser, 2003), the 

most effective way is subjective judgment by anatomists. We think that simply selecting a few points 

cannot completely assess the registration results, and the segmentation results of individuals are also 

subjective. Here, we designed a set of multilevel quantitative assessment methods, from coarse to fine 

and assessed the registration results at the brain-region level to the identifiable nuclei level at 10 μm 

resolution accurately and objectively. 

By design, we first assessed the accuracy of the brain-region level, a coarse assessment. A total of 

ten brain regions of interest were chosen throughout the brain: Outline, CB, CP, hindbrain (HB), HIP, 

hypothalamus (HY), isocortex (ISO), midbrain (MB), pons (P) and thalamus (TH). We manually 
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segmented the moving image after registration, and the segmentation results were regarded as a silver 

standard (Klein et al., 2009) instead of a golden standard. To make the segmentation results more 

accurate and reduce the workload, we did not segment each complete brain region slice by slice, 

because of the extreme indistinguishability of the start and end of the brain regions. The brain regions 

were middle intercepted and 50 image sequences were selected at equal intervals and segmented slice 

by slice. All manual segmentation results were referenced to the Allen CCFv3. Finally, the dice score 

(Equation 3) was selected as the evaluation measure. 

 	!" �!#$" � ��|���|
|�|�|�|

  (3) 

I is the moving image after registration, J is the fixed image, and ∩ denotes the intersection of two 

images. The dice score was calculated in two-dimensional, the number of dice scores for each brain 

region was 50. 

In addition to the design of identifiable nuclei level evaluation at 10 μm resolution, an aMAP 

(Niedworok et al., 2016) approach was used as a reference. Nine nucleus were selected brain-wide 

(anterior cingulate area (ACA), primary visual area (VISp), primary somatosensory area (SSP), 

reticular nucleus of the thalamus (RT), ventromedial hypothalamic nucleus (VMH), periaqueductal 

gray (PAG), subiculum (SUB), entorhinal area, lateral part (ENT1), medial vestibular nucleus (MV)), 

and included both distinguishable and indistinguishable boundaries. Twenty-two trained technicians 

segmented these regions in five registered datasets (four type). First, we selected a representative 

coronal section in the CCFv3 for each nuclei, and a stack (40 sequences) of corresponding position in 

the registered datasets was also provided. Then, these 22 individuals needed to identify a single coronal 

section from the stack that they considered most similar to the reference coronal section and segmented 

it. Based on this procedure, the STAPLE algorithm (Warfield et al., 2004) was used to fuse 22 human 

segmentation results, and obtain the SPATLE results. The dice scores of each segmentation result and 

SPATLE results were calculated as human performance (HP), and the dice scores of the CCFv3 and 

SPATLE results were calculated as registration performance (RP). Then, correlation analysis was 

performed. 

Results 

A model experiment for robust demonstration 

Using the corresponding constructed models according to the complex situations during brain image 

registration such as sample deformation, weak signal-to-noise ratio (SNR), streak noise and sample tear, 
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we demonstrated the robustness of our proposed BrainsMapi and other registration methods in response 

to various complex situations. 

We simulated sample deformation in Model1 and added a non-uniform gray assignment to 

simulate non-uniform signal or weak signals (eyebrows) in Model2. Model3 was added worse streak 

noise. On the basis of above steps, we added a sample tear situation to Model4 (Figure 3 and Materials). 

When the crying face turns into a smiling face, it proves that good registration effects have been 

achieved. As shown in the last column in Figure 3, regardless of deformation, weak SNR, streak noise 

and tearing, proposed method could obtain good registration results. 

In contrast, we also listed the effects of other registration methods on the model data. The results 

of manually selecting feature points (eg. TPS with manually landmark) are randomness due to the 

subjectivity, limited numbers and inconsistent location of the selected feature points (Figure 3, second 

column). Accurate automatic extraction of feature points (eg. BSplineSyN with Harris) is difficult in 

weak SNR and strong noise images, resulting in inaccurate registration (Figure 3, third column). The 

gray-level based registration method (eg. SyN with MI) also cannot be applied to weak SNR, strong 

noise interference and tearing images (Figure 3, fourth column). Three-dimensional model datasets 

registration results are also provided in supplementary materials (SI Figure 5). 

Registration for sample tearing and streak image dataset 

The complications simulated in the model data also existed in brain images. There are large differences 

in image quality even with the same modality images. These images are easily disturbed in the 

processes of sample preparation and imaging, such as obvious sample tearing and streaks caused by 

uneven illumination (SI Figure 2). Gray-level or feature based registration methods cannot easily to 

solve these problem, which prevents us from comparing and analyzing intro-modal datasets. 

Using Dataset 4 as a reference brain, we presented an intra-modal registration for poor quality 

(sample tearing and streaks) images by aligning Dataset 5 to the reference brain based on BrainsMapi. 

We presented the registration results in the form of checkerboards in Figure 4. The global orientation of 

the mouse brain was corrected after linear registration (Figure 4A), and the local brain regions and 

nucleus were adjusted after nonlinear registration (Figure 4B). Compared to linear results (Figure 4C), 

nonlinear registration resulted in good local correction of regions such as olfactory areas (OLF), CB, 

HIP, and paraflocculus (PFL) (Figure 4D). The small purple arrows in Figure 4CD indicate that the 

misalignment positions were corrected after nonlinear registration. 

In addition, we evaluated the registration accuracy at brain-region levels (See method). In the box 

plot (Figure 4E), the median dice score for all brain regions was between 0.9 and 0.99. Generally, a 
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dice score is above 0.8 indicates that good registration effects have been achieved (Klein et al., 2009; 

Niedworok et al., 2016). 

Registration for large different individuals 

In addition to the differences in image quality, the more general differences in the experiment are 

individuals. Here, we expect to show registration results of large different individuals. Using a way of 

measuring the distance of anatomical landmarks (Kim et al., 2015), we found that the greatest different 

individual pair was Dataset 2 and Dataset 4 between the four dataset types (Dataset 2 (MRI), Dataset 3 

(MOST), Dataset 4 (BPS) and Dataset 6 (STP)) (SI Figure 4), and we also shown the distance between 

these two datasets in Figure 5A (median 596.9 μm). 

Using Dataset 2 as a reference brain, Dataset 4 was registered. By merging Dataset 4 (green 

channel) to Dataset 2 (purple channel), we presented the inter-modal registration results of large 

individual differences with horizontal (Figure 5B), sagittal (Figure 5C) and several coronal sections 

(Figure 5D). Roughly, the brain outline and big brain regions could be well aligned. Moreover, the 

corresponding enlarged views were given in Figure 5E, nucleus such as CB, HIP, aco, cc, CP, VIIn 

could also be well mapped. 

Here, we also conducted a quantitative assessment of brain-region levels. In the box plot (Figure 

5F), the median dice score for all brain regions was between 0.9 and 0.99. 

Register to a reference atlas for multi-modal registration 

We presented a special registration type in this section that was registered to the reference atlas. Using 

direct or inverse registration to the reference brain space, we were able to acquire the spatial 

information of the original dataset, which is the key to integrating multi-modal image dataset into a 

common brain space. 

We registered four types of datasets (Dataset 2-4 and 6) to Allen CCFv3 (Dataset 1) and presented 

the registration results. From top to bottom, the information corresponds to the registration results 

(Figure 6) of Dataset 2-4 and 6. We selected three coronal sections in the whole-brain with the form of 

the Allen CCFv3 on the left and the yellow dotted line of the Allen CCFv3 superimposed on the 

original image to show our results. The brain outline and big brain regions such as HIP and CB were 

well aligned. Brain regions without obvious anatomical boundaries such as TH, HY, MB and CB also 

had a good alignment with the Allen reference which could be judged from their spatial orientation. 

Moreover, we presented the enlarged views of local regions of nucleus for each data type. Nucleus with 
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distinct boundaries such as aco, dentate gyrus, granule cell layer (DG-sg), and CP were aligned well to 

the Allen reference atlas. For ACA, the left and right boundaries were not obvious, but the upper and 

lower boundaries could be judged by the original image. For MV and spinal nucleus of the trigeminal, 

interpolar part (SPVI) with inconspicuous boundaries, the accuracy could be roughly judged by the 

brain spatial orientation. All these areas were well aligned. 

According to the above registration results, we first assessed the accuracy at brain-region level, a 

rough assessment (See method). We evaluated ten brain regions in brain-wide for the five datasets. The 

results are shown in box plots (Figure 7A). The median dice score of all brain regions and datasets 

were above 0.9. 

In addition to the assessment of the identifiable nuclei level at 10 μm resolution, nine brain 

anatomical structures were selected (see Method). When we grouped the results by HP or RP, the 

median acquired by HP (Figure 7B, black) was not significantly different from acquired by RP (Figure 

7B, orange) (Mann-Whitney U-test, score of 0.90 versus 0.92, P = 0.054; n = 4 brains, 9 structures, 22 

human raters). When we grouped these scores by nucleus, there were no significant differences 

between HP and RP in eight structures except the PAG. HP was significantly better than RP in the 

segmentation of PAG regions (Figure 7B) (Mann-Whitney U-test, score of 0.94 versus 0.90, P = 0.017; 

n = 4 brains, 9 structures, 22 human raters). When we grouped the results by datasets, there was also no 

significant difference between HP and RP in four individual brains (Figure 7B) (Mann-Whitney U-test, 

P > 0.06). 

All these results demonstrated that the method proposed in this paper has extremely high accuracy 

at the brain-region level, and there was no significant difference from manual results at the nuclei level 

of 10 μm resolution. 

Whole-brain registration at single-cell resolution with TB-scale dataset 

We used the low-resolution registration result (10 μm) to demonstrate the robustness and accuracy of 

BrainsMapi in the previous section. Moreover, we achieved nonlinear registration of TB-scale dataset 

at single-cell resolution. 

Nonlinear registration at single-neuron resolution can not only correct non-uniform deformation of 

brain structures but also integrate various dataset at cellular level. Based on BrainsMapi (See Method), 

we aligned Dataset 5 (fluorescence channel) to Dataset 1 (Allen CCFv3) at single-cell resolution. 

The Dataset 5 of 0.32 μm × 0.32 μm × 1 μm original resolution was sampled to 0.32 μm isotropic, 

and the dataset size reached 20 TB approximately. We mapped the three-dimensional, continuous, and 
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single-cell resolution registration results to the standard atlas space. The dataset was aligned to the 

Allen CCFv3 in three-dimension (Figure 8ABC), and the brain regions were matched accurately 

(Figure 8G). We also presented the registration effects by comparing the pre- and post-registration of a 

coronal image with the Allen CCFv3 superimposed (Figure 8DG). The neuron fiber morphology was 

corrected and the complete and continuous structure was simultaneously achieved (Figure 8EH). Fine 

and weak signals also remained consistent after registration. 

During the process, we completed the parallel computation of about 20 TB sized dataset in 70 

hours, which used 100 threads in 20-node HPC and cost 56 GB memory for each node. In the addition, 

we evaluated the performance of registration for large volume dataset (SI Figure 6 and Table 2). 

Register existing metadata to a reference atlas 

Metadata refers to digitized, vectorized information acquired from a raw image dataset, such as 

vascular structure, neuron projections, and cell distribution. These metadata are scattered in different 

brain spaces, individual laboratories and projects. Using BrainsMapi, vectorized dataset could be 

registered into a standard brain space to complete the integration of these existing and labeled 

metadata. 

By aligning Metadata 1 to the Allen CCFv3, we presented the registration results of vectorized 

neurons. Vertebral neurons were manually traced from unregistered Brain 4 (Figure 9A). Using the 

proposed vectorized registration method, we deformed and completed the spatial localization of the 

metadata (Figure 9B). For comparison, we also presented the results of three-dimensional pre- and 

post-registration in horizontal, sagittal and coronal (Figure 9C). 

These results proved that the proposed method of registration of the vectorized dataset could 

complete the integration of metadata from different individuals. 

Discussion 

In this study, we proposed a robust registration interface for large volume brain datasets named 

BrainsMapi. We used anatomically invariant regions during the registration to ensure the objective 

extraction of a large number of features, making it able to accurately register various datasets. 

Furthermore, with the low-resolution acquisition parameters and high-resolution transformation 

strategy, we realized the nonlinear registration of the TB-scale whole-brain dataset by data partitioning. 

We demonstrated the robustness of our registration method on both model data and real brain image 
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datasets and presented the nonlinear registration results of a three-dimensional whole-brain fine image 

dataset at single-neuron resolution. Additionally, the labeled and existing vectorized datasets were 

registered to a standard brain space. Finally, we designed an objective multilevel evaluation method to 

prove the accuracy. 

The regional features of our method are no limited to the cytoarchitectural image data, reflecting 

its wide applicability. As long as the anatomical region can be identified in the image, the method can 

be used for registration. However, the selection of regional features is not absolute, and can be 

autonomous based on the image characteristics or experimental requirements until the registration 

results meet expectations. An ideal situation is to select all the brain regions for registration, which will 

obtain the best results, but the cost is too high. In this paper, we recommended 14 regions based on our 

experience, aiming to obtain sufficiently accurate results with lower costs. 

Another important aspect of this paper is the high-resolution nonlinear registration method for 

large volume datasets, which benefited from the low-resolution acquisition parameters, high-resolution 

transformation strategies, and data partitioning ideas; this method is also highly scalable and very 

promising for future applications to Peta Voxel datasets, such as the marmoset and human brain 

datasets. Presently, there appear to be no feasibility problems, and the only cost is more computing time, 

which can be accelerated by improving hardware performance. 

Neuroscientific analysis with the brain spatial orientation requires matching the dataset to the 

standard brain space coordinate system to obtain anatomical boundaries. More general and common 

analysis skills involve combining multi-modality and multi-scale datasets to reveal the structural and 

functional relationship of the brain, such as MRI, optical imaging, even electron microscopy datasets. 

The integration of mesoscopic and macroscopic datasets is more meaningful, valuable and efficient. 

Many projects (Ascoli et al., 2007; Hawrylycz et al., 2011; Rosen et al., 2000) have used registration 

techniques to integrate various datasets even the recent international brain projects (Huang and Luo, 

2015) desire to develop a powerful, standardized, industrialized framework to integrate multi-scale, 

multi-mode and massive datasets for studies on brain function mapping, disease models, and behavioral 

cognition (Okano et al., 2016). BrainsMapi is highly compatible with the requirements of data 

integration. It can accurately register various image datasets and existing vectorized metadata, and 

handle high-throughput handle the TB-scale large volume whole-brain datasets, providing a complete 

and effective pipeline for brain data integration. 
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Figures 

 

Figure 1. Registration pipeline for large volume brain datasets. 

Input dataset: mammal, three-dimensional whole brain, micron dimension, TB-scale dataset. The 
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crucial steps for ensuring the robustness of registration, including preprocessing, regional feature 

extractions, and transformation acquisition are on the left. The obtained warping parameters are input 

to the right, and the registration for large volume brain datasets, including image blocking, block 

transformation and blocked data re-slicing. The registered result is obtained in three anatomical 

sections.
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Figure 2. Application of nonlinear deformation field 

(A) The three-dimensional rendering of the brain outline and three anatomical sections (coronal, horizontal and 

sagittal) before nonlinear registration. (B) Three-dimensional displacement. (C) Three-dimensional deformation 

field applied to the original three-dimensional dataset. (D) A two-dimensional grid shows the application of 

deformation fields in coronal, sagittal, and horizontal planes. (E) The registration of coronal, sagittal and 

horizontal sections correspond to (B), respectively. Scale bars: 1 mm. 
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Figure 3. Registration effects for model data 

The comparison of three traditional registration methods with our proposed method. The first row of smiles is 

the fixed model. Rows 2 to 5 correspond to the registration results of three traditional registration and proposed 

BrainsMapi in different modeled situations.  
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Figure 4. Registration effects for sample tearing and streak images 

(A) The checkboard reconstructions of linear registration of one sagittal and two coronal slices indicated by 

dashed lines in the sagittal slice. The projection thickness is 10 μm. (B) The checkboard reconstructions of 

nonlinear registration results of one sagittal and two coronal slices indicated with dotted lines in the sagittal 

slice. The projection thickness is 10 μm. (C) The enlarged views of linear results of local regions indicated with 

corresponding dotted box in (A). (D) The enlarged views of nonlinear results of local regions indicated with 

corresponding dotted box in (B). The thin cross dotted line in (C, D) represents the grid of the checkboard. (E) 

A quantitative evaluation at the brain-region level.
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Figure 5. Registration effects for large different individuals. 

(A) The schematic diagram of thirteen pairs of landmarks and brain outlines, fixed image (purple), moving 

image (green). (B) A horizontal reconstruction at the location indicated by a dot outline in (A), merge the fixed 

image (purple) with the registered moving image (green). The projection thickness is 10 μm. (C) A sagittal 

reconstruction at the location indicated by a dotted line in (B), merge the fixed image (purple) with the 

registered moving image (green). The projection thickness is 10 μm. (D) The 10 μm thick projection of several 

merged coronal sections indicated by dotted line in (C). (E) Merged image of enlarged views of local regions 

indicated with text annotations and corresponding boxes in (B, C, D). (F) A quantitative evaluation at the 

brain-region level. Scale bars: (B, C, D) about 1 mm, E 0.5 mm. Cerebellum (CB), Hippocampal region (HIP), 

anterior commissure, olfactory limb (aco), corpus callosum (cc), caudoputamen (CP), facial nerve (VIIn). 
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Figure 6. Registration effects for multi-modal datasets 

The 10 μm thick projections of three coronal sections, the left half is the Allen CCFv3, and right half is the 

yellow dotted line of the Allen CCFv3 superimposed on original image. Enlarged views of several local regions 

are provided below indicated with white boxes in the above coronal sections. The projection thickness is 10 μm. 

(A): Dataset 2 (MRI), (B): Dataset 3 (MOST), (C): Dataset 4 (BPS), (D): Dataset 6 (STP). Scale bars: coronal 1 

mm, detail 0.5 mm. Anterior cingulate area (ACA), anterior commissure, olfactory limb (aco), dentate gyrus, 

granule cell layer (DG-sg), caudoputamen (CP), medial vestibular nucleus (MV), spinal nucleus of the 

trigeminal, interpolar part (SPVI).  
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Figure 7. Multilevel quantitative assessment results 

(A) The assessment at the brain-regions level, boxplot of dice scores for ten brain regions of five brain datasets 

(indicated with different colors) (n = 5). (B) The assessment at the nuclei level, dice scores of registration 

performance (RP, orange) and human performance (HP, black) are grouped by structure (n = 4). Vertical lines 

indicate the median scores. (C) The assessment at the nuclei level, dice scores of registration performance (RP, 

orange) and human performance (HP, black) are grouped by dataset (n = 5). Brains used in (B) are marked with 

an asterisk.  
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Figure 8. Registration effects for the whole-brain at single-cell resolution 

(A) The three-dimensional rendering of the original GFP channel of Thy1-GFP M-line transgenic mice. (B) The 

three-dimensional rendering of the registered GFP channel. (C) The three-dimensional rendering of the brain 

outline of the Allen CCFv3. (D) The 256 μm thick coronal projection of the original image. (E) The enlarged 

three-dimensional rending view at the location indicated by the blue box in (D). (F) The enlarged 256 μm thick 

projection view at the location indicated by the blue cuboid in (E). (G) The 256 μm thick coronal projection of 

the registered image. (H) The enlarged three-dimensional rendered view at the location indicated by the blue 

box in (G). (I) The enlarged 256 μm thick projection view at the location indicated by the blue cuboid in (H). 
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Figure 9. Registration effects for existing metadata 

(A) The three-dimensional rendering of the GFP channel of Thy1-GFP M-line transgenic mice, 

three-dimensional and two-dimensional vectorized neurons (Metadata 1). (B) The coronal projection of the 

Allen CCFv3 with vectorized neurons after registration indicated in the three-dimensional rendering in (B). (C) 

The three-dimensional rendering of three anatomical projections (horizontal, sagittal and coronal) of the outline 

and neurons before (C top) and after registration (C bottom). 
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