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Abstract

We propose a novel unsupervised approach of detecting and segmenting white matter abnormalities, using
limited one-time sampling irregularity age map (LOTS-IAM). LOTS-IAM is a fully automatic unsupervised
approach to extract brain tissue irregularities in magnetic resonance images (MRI) (i.e., T2-FLAIR white
matter hyperintensities (WMH)). In this study, the limited one-time sampling scheme is proposed and im-
plemented on GPU. We compared the performance of LOTS-IAM in detecting and segmenting WMH with
various methods, including state-of-the-art unsupervised WMH segmentation of Lesion Growth Algorithm
from public toolbox Lesion Segmentation Toolbox (LST-LGA) and state-of-the-art supervised WMH seg-
mentation of convolutional neural network (CNN) based methods. Based on our experiments, LOTS-IAM
outperformed LST-LGA, the state-of-the-art unsupervised WMH segmentation method, both in perfor-
mance and processing speed. Furthermore, our proposed method also outperformed conventional supervised
machine learning algorithms of support vector machine (SVM) and random forest (RF), and supervised deep
neural networks algorithms of deep Boltzmann machine (DBM) and convolution encoder network (CEN).

Keywords: white matter hyperintensities, lesion segmentation, unsupervised segmentation, dementia,
MRI, voxel-based irregularity age map

1. Introduction

White matter hyperintensities (WMH) are com-
mon brain abnormalities found in brain magnetic
resonance images (MRI) from patients with demen-
tia/Alzheimer’s Disease and other brain pathologies
such as stroke and multiple sclerosis. WMH can
be easily seen in T2-Fluid Attenuation Inversion
Recovery (FLAIR) MRI as they appear brighter
than the normal brain tissues. It is believed that
WMH are associated with the progression of de-
mentia (Wardlaw et al., 2013) and other comor-
bidities. Hence, not surprisingly, there have been
many studies on methods for detecting or segment-
ing WMH automatically.

Supervised machine learning algorithms such as
support vector machine (SVM), random forest (RF)
(Ithapu et al., 2014) and deep learning convolu-

tional neural network schemes, e.g. DeepMedic
(Kamnitsas et al., 2017; Rachmadi et al., 2017a),
uNet (Ronneberger et al., 2015; Li et al., 2018)
and uResNet (Guerrero et al., 2018) have emerged
as the state-of-the-art machine learning algorithms
for automatic WMH segmentation. However, all
supervised methods are highly dependent on man-
ual labels produced by experts (i.e., physicians)
for training process. Furthermore, the quality of
the label itself is dependent on and varies accord-
ing to expert’s skill and opinion, which rises ques-
tions about reproducibility in different sets of data.
These intra/inter-observer inconsistencies usually
are quantified and reported, but this does not solve
the problem.

Unsupervised machine learning algorithms which
do not need manual labels to work can eliminate the
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aforementioned dependency. Methods such as Le-
sion Growth Algorithm from Lesion Segmentation
Tool toolbox (LST-LGA) (Schmidt et al., 2012) and
Lesion-TOADS (Shiee et al., 2010) have been devel-
oped, tested in many studies and publicly available
for unsupervised WMH segmentation. Unfortu-
nately, their performance is very limited compared
to that from the supervised ones (Ithapu et al.,
2014; Rachmadi et al., 2017a).

An unsupervised method named irregularity age
map (IAM) (Rachmadi et al., 2017b) and its faster
version one-time sampling IAM (OTS-IAM) (Rach-
madi et al., 2018c) have been recently proposed
and reported to work better than LST-LGA, which
is still the most commonly used method and the
state-of-the-art for unsupervised WMH segmenta-
tion. This study completes the development of this
IAM method by evaluating all its parameters and
using other metrics to analyse its quality and ap-
plicability.

In summary, the main contributions of this study
are:

1. Proposing a new approach named limited one-
time sampling IAM (LOTS-IAM) which is
faster than IAM (i.e., the original scheme) and
OTS-IAM.

2. A comprehensive analysis and evaluation of
LOTS-IAM, including (1) comparison between
IAM, OTS-IAM and LOTS-IAM, (2) analysis
of trade off trade off between speed and qual-
ity in LOTS-IAM, (3) analysis of LOTS-IAM’s
parameters and their performances, (4) analy-
sis of LOTS-IAM’s random sampling stability
and (5) analysis of LOTS-IAM’s performance
on different size/volume of WMH.

2. Irregularity Age Map

The irregularity age map (IAM) approach for
WMH assessment on brain MRI was proposed in
our previous work (Rachmadi et al., 2017b). It
is based on a previous work in computer graph-
ics (Bellini et al., 2016) to detect aged or wandered
regions in texture images. The term “age map” is
used to name the 2D array with values between 0
and 1 that denote irregularities in textures dubbed
as age values. The closer the value to 1, the more
probable the image pixel/voxel is to belong to a
group of clusters with different texture from that
considered as the “norm”. The age map can be
calculated using, instead, structural MRI, to detect

abnormal regions within normal tissue. For this
process, four steps are necessary: 1) preparation
of the regions of interest where the algorithm will
work (e.g. brain tissue mask), 2) patch generation,
3) age value calculation and 4) final age map gen-
eration. These four steps are visualised in Fig. 1
and described in the rest of this section. Note that
steps 2 to 4 are executed slice by slice (i.e. in 2D).

2.1. Brain tissue mask generation

For brain MRI scans, the brain tissue mask is
necessary to exclude non-brain tissues not needed in
the calculation of IAM and which can represent ”ir-
regularities” per se; for example skull, cerebrospinal
fluid, veins and meninges. We want to compare and
identify brain tissues within other brain tissues, not
skull or other parts of non-brain tissues. For this
purpose we use two binary masks: intracranial vol-
ume (ICV) and cerebrospinal fluid (CSF) masks,
the latter containing also pial elements like veins
and meninges. In our experiments, the ICV mask
was generated by using optiBET (Lutkenhoff et al.,
2014) while the CSF mask was generated by using
an in-house algorithm developed by The Univer-
sity of Edinburgh (Valdés Hernández et al., 2015).
However, several tools that produce accurate out-
put exist and can be used for this purpose (e.g.
bricBET1, freesurfer2). The pre-processing step be-
fore computing LOTS-IAM only involves the gener-
ation of these two masks as per in the original IAM
and in OTS-IAM (Rachmadi et al., 2017b, 2018b).
This study also uses the normal appearing white
matter (NAWM) mask to exclude brain non-white
matter area, as per OTS-IAM (Rachmadi et al.,
2018b). NAWM masks were generated using the
FSL-FLIRT tool (Jenkinson et al., 2002), but can
also be generated using in-house tools or freesurfer,
for example.

2.2. Patch generation

Patch generation generates two sets of patches;
non-overlapping grid-patches called source patches
and randomly-sampled patches called target
patches, which can geometrically overlap to each
others. Each of source patches will be compared
with all target patches using a distance function to
calculate each source patch’s irregularity level. The

1https://sourceforge.net/projects/bric1936/files/

MATLAB_R2015a_to_R2017b/BRIClib/
2https://surfer.nmr.mgh.harvard.edu/
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Figure 1: Flow of the proposed LOTS-IAM-GPU. 1) Pre-processing: brain tissue-only T2-FLAIR MRI 2D slices are generated
from the original T2-FLAIR MRI and its corresponding brain masks (i.e., intracranial volume (ICV) and cerebrospinal fluid
combined with pial regions (CSF)). 2) LOTS-IAM: the brain tissue-only T2-FLAIR MRI slice is processed through the
LOTS-IAM algorithm on GPU. 3) Post-processing: final age map of the corresponding input MRI slice is produced after a
post-processing step, which is optional.
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rationale behind this is: if we successfully sample
target patches mostly from normal brain tissues
and calculate distance values between source patch
and all target patches, then irregular textures
located within the source patch will produce high
absolute distance values for the respective source
patch. In this study, we use hierarchical subsets
of four different sizes of source/target patches
which are 1 × 1, 2 × 2, 4 × 4 and 8 × 8. Unlike
in the original study on natural images where all
possible target patches are used to produce the
age map (Bellini et al., 2016), we use a set of
randomly sampled target patches to accelerate the
computation.

2.3. Age value calculation

Age value calculation is the core computation of
the IAM where a distance value called age value is
computed by using the function defined below. Let
s be a source patch and t a target patch, the age
value of the two patches d is:

d = α · |max(s− t)|+ (1− α) · |mean(s− t)| (1)

where α = 0.5 in this study. Both maximum and
mean values of the subtracted patches are used to
include maximum and average differences between
source and target patches in calculation. Please
note that source/target patches are matrices in the
size of either 1 × 1, 2 × 2, 4 × 4 or 8 × 8. Also,
please note that each source patch will be computed
against a set of target patches, so each source patch
has a set of age values. To get the final age value for
one source patch, the corresponding set (i.e. to that
source patch) of age values is sorted in ascending
order and then the mean of the first 100 age values is
calculated. The rationale is simple: the mean of the
first 100 age values produced by an irregular source
patch is still comparably higher than the mean of
the first 100 age values produced by a normal source
patches. All final age values from all source patches
are then normalised to real values between 0 to 1
to create the age map for one MRI slice. Examples
of age maps generated by using four different sizes
of source/target patches are shown in Fig. 1

2.4. Final age map generation

The final age map generation consists of three
sub-steps, which are blending four age maps from
age value calculation, penalty and global normali-
sation. Blending of four age maps is performed by

using the following formulation:

bAM = α ·AM1 +β ·AM2 +γ ·AM4 + δ ·AM8 (2)

where α + β + γ + δ is equal to 1 and AM1, AM2,
AM4 and AM8 are age maps from 1 × 1, 2 × 2,
4×4 and 8×8 source/target patches. In this study,
α = 0.65, β = 0.2, γ = 0.1 and δ = 0.05 as weight
blending parameters. Before the blending, age
maps resulted from different size of source/target
patches are up-sampled to fit the original size of
the MRI slice and then smoothed by using Gaus-
sian filter. The blended age map is then penalised
using formulation below:

po = pi × vi (3)

where pi is voxel from the blended age map, vi is
voxel from the original MRI and po is the penalised
voxel. Lastly, all age maps from different MRI slices
are normalised together to produce 0 to 1 proba-
bility values of each voxel to be an “irregularity”
with respect to the normal brain tissue. We name
this normalisation procedure global normalisation.
Visualisations of age value calculation, blending,
penalty and global normalisation are shown in Fig.
1.

Some important notes on the computation of the
IAM are: 1) source and target patches need to have
the same size within the hierarchical framework, 2)
the centre of source/target patches need to be inside
ICV and outside CSF masks at the same time to
be included in age value calculation and 3) the slice
which does not provide any source patch is skipped
to accelerate computation (i.e where no brain tissue
is observed).

3. Limited one-time sampling IAM (LOTS-
IAM)

While the original IAM has been reported to
work well for WMH segmentation, its computa-
tion takes long time because it performs one sam-
pling process for each source patch, selecting dif-
ferent target patches per source patch. For clar-
ity, we dubbed this scheme as multiple-time sam-
pling (MTS) scheme. MTS scheme is performed in
the original IAM to satisfy the condition that tar-
get patches should not be too close to the source
patch (i.e., location based condition). MTS scheme
makes every source patch to have its own set of tar-
get patches, so extra time to do sampling for each
source patch is unavoidable.
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To accelerate the overall IAM’s computation, we
propose one-time sampling (OTS) scheme for IAM
where target patches are randomly sampled only
once for each MRI slice, hence abandoning the lo-
cation based condition of the MTS. In other words,
age values of all source patches from one slice will be
computed against one (i.e. the same) set of target
patches. We call this combination of OTS and IAM
one-time sampling IAM (OTS-IAM). The OTS-
IAM was proposed in our previous study (Rach-
madi et al., 2018c).

In this study, we propose to limit the number of
target patches to accelerate the overall IAM’s com-
putation. The original IAM and OTS-IAM, which
run on CPUs, use an undefined large random num-
ber of target patches which could range from 10%
to 75% of all possible target patches, depending on
the size of the brain tissue in an MRI slice. We
name our new scheme limited one-time sampling
(LOTS) IAM or LOTS-IAM. The LOTS scheme en-
ables us to implement IAM on GPU to accelerate
IAM’s computation even more.

We tested 6 different numbers of target patch
samples which are 2048, 1024, 512, 256, 128 and
64. Because it is possible for LOTS-IAM to use less
than 100 target patch samples, we also modified the
number of samples to be used to calculate the mean
for age values. For LOTS-IAM, the first 128, 128,
64, 32, 32 and 16 age values are used to calculate
the mean of age values for 2048, 1024, 512, 256, 128
and 64 number of target patch samples respectively.
Limited number of samples in power of two eases
GPU implementation, especially GPU memory al-
location, which is the case for LOTS-IAM.

4. MRI Data, Other Machine Learning Al-
gorithms and Experiment Setup

A set of 60 T2-Fluid Attenuation Inversion Re-
covery (T2-FLAIR) MRI data from 20 subjects
from the ADNI database was used for evaluation.
Each subject had three scans obtained in three con-
secutive years. All of them were selected randomly
and blind to any clinical, imaging or demographic
information. All T2-FLAIR MRI sequences have
the same dimension of 256 × 256 × 35. Full data
acquisition information can be looked at in our pre-
vious study (Rachmadi et al., 2018b).Ground truth
was produced semi-automatically by an expert in
medical image analysis using the region-growing al-
gorithm in the Object Extractor tool of AnalyzeTM

software guided by the co-registered T1- and T2-
weighted sequences. For more details of the dataset,
please see (Rachmadi et al., 2017a) and data-share
url3 to access the dataset.

Data used in this study were obtained from
the ADNI (Mueller et al., 2005) public database4.
The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic res-
onance imaging (MRI), positron emission tomog-
raphy (PET), other biological markers, and clini-
cal and neuropsychological assessment can be com-
bined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimers dis-
ease (AD). As such, the investigators within the
ADNI contributed to the design and implementa-
tion of ADNI and/or provided data but did not
participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found
here5.

We compare performances of LOTS-IAM with
other machine learning algorithms that are com-
monly used for WMH segmentation; namely the
original IAM, One-time Sampling IAM (OTS-
IAM), Lesion Growth Algorithm from Lesion Seg-
mentation Tool (LST-LGA), support vector ma-
chine (SVM), random forest (RF), deep Boltzmann
machine (DBM), convolutional encoder network
(CEN), patch-based 2D CNN with global spatial
information (2D patch-CNN-GSI), patch-uResNet
and patch-uNet. LST-LGA (Schmidt et al., 2012)
is the current state-of-the-art for unsupervised hy-
perintensities segmentation. SVM and RF are ma-
chine learning algorithms commonly used for WMH
segmentation in several studies (Rachmadi et al.,
2017a), and they are used in this study as represen-
tations of supervised conventional machine learning
algorithms. On the other hand, DBM, CNN and
U-Net based methods represent supervised deep
learning algorithms which are commonly used in
recent years for WMH segmentation. For clarity,
we do not further elaborate in the implementa-
tion of these algorithms. All experiments’ setup
(i.e., training/testing and algorithm’s configura-
tions) for SVM, RF, DBM and CEN algorithms
are described in detail in (Rachmadi et al., 2017a).

3http://hdl.handle.net/10283/2214
4http://adni.loni.usc.edu/
5http://adni.loni.usc.edu/wp-content/uploads/how_

to_apply/ADNI_Acknowledgement_List.pdf
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Whereas, experiments’ setup for the 2D Patch-
CNN-GSI, patch-uResNet and patch-uNet follow
previous studies of (Rachmadi et al., 2018b), (Guer-
rero et al., 2018) and (Li et al., 2018) respectively.

Dice similarity coefficient (DSC) (Dice, 1945),
which measures similarity between ground truth
and automatic segmentation results, is used here
as the primary metric for comparison between al-
gorithms. Higher DSC score means better perfor-
mance, and the DSC score itself can be computed
as follow:

DSC =
2× TP

FP + 2× TP + FN
(4)

where TP is true positive, FP is false positive and
FN is false negative.

Additional metrics positive predictive value
(PPV), specificity (SPC) and true positive rate
(TPR) are also calculated. Non-parametric Spear-
man’s correlation coefficient (Myers et al., 2010) is
used to compute correlation between WMH vol-
ume produced by each automatic method and vi-
sual ratings of WMH. Visual ratings of WMH are
commonly used in clinical studies to describe and
analyse severity of white matter disease (Schel-
tens et al., 1993). Correlation between visual rat-
ings and volume of WMH is known to be high
(Hernández et al., 2013). In this study, Fazekas’s
(Fazekas et al., 1987) and Longstreth’s visual rating
scales (Longstreth et al., 1996) are used for non-
parametric evaluation of each automatic method.
This non-parametric test is similar as in previous
study (Rachmadi et al., 2017a).

5. Experiments and Results

5.1. General Experiment Results

Table 1 shows the overall results of the perfor-
mance of all methods that we have tested. Please
note that the original IAM is listed as IAM-CPU.

From Table 1, we can see that all IAM configura-
tions (i.e., IAM-CPU, OTS-IAM-CPU and LOTS-
IAM-GPU methods) outperformed LST-LGA in
mean DSC, positive predictive value (PPV), speci-
ficity (SPC) and true positive rate (TPR) met-
rics. Furthermore, we also can see that perfor-
mances of IAM/OTS-IAM/LOTS-IAM not only
outperformed LST-LGA but also some other super-
vised machine learning algorithms (i.e., SVM, RF
and DBM). Moreover, some LOTS-IAM-GPU im-
plementations also successfully outperformed CEN

in four evaluated metrics and performed better
than CNN based algorithms (i.e., CEN, Patch-
uResNet, Patch-uNet and 2D Patch-CNN-GSI) in
either PPV, SPC or TPR metrics. The best value
for each evaluation metric is written in bold letters.

Evaluation metric values listed in Table 1 are ex-
tracted by using optimum threshold value of each
algorithm. In this study, the optimum threshold
value is based on DSC metric. We produced DSC
performance curves for each algorithm similar to
Figure 2. Figure 2 itself shows (mean) DSC per-
formance curves for LST-LGA, SVM, RF, DBM,
CEN, patch-uResNet, patch-uNet, 2D patch-CNN-
GSI and LOTS-IAM-GPU-512s64m for all possible
threshold values to their probabilistic output.

A visual example showing the performance of
IAM and other segmentation methods such as 2D
Patch-CNN (2D-DeepMedic), Patch-uNet, LST-
LGA and Patch-uResNet are compared in Figure
4 (raw) and Figure 5 (cut off). Figure 6 shows how
LOTS-IAM could potentially be applied to char-
acterise abnormalities using other MRI sequences,
such as T1-weighted (T1W).

Figure 2: Mean of dice similarity coefficient (DSC) score for
LST-LGA, SVM, RF, DBM, CEN, patch-uResNet, patch-
uNet, 2D patch-CNN-GSI and LOTS-IAM-GPU-512s64m in
respect to all possible threshold values. LOTS-IAM is rep-
resented by LOTS-IAM-GPU-512s64m.

5.2. IAM vs. OTS-IAM vs. LOTS-IAM

One-time sampling (OTS) and limited one-time
sampling (LOTS) not only successfully accelerated
IAM’s computation but also improved IAM’s per-
formance, as shown in Table 1. Implementation of
IAM on GPU successfully accelerated IAM’s pro-
cessing speed by 17 to 435 times with respect to the
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Table 1: Algorithm’s information and experiment results based on the Dice similarity coefficient (DSC), positive predictive value
(PPV), specificity (SPC) and true positive rate (TPR) for each algorithm evaluated (the best value is written in bold). Ex-
planation of abbreviations: ”SPV/UNSPV” for supervised/unsupervised, ”Deep Net.” for deep neural networks algorithm,
”Y/N” for Yes/No, ”T2F/T1W” for T2-FLAIR/T1-weighted, ”#MTPS” for maximum number of target patches, ”#meTPS”
for number of target patches used for calculating mean of age value, ”TRSH” for optimum threshold and ”Training/Testing”
for training/testing time. Given ”speed increase” is relative to IAM-CPU.

No Method
SPV/

UNSPV
Deep
Net.

Input
Modality

#MTPS/
#meTPS

TRSH
DSC PPV

(Mean)
SPC

(Mean)
TPR

(Mean)
Training

(min)
Testing
(min)

Speed
increaseMean Std

1 LST-LGA UNSPV N T2F-T1W - 0.134 0.3037 0.1658 0.3158 0.9946 0.3625 - 0.67 -
2 SVM SPV N T2F-T1W - 0.925 0.2630 0.1498 0.0474 0.9869 0.1259 26 1.38 -
3 RF SPV N T2F-T1W - 0.995 0.3633 0.1843 0.0482 0.9860 0.1320 37 0.68 -
4 DBM SPV Y T2F - 0.687 0.3235 0.1345 0.0642 0.9955 0.0542 1,341 0.28 -
5 CEN SPV Y T2F - 0.284 0.4308 0.1582 0.5255 0.9975 0.4815 152 0.08 -
6 Patch-uResNet SPV Y T2F - 0.200 0.5277 0.1729 0.5899 0.9970 0.5968 215 0.08 -
7 Patch-uNet SPV Y T2F - 0.200 0.5030 0.1487 0.6480 0.9985 0.4886 211 0.08 -
8 2D Patch-CNN-GSI SPV Y T2F - 0.801 0.5225 0.1690 0.5950 0.9985 0.5276 392 0.45 -
9 IAM-CPU UNSPV N T2F 75%/100 0.179 0.3930 0.1732 0.7001 0.9993 0.3757 - 217.18 -
10 OTS-IAM-CPU UNSPV N T2F 75%/100 0.164 0.4297 0.1734 0.6994 0.9992 0.3827 - 173.50 1.26
11 LOTS-IAM-GPU-2048s128m UNSPV N T2F 2,048/128 0.159 0.4346 0.1764 0.6904 0.9991 0.3915 - 12.43 17.52
12 LOTS-IAM-GPU-1024s128m UNSPV N T2F 1,024/128 0.179 0.4432 0.1784 0.6259 0.9986 0.4448 - 4.00 54.45
13 LOTS-IAM-GPU-512s64m UNSPV N T2F 512/64 0.179 0.4437 0.1813 0.6093 0.9983 0.4551 - 1.42 153.73
14 LOTS-IAM-GPU-256s32m UNSPV N T2F 256/32 0.194 0.4433 0.1785 0.5867 0.9981 0.4730 - 0.75 290.38
15 LOTS-IAM-GPU-128s32m UNSPV N T2F 128/32 0.213 0.4373 0.1862 0.4909 0.9959 0.5481 - 0.60 362.97
16 LOTS-IAM-GPU-64s16m UNSPV N T2F 64/16 0.228 0.4284 0.1854 0.4370 0.9939 0.5849 - 0.50 435.57

original IAM-CPU. However, it is worth stressing
that this increase in processing speed was not only
due to the use of GPU instead of CPU, but also de-
pending on the number of target patch samples used
in the IAM’s computation. One of the GPU imple-
mentations of LOTS-IAM (i.e., LOTS-IAM-GPU-
64s16m) ran faster than LST-LGA. Note that the
testing time listed in Table 1 excludes registrations
and the generation of other brain masks used either
in pre-processing or post-processing steps. The in-
crease in speed achieved by the GPU implementa-
tion of IAM shows the effectiveness of the LOTS
implementation for IAM’s computation and perfor-
mance.

5.3. Evaluation of Speed vs. Quality in LOTS-IAM

The biggest achievement of this work is the in-
crease in processing speed achieved by the imple-
mentation of LOTS-IAM on GPU, compared to
the original IAM and OTS-IAM. The first iteration
of IAM can only be run on CPU because it uses
multiple-time sampling (MTS). OTS-IAM samples
patches only once, but still uses a high number of
target patches (i.e., 2,048 samples) to compute the
age map. In this study, we show that using a limited
number of target patches leads to not only faster
computation but also better quality of WMH seg-
mentation in some cases based on mean of DSC.
Figure 3 illustrates the relation between speed and
quality of the output (mean of DSC) produced by
IAM, OTS-IAM and all configurations of LOTS-
IAM. Please note that Figure 3 is extracted from
Table 1. On the other hand, LOTS-IAM-GPU us-
ing more target patches produced better PPV and

SPC evaluation metrics than LOTS-IAM-GPU us-
ing less target patches. This case is then reversed
in TPR metric where using less target patches is
better than using more target patches.

Figure 3: Speed (min) versus quality (Mean of DSC) of dif-
ferent settings of IAM methods (extracted from Table 1).
By implementing IAM on GPU and limiting number of tar-
get patch samples, computation time and result’s quality are
successfully improved.

5.4. Analysis of IAM’s Blending Weights

In this experiment, different sets of blending
weights in IAM’s computation were evaluated. As
previously discussed, the only parameters that IAM
has are four weights used to blend the four age maps
hierarchically produced for the generation of the fi-
nal age map. We tested the 7 different sets of IAM’s
blending weights listed in Table 2. The first 3 sets
blend all four age maps while the other 4 only use
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Figure 4: Visualisation of raw probabilistic values of WMH produced by LOTS-IAM compared to other methods, which are
the 2D Patch-CNN (2D-DeepMedic), Patch-uNet, LST-LGA, and Patch-uResNet.

Figure 5: Visualisation of thresholded probabilistic values of WMH produced by LOTS-IAM compare to other methods, which
are the 2D Patch-CNN (2D-DeepMedic), Patch-uNet (uNet based deep neural networks), LST-LGA, and Patch-uResNet. The
probabilistic values are cut off by their respective optimum threshold values.
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Figure 6: Example of how LOTS-IAM could be performed on both FLAIR and T1-weighted (T1W). Please note that the
current version of LOTS-IAM is highly optimised for FLAIR modality of MRI, not T1W.

one of the age maps. The effect of different sets of
blending weights is illustrated in Figure 7.

Figure 7: Curves of mean dice similarity coefficient (DSC)
produced by using different settings of weights for blending
different age maps. LOTS-IAM used in this experiment is
LOTS-IAM-GPU-512s64m. All settings of blending Weights
are listed in Table 2.

From Figure 7, we can see that blending all four
age maps improves IAM’s performance and works
better than using only one of the four available
age maps. Based on the results listed in Table 2,
blending weights of 0.65, 0.20, 0.10 and 0.05 for

age maps produced from 1 × 1, 2 × 2, 4 × 4 and
8 × 8 source/target patches respectively gives the
best DSC score of 0.4434. As this combination pro-
duced the best DSC score in this evaluation, we
made this set the default set for IAM computation.
Coincidentally, this set of blending weights has been
used from the start of IAM’s development and also
used in the first paper of IAM (Rachmadi et al.,
2017b).

The fact that combining the age maps of differ-
ent patch sizes performs the best proves that it is
needed to consider not only the colour of the in-
dividual pixels but also the local distribution of
the pixel colours to correctly label WMH lesions.
Still, it appears that the individual pixel colour is a
strong feature for classification as the best perform-
ing blending weights are 0.65, 0.2, 0.1 and 0.05.

5.5. Analysis of IAM’s Distance Function’s α-
Parameter

IAM’s distance function (Equation 1) has the α-
parameter which controls blending of maximum dif-
ference and mean difference between source and tar-
get patches. Mean difference is used where α = 0
whereas maximum difference is used where α = 1.
The reason behind the use of α-parameter is that
we might want to calculate distance value based
on mean difference only, maximum difference only
or combination of mean and maximum differences.
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Table 2: Mean and standard deviation of DSC produced by
using different settings of weights for blending different age
maps. Plots corresponding to settings listed in this table can
be seen in Figure 7. LOTS-IAM tested in this experiment is
LOTS-IAM-GPU-512s64m.

Name
Blending Weights

TRSH
DSC

1x1 2x2 4x4 8x8 mean std
LST-LGA - - - - 0.134 0.2936 0.1658
IAM-default 0.65 0.20 0.10 0.05 0.179 0.4434 0.1499
IAM-balanced 0.25 0.25 0.25 0.25 0.287 0.3957 0.1362
IAM-5321 0.50 0.30 0.20 0.10 0.228 0.4308 0.1469
IAM-1000 1 0 0 0 0.139 0.4253 0.1417
IAM-0100 0 1 0 0 0.267 0.3597 0.1262
IAM-0010 0 0 1 0 0.376 0.3085 0.1085
IAM-0001 0 0 0 1 0.475 0.2476 0.0839

Based on the results depicted in Figure 8 and Ta-
ble 3, we can see that combining/averaging mean
and maximum differences using α = 0.5 produced
the best mean DSC though the performance dif-
ferences are minimum. Coincidentally, α = 0.5 has
been used from the start of IAM’s development and
also used in the first paper of IAM (Rachmadi et al.,
2017b).

Figure 8: Curves of mean dice similarity coefficient (DSC)
produced by using different values of α-parameter (see Table
3). LOTS-IAM used in this experiment is LOTS-IAM-GPU-
512s64m.

5.6. Analysis of IAM’s Random Sampling Scheme

To automatically detect FLAIR’s WMH without
any expert supervision, IAM works on the assump-
tion that normal brain tissue is predominant com-
pared with the extent of abnormalities. Due to this
assumption, random sampling is used in the com-
putation of IAM to choose the target patches. How-
ever, it raises an important question on the stability
of IAM’s performance to produce the same level of

Table 3: Mean and standard deviation values of DSC pro-
duced by using different values of α-parameter. Correspond-
ing plots are depicted in Figure 8. LOTS-IAM used in this
experiment is LOTS-IAM-GPU-512s64m.

No Name α
DSC

mean std
1 LOTS-IAM-a000 0.00 0.4513 0.1498
2 LOTS-IAM-a025 0.25 0.4588 0.1533
3 LOTS-IAM-a050 0.50 0.4694 0.1587
4 LOTS-IAM-a075 0.75 0.4690 0.1600
5 LOTS-IAM-a100 1.00 0.4665 0.1597

Table 4: Mean and standard deviation values of DSC distri-
butions for each IAM’s setting depicted in Figure 9. Each of
IAM’s setting is tested on a random MRI data 10 times.

No Method TRSH
DSC

mean std
1 LOTS-IAM-GPU-2048s128m 0.15 0.5681 0.0041
2 LOTS-IAM-GPU-1024s128m 0.20 0.5901 0.0018
3 LOTS-IAM-GPU-512s64m 0.20 0.5922 0.0033
4 LOTS-IAM-GPU-256s32m 0.20 0.5925 0.0075
5 LOTS-IAM-GPU-128s32m 0.25 0.5848 0.0092
6 LOTS-IAM-GPU-64s16m 0.25 0.5852 0.0141

results for one exact MRI data, especially using dif-
ferent number of target patches.

In this experiment, we randomly choose one MRI
data out of the 60 MRI data that we have, and ran
LOTS-IAM-GPU multiple times (i.e., 10 times in
this study) using different number of target patch
samples. Each result was then compared to the
ground truth, grouped together and plotted as box-
plots (Figure 9) and listed in Table 4.

Figure 9 and Table 4 show that the deviation
of IAM’s computation for one MRI data is small
in all different settings of LOTS-IAM-GPU. How-
ever, it is true that by adding number of target
patches in IAM’s patch generation alienates this
deviation as shown in Figure 9, where the box-
plots produced by LOTS-IAM-GPU-2048s128m are
smaller than the ones produced by LOTS-IAM-
GPU-64s16m (see Table 4 for quantification).

5.7. WMH Burden Scalability Test

In this experiment, all methods were tested and
evaluated to see their performances on doing WMH
segmentation in different volumes of WMH (i.e.,
WMH burden). DSC metric is still used in this
experiment, but the dataset is grouped into three
different groups based on the WMH burden of each
patient. The groups are listed in Table 5 while the
results can be seen in Figure 10 and Table 6. Please
note that IAM is represented by LOTS-IAM-GPU-
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Figure 9: DSC distributions of 1 random MRI scan tested 10 times by using LOTS-IAM-GPU with different numbers of
target patch samples. From upper-left to upper-right: LOTS-IAM-GPU using 64, 128 and 256 target patches respectively.
From lower-left to lower-right: LOTS-IAM-GPU using 512, 1024 and 2048 target patches respectively. Each box represents
distribution of DSC produced on respective threshold value while ashed magenta line represents the mean of DSC on respective
threshold value.

512s64m as it is the best performer amongst the
IAM methods (see Table 1).

Table 5: Three groups of MRI data based on WMH volume.

No. Group WMH Vol. (mm3) # MRI Data

1 Small WMH ≤ 4500 27
2 Medium 4500 < WMH ≤ 13000 25
3 Large WMH > 13000 8

From Figure 10, it can be appreciated that
LOTS-IAM-GPU-512s64m performed better than
LST-LGA in this experiment outperforming LST-
LGA’s performances distribution in all groups.
LOTS-IAM-GPU-512s64m also performed better
than the conventional supervised machine learn-
ing algorithms (i.e. SVM and RF) in Small
and Medium groups. Whereas, LOTS-IAM-GPU-
512s64m’s performance was at the level, if not bet-
ter, than the supervised deep neural networks al-
gorithms DBM and CEN. However, LOTS-IAM-
GPU-512s64m still could not beat the state-of-the-
art supervised deep neural networks 2D patch-CNN
in any group.

To make this observation clearer, Table 6 lists
the mean and standard deviation values that corre-
spond to the box-plot shown in Figure 10. From

both Figure 10 and Table 6 it can be observed
that the deviation of IAM’s performances in Small
WMH burden is still high compared to the other
methods evaluated. However, IAM’s performance
is more stable in Medium and Large WMH bur-
dens.

Table 6: Mean and standard deviation values of dice simi-
larity coefficient (DSC) score’s distribution for all methods
tested in this study in respect to WMH burden of each pa-
tient (see Table 5). Note that LOTS-IAM-GPU-512s64m is
listed as LIG-512s64m in this table.

Method TRSH
DSC - Small DSC - Medium DSC - Large
Mean Std Mean Std Mean Std

LST-LGA 0.138 0.2335 0.1785 0.3524 0.1208 0.4645 0.1399
SVM 0.925 0.1792 0.0958 0.3360 0.1284 0.4966 0.0377
RF 0.995 0.2512 0.1298 0.4150 0.1662 0.6055 0.0559
DBM 0.687 0.3127 0.1432 0.3442 0.1350 0.4014 0.1474
CEN 0.284 0.4359 0.1802 0.4474 0.1485 0.4896 0.1122
Patch-uResNet 0.200 0.5007 0.2064 0.5403 0.1432 0.6064 0.0579
Patch-uNet 0.200 0.4872 0.1596 0.5079 0.1697 0.5447 0.0574
2D Patch-CNN 0.801 0.5230 0.1722 0.5118 0.1340 0.6053 0.0341
LIG-512s64m 0.179 0.4682 0.2278 0.4660 0.1331 0.4940 0.0932

5.8. Longitudinal Test

In this experiment, we evaluate spatial agree-
ment between the produced results in three con-
secutive years. For each subject, we aligned Year-
2 (Y2) and Year-3 (Y3) MRI and derived data to
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Figure 10: Distributions of dice similarity coefficient (DSC)
score for all methods tested in this study in respect to WMH
burden of each patient (see Table 5).

Figure 11: Quality of spatial agreement (Mean of DSC) of
the produced results in longitudinal test. Longitudinal test
is done to see the performance of tested methods in longitu-
dinal dataset of MRI (see Table 7 for full report).

Table 7: Mean and standard deviation values produced in
longitudinal tes (see Table 5). LOTS-IAM-GPU-512s64m is
listed as LIG-512s64m in this table.

Dice Similarity Coefficient (DSC)

Method
Grow Stay Shrink

Mean Std Mean Std Mean Std
LST-LGA 0.1301 0.0350 0.2343 0.0199 0.2706 0.0058
LIG-512s64m 0.2260 0.0084 0.4585 0.0104 0.3715 0.0018
Patch-uNet 0.2242 0.0125 0.4207 0.0125 0.3675 0.0242
Patch-uResNet 0.2523 0.0199 0.4664 0.0211 0.3912 0.0044
2D Patch-CNN 0.1440 0.0228 0.4066 0.0298 0.3660 0.0129

the Year-1 (Y1), subtracted the aligned WMH la-
bels of the baseline/previous year from the follow-
up year(s)(i.e., Y2-Y1, Y3-Y2, and Y3-Y1), and
then labelled each voxel as ’grow’ if it has value
above zero after subtraction, with ’shrink’ if it has
value below zero after subtraction, and with ’stay’
if it has value of zero after subtraction and one be-
fore subtraction. This way, we can see whether the
method captures the progression of WMH across
time (i.e., longitudinally). An example of the out-
put from this experiment is shown in Figure 12
where sections of the original FLAIR MRI, LOTS-
IAM, LST-LGA and uNet across three respective
years (Y1, Y2 and Y3) for a subject are depicted.

Figure 11 summarises the results listed in Ta-
ble 7 for all methods (i.e., LST-LGA, LOTS-IAM-
GPU-512s64m, Patch-uNet, Patch-uResNet and 2D
Patch-CNN-GSI). We can see that LOTS-IAM-
GPU-512s64m outperforms LST-LGA and com-
petes with deep neural networks methods of Patch-
uNet, Patch-uResNet and 2D Patch-CNN-GSI,
where LOTS-IAM-GPU-512s64m is the second best
performer after Patch-uResNet in this longitudinal
evaluation. This, again, confirms that the LOTS-
IAM shows comparable performance with the state-
of-the-art deep learning convolutional neural net-
work methods.

5.9. Correlation with Visual Rating

In this experiment, we want to see how close
IAM’s results correlate with visual ratings of WMH,
specifically Fazekas’s visual ratings (Fazekas et al.,
1987) and Longstreth’s visual ratings (Longstreth
et al., 1996).

The correlation was calculated by using Spear-
man’s correlation. The correlation coefficients cal-
culated were: 1) between the total Fazekas’s rat-
ing (i.e., the sum of periventricular white matter
hyperintensities (PVWMH) and deep white matter
hyperintensities (DWMH)) and manual/automatic
WMH volumes and 2) between Longstreth’s rating
and manual/automatic WMH volumes. The results
are listed in Table 8.

Table 8 shows that, although not much better,
all LOTS-IAM-GPU methods highly correlate with
visual rating clinical scores. Despite LST-LGA’s
output having lower value of mean DSC (see Table
1) compared to other methods, it still highly corre-
lates with visual ratings. LOTS-IAM-GPU imple-
mentations have high values of both mean DSC and
correlation with visual ratings.
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Figure 12: White matter hyperintensities (WMH) information presented by FLAIR MRI, LOTS-IAM, LST-LGA and uNet in
3 (three) consecutive years. The 2nd/3rd year of FLAIR MR images are co-registered first to the 1st year of FLAIR MRI and
then processed by LOTS-IAM, LST-LGA and uNet. LOTS-IAM produces richer information of the WMH progression than
LST-LGA/uNet as age maps of LOTS-IAM preserve the underlying variance of WMH’s intensity, giving a good perspective
on how WMH grow over time.
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Table 8: Non-parametric correlation using Spearman’s cor-
relation coefficient between WMH volume and Fazekas and
Longstreth visual ratings.

Visual Rating Fazekas (Total) Longstreth

Method
Spearman’s Corr. Val. Spearman’s Corr. Val.
rho p rho p

1 Manual label 0.7562 1.04× 1−12 0.7752 1.45× 10−12

1 LST-LGA 0.5718 3.38× 6−12 0.4813 1.50× 10−4

2 SVM 0.4062 0.0017 0.3602 0.0059
3 RF 0.2447 0.0666 0.2128 0.1119
4 DBM 0.2436 0.0679 0.1659 0.2174
5 CEN 0.2359 7.74× 10−2 0.3618 0.0057
1 Patch-uResNet 0.3602 5.90× 10−3 0.5171 3.80× 10−5

1 Patch-uNet 0.4618 2.99× 10−4 0.5140 4.33× 10−5

6 2D Patch-CNN-GSI 0.7054 9.01× 10−10 0.8664 3.19× 10−18

7 LIG-2048s128m 0.4727 2.05× 10−4 0.4579 3.42× 10−4

8 LIG-1024s128m 0.4892 1.13× 10−4 0.4849 1.32× 10−4

9 LIG-512s64m 0.5010 7.19× 10−5 0.5065 5.82× 10−4

10 LIG-256s64m 0.5009 7.22× 10−5 0.5085 5.37× 10−4

11 LIG-128s32m 0.4505 4.38× 10−4 0.4946 9.22× 10−4

12 LIG-64s16m 0.4393 6.30× 10−4 0.4858 1.28× 10−4

6. Conclusion and Future Work

The optimisation of IAM presented (LOTS-IAM-
GPU) improves both performance and processing
time with respect to previous versions of IAM. De-
spite not being a WMH segmentation method per
se, it can be successfully applied for this purpose.
Being unsupervised confers an additional value to
this fully automatic method as it does not depend
on expert-labelled data, and therefore is indepen-
dent from any subjectivity and inconsistency from
human experts, which usually influence supervised
machine learning algorithms. Furthermore, our re-
sults show that LOTS-IAM also successfully out-
performed some supervised deep neural networks
algorithms which are DBM and CEN. Some im-
provements still could be done by adding or using
different sets of brain tissues masks other than CSF
and NAWM, for example cortical mask and cere-
brum brain mask.

One major drawback of the original IAM is the
long computation time that takes to process a sin-
gle MRI data. LOTS-IAM-GPU successfully speeds
up IAM’s computation time by 17 to 435 times,
not only owed to its implementation in GPU, but
also to the use of a limited number of target patch
samples. LOTS-IAM-GPU also outperforms LST-
LGA, the current state-of-the-art method for unsu-
pervised WMH segmentation, in both DSC metric
and processing speed.

IAM could provide unsupervised labels for pre-
training supervised deep neural networks algo-
rithms and transfer learning, but this has not been
explored too much. In our preliminary research,
IAM is used in task adaptation transfer learn-
ing and predicting brain abnormalities progres-

sion/regression (Rachmadi et al., 2018a). Due to
its nature, it can be hypothesised its applicability to
segment brain lesions in CT scans or different brain
pathologies. Further works should also explore its
implementation on a multispectral approach that
combines different MRI sequences. The implemen-
tation of LOTS-IAM-GPU is publicly available at
https://github.com/febrianrachmadi/lots-iam-gpu.
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