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Abstract 1 
One in four adults worldwide are either overweight or obese. Epidemiological studies indicate that the 2 
location and distribution of excess fat, rather than general adiposity, is most informative for predicting risk of 3 
obesity sequellae, including cardiometabolic disease and cancer. We performed a genome-wide association 4 
study meta-analysis of body fat distribution, measured by waist-to-hip ratio adjusted for BMI 5 
(WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger 6 
in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of 7 
individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 8 
5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, 9 
will inform the biology of body fat distribution and its relationship with disease. 10 
 11 
Introduction 12 
One in four adults worldwide are either overweight or obese (1,2) and are at increased risk of metabolic disease. 13 
While higher adiposity increases morbidity and mortality (1,3), epidemiological studies indicate that the location 14 
and distribution of excess fat within particular depots is more informative than general adiposity for predicting 15 
disease risk. Independent of their overall body mass index (BMI), individuals with higher central adiposity have 16 
increased risk of cardiometabolic diseases, including type 2 diabetes (T2D) and stroke (4,5); in contrast, individuals 17 
with higher gluteal adiposity have lower risk of such outcomes.(5) Previous studies indicate that fat distribution, as 18 
assessed by waist-to-hip ratio (WHR), is a trait with a strong heritable component, independent of overall adiposity 19 
(measured by BMI), with twin-based heritability estimates ranging between 30-60% (5,6) and narrow-sense 20 
heritability estimates have been estimated at ~50% in women and ~20% in men (5). The most recent genome-wide 21 
association study in 224,459 samples implicated 49 loci associated with WHR adjusted for BMI (5), and recent 22 
Mendelian randomisation studies using known WHR-associated genetic variants showed putative causal effects of 23 
higher WHR on T2D and coronary artery disease independently of BMI (7). 24 
 25 
Results 26 
With the goal of pinpointing genetic variants associated to body shape and fat distribution and motivated by the 27 
recent release of genetic data from half a million individuals (8), we performed a meta-analysis of WHR adjusted for 28 
BMI (WHRadjBMI). WHRadjBMI is an easily-measured fat distribution phenotype that correlates well with 29 
imaging-based fat distribution measures (9). We performed genome-wide association studies (GWAS) of 30 
WHRadjBMI in the UK Biobank data set (8), a collection of 484,563 samples with densely-imputed genotype data, 31 
using a linear mixed model (10) to account for relatedness and ancestral heterogeneity. We then combined the 32 
results with publicly-available GWAS data generated by the GIANT consortium for the same phenotype (Table 1 33 
and Methods) (5), resulting in a meta-analysis of 694,649 samples (Table 1) and ~27.4M SNPs (Methods). As a 34 
sensitivity analysis and to evaluate the robustness of our results, we also performed a GWAS of WHR unadjusted 35 
for BMI (Table 1). 36 
 37 
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We identified 346 loci (300 novel) containing 463 independent signals associated with WHRadjBMI (p < 5 x 10-9, to 1 
account for the denser imputation data (11); Methods, Supplementary Table 1 and Supplementary Fig 1). The 2 
Linkage Disequilibrium (LD) Score Regression (12) intercept (1.035) of the meta-analysis results indicated that the 3 
observed enrichment in genomic signal was due to polygenicity and not confounding (Supplementary Table 2). Of 4 
the 300 novel signals, 234 (78%, pbinomial < 1 x 10-7) were directionally-consistent in an independent dataset with a 5 
relatively small sample size (N = 7,721) and signals were consistent in several sensitivity checks (Supplementary 6 
Tables 3-5, and Supplementary Fig 2-3). Combined, these variants explained ~3.9% of the variance in 7 
WHRadjBMI in the independent study (Methods and Table 1). We constructed a weighted polygenic risk score 8 
using the 346 index SNPs discovered in the combined meta-analysis and tested this score in the same independent 9 
study. The 5% of individuals carrying the most WHRadjBMI-raising alleles were 1.62 times more likely to meet the 10 
WHR threshold used to define metabolic syndrome (13) than the 5% carrying the fewest (consistent with the results 11 
obtained from unweighted polygenic score; Methods). The WHRadjBMI of people in the top 5% of the PRS was 12 
1.05 and 1.06 times greater in men and women, respectively, compared to those in the bottom 5% of the PRS.   13 
 14 
To investigate the potential for collider bias resulting from conditioning WHR on BMI, we investigated the behavior 15 
of WHRadjBMI-associated SNPs in GWAS of WHR (without adjustment for BMI) and BMI alone. We found that 16 
the majority of WHRadjBMI signals identified have genuine effect on body shape, and that any bias caused by 17 
adjusting WHR for a correlated covariate (14, 15) (that is, BMI) was minimal. Of the 346 index variants, 311 18 
associated with stronger standard deviation effect sizes for WHR (unadjusted) than with standard deviation effect 19 
sizes for BMI (Supplementary Table 3 and Supplementary Fig 4). This observation also indicates that the WHR 20 
association is unlikely to be secondary to the known effect of higher BMI resulting in higher WHR. Furthermore, 21 
the common SNP associated with the largest known effect on BMI, that in the FTO gene (16), was not associated 22 
with WHRadjBMI (rs1421085, p = 0.40) despite a very strong association with WHR (p = 4 x 10-118)). Finally, 23 
carrying each additional (weighted) WHRadjBMI-raising allele was associated with an increase in WHRadjBMI of 24 
0.0199 SD (p = 6 x 10-62; adjusted R2 = 4%), an increase in WHR of 0.0111 SD (p = 3 x 10-20; adjusted R2 = 0.12%) 25 
and a decrease in BMI of 0.0038 SD (p = 1.4 x 10-3; adjusted R2 = 0.13%) in our independent dataset, consistent 26 
with the results obtained from an unweighted polygenic score (Methods). 27 
 28 
Given the sex-dimorphism of fat distribution in humans, previously shown to have a genetic basis (5, 17), we next 29 
performed meta-analyses of WHRadjBMI in women and men separately (Table 1 and Supplementary Fig 5). We 30 
found SNP-based heritability (ℎ"#) of WHRadjBMI, estimated using the restricted maximum likelihood method 31 

implemented in BOLT-REML (10) (Methods), to be stronger in women (ℎ"#= 25.6%) compared to men (ℎ"#= 16.7%, 32 
pdifference = 9 x 10-85; Table 1, Supplementary Table 6, and Equation 2). In addition to the heritability dimorphism, 33 
and in keeping with previous studies (5), we found signatures of sex-dimorphism amongst associated loci: a total of 34 
266 loci associated with WHRadjBMI in women, compared to 91 loci in men (p < 5 x 10-9). Genome-wide, SNP 35 
effects on WHRadjBMI were strongly correlated between men and women (LD Score rg = 0.514 (s.e. = 0.019), p = 36 
3.43 x 10-159), but the consistency between the effect size of 266 female index SNPs on WHRadjBMI in women and 37 
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men (adjusted R2 = 51%) was greater than the consistency between the effect size of 91 male index SNPs on 1 
WHRadjBMI in men and women (adjusted R2 = 9%). Of all associated index SNPs (p < 5 x 10-9 in the combined or 2 
sex-specific analyses), 105 SNPs were sex-dimorphic (pdiff < 3.3 x 10-5; (17) and Methods). Variants discovered in 3 
the combined sex analysis will be enriched for those with similar effects in each sex, while variants discovered in 4 
sex-specific analyses will be enriched for those with differing effects between sexes. In the absence of any sex-5 
specific effects, we would only expect a slight shift towards stronger associations in women due to the larger 6 
available sample size in that analysis. However, we observed that of the 105 sex-dimorphic signals, 97 (92.4%) 7 
showed stronger effects in women compared to men (Figure 1, Supplementary Fig 6, and Methods). Scanning 8 
genome-wide for sex-dimorphic SNPs (pdiff < 5 x 10-9), regardless of their association p-values in the sex-specific 9 
analyses, we identified 61 sex-dimorphic SNPs after LD-based clumping (r2 < 0.05). Of these, 19 (31.1%) 10 
overlapped with the sex-dimorphic and genome-wide significant loci, and 54 (88.5%) had stronger effect in women 11 
than in men (Supplementary Information). 12 
 13 
Previous studies have shown that in addition to redistributing body fat, some WHRadjBMI variants are also 14 
associated with total body fat percentage (BF%) (5,18–20). Of relevance to the biology of adipose tissue storage 15 
capacity, these studies have shown that these pleiotropic associations can occur in both directions: some alleles 16 
associated with higher WHRadjBMI are associated with higher total BF%, whilst others are associated with lower 17 
BF% (5,18–20). To test the hypothesis that alleles associated with higher WHRadjBMI could have pleiotropic 18 
effects on total BF%, and that these effects could occur in both directions, we next investigated whether 346 index 19 
variants associated with WHRadjBMI also associated with BF%. Of the 59/346 variants associated with BF% in 20 
443,001 European-ancestry UK Biobank individuals (p < 0.05/346 = 1.44 x 10-4), 25 SNPs associated with higher 21 
WHR and higher BF%, whilst 34 SNPs associated with higher WHR but lower BF% (Figure 2). These findings 22 
indicate that WHR-increasing alleles do not strictly influence BF% in one direction but rather can associate with 23 
either higher or lower BF%, yielding biological insight beyond the known epidemiological correlation between BF% 24 
and WHR. Additionally, a large proportion (29%) of WHRadjBMI index SNPs with a stronger effect in women had 25 
a BF% phenotype in men: 28 of the 97 female-specific WHRadjBMI SNPs were associated with BF% in men and 26 
25 were associated with BF% in women (p < 0.05/105 = 4.8 x 10-4, Supplementary Fig 7). These variants appear to 27 
alter total BF% in men and women to a similar extent but distribute body fat between the upper and lower body to a 28 
much greater extent in women (Supplementary Table 7-9 and Supplementary Fig 7). Finally, we tested the index 29 
SNPs from each of the meta-analyses (combined and sex-specific) in a recent GWAS of CT and MRI image-based 30 
measures of ectopic and subcutaneous fat depots (21). Adjusting for the three sample groups and the 8 depots 31 
examined in the imaging-based GWAS (p < 0.05/24 = 2.1 x 10-3), the alleles associated with higher WHRadjBMI 32 
were collectively associated with lower measures of subcutaneous fat, and higher measures of visceral fat, including 33 
pericardial and visceral adipose tissue (Supplementary Fig 8).  34 
 35 
Discussion 36 
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In a meta-analysis of nearly 700,000 individuals, we have increased the number of loci associated to WHRadjBMI 1 
by more than seven-fold. Of all the detected signals, 105 are sex-dimorphic, consistent with previous findings (5). 2 
While we have performed the largest meta-analysis of a measure of body-fat distribution to date, a number of 3 
limitations remain. First, the substantially larger number of signals with a stronger effect in women compared to 4 
men may be influenced by the reduction in power (proportional to the product of sample size and SNP heritability) 5 
in the men-only analysis (Table 1) compared the women-only analysis. Despite the power difference in the sex-6 
specific analyses, we would not expect the difference to result in 92% of signals conferring a stronger effect in 7 
women. Second, our replication sample was too small (~1% of the discovery) to formally replicate individual SNP 8 
associations, but the fact that 78% of the 300 previously unknown index associations showed consistent direction of 9 
effect suggests a low false positive rate. Finally, our meta-analysis focused only on European-ancestry samples. 10 
Given the very different body-fat distributions between people of European and non-European ancestry, and their 11 
very different risks of adiposity-related disease, studies in non-Europeans are urgently needed (22,23). 12 
 13 
In summary, the genetic variants and loci identified by this meta-analysis will likely provide starting points for 14 
further understanding the biology of body fat distribution and its relationship with disease. 15 
 16 
  17 
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Materials and Methods 1 
 2 
I. Data and code availability 3 
 4 
Code and data related to this project, including summary-level data from the meta-analyses, can be found online at 5 
https://github.com/lindgrengroup/fatdistnGWAS. 6 
 7 
II. Phenotypes 8 
 9 
To generate phenotypes for the waist-to-hip ratio (WHR) and waist-to-hip ratio adjusted for body mass index 10 
(WHRadjBMI) analyses in the UK Biobank data (Supplementary Table 10), we followed a phenotype conversion 11 
consistent with that performed in previous efforts investigating WHR and WHRadjBMI by the GIANT consortium 12 
(5,24).  13 
 14 
Using phenotype information from UK Biobank, we divided waist circumference by hip circumference to calculate 15 
the WHR measure, and then regressed the WHR measure on sex, age at assessment, age at assessment squared, and 16 
assessment centre. To generate the WHRadjBMI phenotype, we followed the same procedure and included body 17 
mass index (BMI) as an additional independent variable in the regression. We performed rank inverse normalization 18 
on the resulting residuals from the regression (Supplementary Fig 9) and used these normalized residuals as the 19 
tested phenotype in downstream genome-wide association testing. To generate phenotypes for the sex-specific 20 
analyses, we followed this same procedure but ran the regressions in sex-specific groups. 21 
 22 
III. Genome-wide association analyses 23 
The UK Biobank data 24 
 25 
We conducted genome-wide association testing in the second release (June 2017) version of the UK Biobank 26 
data(8); this release did not contain the corrected imputation at non-Haplotype Reference Consortium (HRC (25)) 27 
sites and we therefore subset all of the SNP data down to HRC SNPs only. The UK Biobank applied quality control 28 
to samples and genotypes and imputed the resulting genotype data using sequencing-based imputation reference 29 
panels. We performed all of our genome-wide association testing and downstream analyses on the publicly-available 30 
imputation data (released in bgen format). 31 
 32 
We excluded samples as suggested by the UK Biobank upon release of the data (Supplementary Table 11). Sample 33 
exclusions included samples with genotype but no imputation information, samples with missingness > 5%, samples 34 
with mismatching phenotypic and genotypic sex, and samples that have withdrawn consent since the initiation of the 35 
project. 36 
 37 
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LD scores and genetic relationship matrix for BOLT-LMM 1 
 2 
We implemented all genome-wide association studies (GWAS) in BOLT-LMM (10), which performs association 3 
testing using a linear mixed model. To run, BOLT-LMM requires three primary components: the (imputed) 4 
genotypic data for association testing; a reference panel of Linkage Disequilibrium (LD) scores per SNP, calculated 5 
using LD Score Regression (12); and genotype data used to approximate a genetic relationship matrix (GRM), 6 
which is the best method available in this sample size to account for all forms of relatedness, ancestral heterogeneity 7 
in the samples, and other (potentially hidden) structure in the data.  8 
 9 
We performed sensitivity testing (Supplementary Information, Supplementary Tables 12-13 and 10 
Supplementary Fig 10) using three LD Score reference datasets and four SNP-sets to construct the GRM. For our 11 
final GWAS, we used LD scores calculated from a randomly-selected, 9,748 unrelated UK Biobank samples (~2% 12 
of the full UK Biobank sample set; Supplementary Information) and a GRM constructed using: imputed SNPs 13 
with imputation info score > 0.8; MAF > 1%; Hardy Weinberg P-value > 1 x 10-8; genotype missingness < 1%, after 14 
converting imputed dosages to best-guess genotypes; LD pruned at a threshold (r2) of 0.2; and excluding the major 15 
histocompatibility complex, the lactase locus, and the inversions on chromosomes 8 and 17 (Supplementary 16 
Information).  17 
 18 
Association testing 19 
 20 
For genome-wide association testing, we used BOLT-LMM to run a linear mixed model (LMM). We tested SNPs 21 
with imputation quality (info) > 0.3, minor allele frequency (MAF) > 0.1% (equivalent to ~50 copies of the minor 22 
allele in the full sample), and only those single-nucleotide variants (SNVs) and single-nucleotide polymorphisms 23 
(SNPs) represented in the Haplotype Reference Consortium (25) imputation reference panel. We used only the 24 
standard LMM implementation (i.e., infinitesimal model, using --lmm) in BOLT-LMM (Supplementary Fig 11-25 
12); we did not run association testing using a non-infinitesimal model. The only covariate used in the LMM was the 26 
SNP array used to genotype sample; we included no other covariates. 27 
 28 
After association testing, we looked at known SNPs already reported in WHR, WHRadjBMI, and BMI (5, 24). At 29 
the previously-described loci, we checked correlation of frequency, beta, standard error, and -log10(p-value) between 30 
our UK Biobank GWAS and the previous GWAS results (Supplementary Fig 13). Additionally, we estimated 31 
genomic inflation (lambda) and the LD Score Intercept to check if the P-values were well calibrated 32 
(Supplementary Table 2); calculations were performed using the LD Score software (https://github.com/bulik/ldsc) 33 
(12). 34 
 35 
IV. Meta-analysis of results from UK Biobank and GIANT 36 
Data preparation and quality control 37 
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 1 
We downloaded summary-level results from previous meta-analyses of WHR and WHRadjBMI 2 
(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files and Supplementary 3 
Information) performed by the GIANT consortium (5). Marker names in both the GIANT data and UK Biobank 4 
were lifted over to their dbSNP151 identifier. We additionally renamed markers as “rsID:A1:A2” (where A1 was the 5 
tested allele in UK Biobank) to avoid ambiguity at multiallelic SNPs in the UK Biobank data. As the GIANT data 6 
was imputed with HapMap 2 (26,27) data (hg18), we additionally lifted chromosomal positions to hg19 for this data. 7 
SNPs with a frequency difference > 15% between GIANT and UK Biobank were removed from the data 8 
(Supplementary Fig 14). 9 
 10 
Meta-analysis and downstream quality control  11 
 12 
We performed inverse variance-weighted fixed effects meta-analysis in METAL (28). To estimate LD score 13 
intercepts and genomic inflation (lambda) for the meta-analysis results, we first estimated LD scores from the same 14 
samples used to estimate the LD score reference for BOLT-LMM. LD scores were only estimated at high-quality 15 
SNPs (using the same criteria as used for SNPs included in the GRM in BOLT-LMM, but without applying a MAF 16 
threshold; Supplementary Information). We then calculated LD Score Regression intercepts and lambda with the 17 
LDSC software (12). 18 
 19 
As an additional quality control check, we reran all of our GWAS using two different subsets of the UK Biobank 20 
samples: (1) the unrelated samples only, and (2) the unrelated white British samples only. These subsamples were 21 
selected to test if our initial UK Biobank-wide GWAS was confounded by either relatedness or ancestral 22 
heterogeneity. After running these GWAS, we meta-analyzed the results with the existing GIANT summary-level 23 
data and checked the concordance of our signals (Supplementary Fig 2-3).  24 
 25 
V. Identification of index and secondary signals 26 
Linkage disequilibrium clumping  27 
 28 
To identify genomic loci (i.e., genomic windows) containing independent association signals, we first constructed a 29 
reference dataset of best-guess genotypes from 20,275 unrelated UK Biobank samples (equivalent to 5% of the 30 
unrelated sample). We converted imputed dosages of SNPs with info score > 0.3 and MAF > 0.001% to best-guess 31 
genotypes using PLINK (version 1.9), (29,30) and a conversion threshold (--hard-call-threshold) of 0.1 32 
(Supplementary Information). SNPs with missingness > 5% after conversion or Hardy-Weinberg equilibrium p < 33 
1 x 10-7 were removed.  34 
 35 
We then used the PLINK ‘clumping’ algorithm to select top-associated SNPs (p < 5 x 10-9) and identify all SNPs in 36 
LD (r2 > 0.05) with the top associated SNP and ±5Mb away. We determined the genomic span of each LD-based 37 
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clump and added 1kb up- and downstream as buffer to the region. If any of these windows overlapped, we merged 1 
them together into a single (larger) locus. As a sensitivity analysis, we ran clumping also using a smaller genomic 2 
window to calculate LD (±2Mb); the results were effectively unchanged, as <5 loci appeared independent using the 3 
±2Mb window but were found to correlate using ±5Mb windows. Therefore, we report loci using the ±5Mb window. 4 
 5 
Proximal conditional and joint testing  6 
 7 
To identify index and secondary signals within each of the clumping-based loci, we ran proximal joint and 8 
conditional analysis as implemented in the Genome-wide Complex Trait Analysis (GCTA) software (31). We ran 9 
this model (--cojo-slct) using the summary-level data within each locus, the LD reference panel constructed from 10 
UK Biobank data and also used for the locus ‘clumping,’ and setting genome-wide significance with p < 5 x 10-9. 11 
 12 
VI. Validation in an independent dataset 13 
 14 
We used an independent dataset EXTEND (7,721 individuals of European descent collected from South West 15 
England, Supplementary Table 14) to validate our findings. We extracted the index SNPs from the HRC imputed 16 
genotypes. To generate the WHRadjBMI variable, we regressed WHR on BMI, age, age-squared, sex and principal 17 
components 1-5. We then performed rank based inverse normalization on the resulting residuals. We validated the 18 
findings in 3 steps:  19 
 20 
(1) Directional consistency. We checked for directional consistency between the effect of index SNPs on 21 
WHRadjBMI from the main meta-analysis and EXTEND. We performed linear regression of WHRadjBMI on each 22 
individual SNP. We ensured all alleles were aligned to the WHRadjBMI increasing allele in the original meta-23 
analysis. We compared directions between all 346 index SNPs and then split these into novel and known signals to 24 
determine the number of novel signals showing consistent directionality.  25 
 26 
(2) Variance explained. We evaluated the proportion of variance explained by including all the index SNPs into a 27 
linear regression model and calculated the adjusted R2. We performed these analyses using the lm() function in R. 28 
  29 
(3) Polygenic scores. We created a weighted polygenic score based on the 346 index SNPs associated with 30 
WHRadjBMI. The weighted polygenic risk score (PRS) was calculated by summing the dosage of the 31 
WHRadjBMI-increasing alleles (weighted by the effect size on WHRadjBMI from the meta-analysis). We then 32 
performed linear regression to test the association between WHRadjBMI and the PRS in our independent dataset.   33 
 34 
We sought to determine how likely the 5% of individuals carrying the most WHRadjBMI-increasing alleles were to 35 
meet the World Health Organization (WHO) WHR threshold used to diagnose metabolic syndrome (along with 36 
lipids and type 2 diabetes status) (13) compared to the 5% carrying the least. We used the WHR reference levels of 37 
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> 0.9 in men and > 0.85 in women to define cases and WHR < 0.9 in men and < 0.85 in women to define controls 1 
(13). We excluded all individuals with missing data leaving a sample size of 7,513. We took 5% of individuals 2 
(7,513 x 0.05 = 376) from the two ends of weighted PRS and coded them as 1 or 2 respectively. We tested for the 3 
likelihood of the top 5% meeting the WHR threshold to diagnose metabolic syndrome (WHO criteria) compared to 4 
the bottom 5% using a binomial logistic regression model adjusting for age, age-squared, sex and principal 5 
components 1-5.  6 
 7 
VII. Collider bias analysis 8 
 9 
Given that we had conditioned WHR on the BMI phenotype for analysis (and BMI and WHR are correlated; r = 10 
0.433 in the UK Biobank data; Supplementary Fig 15), we tested all index signals found in the WHRadjBMI 11 
analysis for evidence of collider bias (15, 32). To do this, we ran meta-analyses of BMI and WHR using the UK 12 
Biobank samples and pre-existing summary-level data from GIANT (5, 24) (Supplementary Methods). We 13 
performed these meta-analyses using identical methods to the meta-analysis of WHRadjBMI.  14 
 15 
Then, for each index SNP from the WHRadjBMI meta-analyses (combined as well as sex-specific) we extracted the 16 
association results from the BMI and WHR meta-analyses (Supplementary Fig 4). WHRadjBMI-associated SNPs 17 
with a stronger association for BMI than WHR show evidence of collider bias or pleiotropy. We additionally looked 18 
at the effect size and direction of effect in BMI and WHR, but whether the effects are from collider bias or 19 
pleiotropy cannot be determined from this data.    20 
 21 
VIII. Identification of sex-dimorphic signals 22 
 23 
We estimated correlation between WHRadjBMI in females and in males using bivariate LD Score Regression 24 
analysis (12,33). 25 
 26 
We performed sex-specific GWAS in UK Biobank and meta-analyzed the results with publicly-available sex-27 
specific data from the GIANT consortium. We identified the primary and secondary signals from these meta-28 
analyses using methods identical to those performed in the combined analysis. We tested each primary and 29 
secondary signal for a sex-dimorphic effect by estimating the t-statistic: 30 
 31 

$	 = '()*+,)-		.	'*+,)-	

/01()*+,)-		
2 	3	01*+,)-

2 	.	#4	∗	01()*+,)-∗	01*+,)-	
     (1) 32 

 33 
where se is the standard error and r is the genome-wide Spearman rank correlation coefficient between SNP effects 34 
in females and males. We estimated the t-statistic and the resulting so-called pdiff (p-value from a t-distribution with 35 
one degree of freedom (17)) as implemented in the EasyStrata software (34).  36 
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 1 
We tested a total of 2,162 different index SNPs for sex-dimorphism; we tested all of the secondary signals as well, 2 
but these signals are by definition in linkage disequilibrium with the index SNPs (and therefore not independent). 3 
Given that we tested for sex-dimorphism at index SNPs in not only WHRadjBMI but WHR and BMI as well, we 4 
performed a test at 1,502 distinct genomic loci. Therefore, we set significance for sex-dimorphism at a Bonferroni-5 
corrected p = 0.05/1,502 = 3.3 x 10-5. 6 
 7 
SNPs were determined to have a stronger effect in women if they fell into one of the following categories (abs, 8 
absolute value): 9 
  10 

(a) betafemales ≤ 0 and betamales ≤ 0 and abs(betafemales) > abs(betamales) 11 
(b) betafemales ≥ 0 and betamales ≥ 0 and abs(betafemales) > abs(betamales) 12 
(c) betafemales ≤ 0 and betamales ≥ 0 and pfemales < pmales and abs(betafemales) > abs(betamales), or  13 
(d) betafemales ≥ 0 and betamales ≤ 0 and pfemales < pmales and abs(betafemales) > abs(betamales) 14 

 15 
IX. Heritability calculations 16 
SNP-based heritability calculations 17 
 18 
We implemented all heritability calculations in BOLT-LMM.(10) We used the same genetic relationship matrix 19 
(GRM) to estimate SNP-based heritability as we did to run our GWAS (see Genome-wide association analyses). 20 
This GRM included 790,000 SNPs. Heritability was estimated using only the UK Biobank samples, for which we 21 
had individual level data; these estimates are likely more accurate than those resulting from only summary-level 22 
data. We used Restricted Maximum Likelihood Estimation, implemented as --reml in BOLT.  23 
 24 
To test the impact of including lower-frequency SNPs in the heritability estimates, we constructed an additional 25 
GRM identically as we had for association testing but including no minor allele frequency threshold. This GRM 26 
included ~1.7M SNPs. Heritability analyses were calculated identically using this GRM and --reml in BOLT. 27 
 28 
To calculate whether heritability estimates in men and women were sex-dimorphic, we used the following equation 29 
to generate a z-score: 30 
 31 

6	 = 7()*+,)-
2 	.	7*+,)-

2

/894:9;<1()*+,)-	3	894:9;<1*+,)-		
     (2) 32 

 33 
We then converted the z-scores to P-values using the following formula in the statistical programming language and 34 
software suite R (version 3.4): 35 
 36 
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= = 2 ∗ =?@AB(−EFG(6))     (3) 1 
 2 
X. Comparison of WHRadjBMI-associated SNPs in other fat distribution phenotypes 3 
Comparison with body fat percentage 4 
 5 
Similarly to Shungin et al (5), we carried out analysis on the 346 index SNPs and their association with BF% and 6 
WHR. We obtained association statistics for the 346 SNPs on BF% and WHR from a GWAS of 443,001 unrelated, 7 
European-ancestry UK Biobank individuals. We aligned all results to the WHR increasing allele and used a 8 
Bonferroni-corrected P-value (0.05/346 = 1..44 X 10-4) to determine if a SNP was associated with BF% (Figure 2). 9 
To determine whether sex-specific WHRadjBMI index SNPs have an adiposity phenotype, we took the 97 (female-10 
specific) and 8 (male-specific) SNPs and independently compared their effects on WHRadjBMI and BF% in men 11 
and women. To identify which sex-dimorphic SNPs were strongly associated with BF% in men and women 12 
separately, we used a Bonferroni-corrected P-value of 0.05/105 (4.8 x 10-4) (Supplementary Fig 7 and 13 
Supplementary Table 9). We obtained Pearson’s r correlations using the cor() function in R for each comparison.  14 
 15 
Comparison with genome-wide analysis of depot-specific traits 16 
 17 
Recently, Chu et al (21) performed a genome-wide association study of subcutaneous and ectopic fat depots, as 18 
measured by CT and MRI imaging, in a multi-ancestry sample. Since the meta-analysis results are publicly-available 19 
(https://grasp.nhlbi.nih.gov/FullResults.aspx and Supplementary Information for further details), we took the 20 
index SNPs from our WHRadjBMI meta-analyses (combined sample as well as sex-specific), checked for allele 21 
consistency, aligned effects to the reference allele, and tested for associations with the imaging based measures of 22 
subcutaneous and ectopic fat. We repeated these analyses in men and women separately. The depots investigated in 23 
the imaging-based GWAS were: pericardial tissue (PAT), PAT adjusted for height and weight (PATadjHtWt), 24 
subcutaneous adipose tissue (SAT), SAT Hounsfield units as measured by MRI (SATHU), visceral adipose tissue 25 
(VAT), VAT Hounsfield units (VATHU), ratio of VAT to SAT (VAT/SAT), and VAT adjusted for BMI 26 
(VATadjBMI).  27 
 28 
We calculated Pearson’s r correlations between z-scores in WHRadjBMI (calculated by dividing the SNP beta by 29 
the standard error) and SNP z-scores reported in Chu et al (21). We evaluated significance of the correlation by 30 
performing a t-test (implemented as cor.test() in R). Correlations were considered significant if P-value < 0.05/3 31 
sample groups/9 phenotypes = 1.9 x 10-3.  32 
 33 

  34 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/304030doi: bioRxiv preprint 

https://doi.org/10.1101/304030
http://creativecommons.org/licenses/by/4.0/


 14 

Acknowledgements 1 
 2 
This research was conducted using the UK Biobank Resource under Application Numbers 11867 and 9072. 3 
EXTEND data were provided by the Peninsula Research Bank, part of the NIHR Exeter Clinical Research Facility.  4 
 5 
C.M.L is supported by the Li Ka Shing Foundation, WT-SSI/John Fell funds and by the NIHR Biomedical Research 6 
Centre, Oxford, by Widenlife and NIH (CRR00070 CR00.01).  7 
 8 
S.L.P. is supported by a Veni Fellowship 016.186.071 (ZonMW) from the Dutch Organization for Scientific 9 
Research (Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO).  10 
 11 
H.Y.  is funded by Diabetes UK RD Lawrence fellowship (grant: 17/0005594).  12 
 13 
A.R.W. and T.M.F. are supported by the European Research Council grant: 323195:GLUCOSEGENES-FP7-14 
IDEAS-ERC. R.B. is funded by the Wellcome Trust and Royal Society grant: 104150/Z/14/Z.  15 
 16 
J.T. is funded by the ERDF and a Diabetes Research and Wellness Foundation Fellowship.  17 
 18 
S.E.J. is funded by the Medical Research Council (grant: MR/M005070/1).  19 
 20 
P.M.V. and J.Y. are funded by Australian National Health and Medical Research Council (1078037 and 1113400).  21 
 22 
J.Y. is supported by the Sylvia & Charles Viertel Charitable Foundation.  23 
 24 
D.C.C.-C. is supported by a grant from the U.S. National Institutes of Health (K01 HL127265).  25 
 26 
A.T.H. is a Wellcome Trust senior investigator and NIHR Senior Investigator. 27 
 28 
 29 
 30 
Authorship contributions 31 
 32 
Data collection and analysis:   S.L.P., C.S., A.P.M., A.R.W.,  33 
Data interpretation:    S.L.P., C.S., C.M.L., T.M.F., H.Y., A.P.M., C.G. 34 
Study supervision:    H.Y., T.F., S.L.P, C.M.L 35 
First draft of the manuscript:   S.L.P, C.M.L. 36 
Critical revisions of the manuscript:  all co-authors 37 
  38 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/304030doi: bioRxiv preprint 

https://doi.org/10.1101/304030
http://creativecommons.org/licenses/by/4.0/


 15 

Conflict of Interest Statement 1 
 2 
The authors declare no conflict of interest. 3 
 4 
  5 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/304030doi: bioRxiv preprint 

https://doi.org/10.1101/304030
http://creativecommons.org/licenses/by/4.0/


 16 

References 1 
 2 

1. GBD 2015 Obesity Collaborators, Afshin,A., Forouzanfar,M.H., Reitsma,M.B., Sur,P., Estep,K., Lee,A., 3 
Marczak,L., Mokdad,A.H., Moradi-Lakeh,M., et al. (2017) Health Effects of Overweight and Obesity in 195 4 
Countries over 25 Years. N. Engl. J. Med., 377, 13–27. 5 

2. WHO | Obesity and overweight (2018) WHO | Obesity and overweight. 6 
http://www.who.int/mediacentre/factsheets/fs311/en/ Accessed February 22, 2018. 7 

3. Heymsfield,S.B. and Wadden,T.A. (2017) Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. 8 
J. Med., 376, 254–266. 9 

4. Wang,Y., Rimm,E.B., Stampfer,M.J., Willett,W.C. and Hu,F.B. (2005) Comparison of abdominal adiposity and 10 
overall obesity in predicting risk of type 2 diabetes among men1–3. Am. J. Clin. Nutr., 81, 555–563. 11 

5. Shungin,D., Winkler,T.W., Croteau-Chonka,D.C., Ferreira,T., Locke,A.E., Mägi,R., Strawbridge,R.J., Pers,T.H., 12 
Fischer,K., Justice,A.E., et al. (2015) New genetic loci link adipose and insulin biology to body fat distribution. 13 
Nature, 518, 187–196. 14 

6. Rose,K.M., Newman,B., Mayer-Davis,E.J. and Selby,J.V. (1998) Genetic and behavioral determinants of waist-15 
hip ratio and waist circumference in women twins. Obes. Res., 6, 383–392. 16 

7. Emdin,C.A., Khera,A.V., Natarajan,P., Klarin,D., Zekavat,S.M., Hsiao,A.J. and Kathiresan,S. (2017) Genetic 17 
Association of Waist-to-Hip Ratio With Cardiometabolic Traits, Type 2 Diabetes, and Coronary Heart Disease. 18 
JAMA, 317, 626–634. 19 

8. Sudlow,C., Gallacher,J., Allen,N., Beral,V., Burton,P., Danesh,J., Downey,P., Elliott,P., Green,J., Landray,M., et 20 
al. (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases 21 
of middle and old age. PLoS Med., 12, e1001779. 22 

9. Pulit,S.L., Karaderi,T. and Lindgren,C.M. (2017) Sexual dimorphisms in genetic loci linked to body fat 23 
distribution. Biosci. Rep., 37. 24 

10. Loh,P.-R., Tucker,G., Bulik-Sullivan,B.K., Vilhjálmsson,B.J., Finucane,H.K., Salem,R.M., Chasman,D.I., 25 
Ridker,P.M., Neale,B.M., Berger,B., et al. (2015) Efficient Bayesian mixed-model analysis increases 26 
association power in large cohorts. Nat. Genet., 47, 284–290. 27 

11. Pulit,S.L., de With,S.A.J. and de Bakker,P.I.W. (2017) Resetting the bar: Statistical significance in whole-28 
genome sequencing-based association studies of global populations. Genet. Epidemiol., 41, 145–151. 29 

12. Bulik-Sullivan,B.K., Loh,P.-R., Finucane,H.K., Ripke,S., Yang,J., Consortium,S.W.G. of T.P.G., Patterson,N., 30 
Daly,M.J., Price,A.L. and Neale,B.M. (2015) LD Score regression distinguishes confounding from polygenicity 31 
in genome-wide association studies. Nat. Genet., 47, 291–295. 32 

13. Huang,P.L. (2009) A comprehensive definition for metabolic syndrome. Dis. Model. Mech., 2, 231–237. 33 

14. Cole,S.R., Platt,R.W., Schisterman,E.F., Chu,H., Westreich,D., Richardson,D. and Poole,C. (2010) Illustrating 34 
bias due to conditioning on a collider. Int. J. Epidemiol., 39, 417–420. 35 

15. Day,F.R., Loh,P.-R., Scott,R.A., Ong,K.K. and Perry,J.R.B. (2016) A Robust Example of Collider Bias in a 36 
Genetic Association Study. Am. J. Hum. Genet., 98, 392–393. 37 

16. Frayling,T.M., Timpson,N.J., Weedon,M.N., Zeggini,E., Freathy,R.M., Lindgren,C.M., Perry,J.R.B., 38 
Elliott,K.S., Lango,H., Rayner,N.W., et al. (2007) A common variant in the FTO gene is associated with body 39 
mass index and predisposes to childhood and adult obesity. Science, 316, 889–894. 40 

17. Randall,J.C., Winkler,T.W., Kutalik,Z., Berndt,S.I., Jackson,A.U., Monda,K.L., Kilpeläinen,T.O., Esko,T., 41 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/304030doi: bioRxiv preprint 

https://doi.org/10.1101/304030
http://creativecommons.org/licenses/by/4.0/


 17 

Mägi,R., Li,S., et al. (2013) Sex-stratified genome-wide association studies including 270,000 individuals show 1 
sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet., 9, e1003500. 2 

18. Lotta,L.A., Gulati,P., Day,F.R., Payne,F., Ongen,H., van de Bunt,M., Gaulton,K.J., Eicher,J.D., Sharp,S.J., 3 
Luan,J. ’an, et al. (2017) Integrative genomic analysis implicates limited peripheral adipose storage capacity in 4 
the pathogenesis of human insulin resistance. Nat. Genet., 49, 17–26. 5 

19. Yaghootkar,H., Lotta,L.A., Tyrrell,J., Smit,R.A.J., Jones,S.E., Donnelly,L., Beaumont,R., Campbell,A., 6 
Tuke,M.A., Hayward,C., et al. (2016) Genetic Evidence for a Link Between Favorable Adiposity and Lower 7 
Risk of Type 2 Diabetes, Hypertension, and Heart Disease. Diabetes, 65, 2448–2460. 8 

20. Scott,R.A., Fall,T., Pasko,D., Barker,A., Sharp,S.J., Arriola,L., Balkau,B., Barricarte,A., Barroso,I., Boeing,H., 9 
et al. (2014) Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 10 
diabetes, independent of obesity. Diabetes, 63, 4378–4387. 11 

21. Chu,A.Y., Deng,X., Fisher,V.A., Drong,A., Zhang,Y., Feitosa,M.F., Liu,C.-T., Weeks,O., Choh,A.C., Duan,Q., 12 
et al. (2017) Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with 13 
adipocyte development and differentiation. Nat. Genet., 49, 125–130. 14 

22. Pulit,S.L., Voight,B.F. and de Bakker,P.I.W. (2010) Multiethnic genetic association studies improve power for 15 
locus discovery. PLoS One, 5, e12600. 16 

23. Petrovski,S. and Goldstein,D.B. (2016) Unequal representation of genetic variation across ancestry groups 17 
creates healthcare inequality in the application of precision medicine. Genome Biol., 17, 157. 18 

24. Locke,A.E., Kahali,B., Berndt,S.I., Justice,A.E., Pers,T.H., Day,F.R., Powell,C., Vedantam,S., 19 
Buchkovich,M.L., Yang,J., et al. (2015) Genetic studies of body mass index yield new insights for obesity 20 
biology. Nature, 518, 197–206. 21 

25. McCarthy,S., Das,S., Kretzschmar,W., Delaneau,O., Wood,A.R., Teumer,A., Kang,H.M., Fuchsberger,C., 22 
Danecek,P., Sharp,K., et al. (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat. 23 
Genet., 48, 1279–1283. 24 

26. Frazer,K.A., Ballinger,D.G., Cox,D.R., Hinds,D.A., Stuve,L.L., Gibbs,R.A., Belmont,J.W., Boudreau,A., 25 
Hardenbol,P., Leal,S.M., et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. 26 
Nature, 449, 851–861. 27 

27. The International HapMap Consortium., Gibbs,R.A., Belmont,J.W., Hardenbol,P., Willis,T.D., Yu,F., Yang,H., 28 
Ch’ang,L.-Y., Huang,W., Liu,B., et al. (2003) The International HapMap Project. Nature, 426, 789–796. 29 

28. Willer,C.J., Li,Y. and Abecasis,G.R. (2010) METAL: Fast and efficient meta-analysis of genomewide 30 
association scans. Bioinformatics, 26, 2190–2191. 31 

29. Chang,C.C., Chow,C.C., Tellier,L.C., Vattikuti,S., Purcell,S.M. and Lee,J.J. (2015) Second-generation PLINK: 32 
rising to the challenge of larger and richer datasets. Gigascience, 4, 1–16. 33 

30. Purcell,S., Neale,B., Todd-Brown,K., Thomas,L., Ferreira,M. a. R., Bender,D., Maller,J., Sklar,P., de 34 
Bakker,P.I.W., Daly,M.J., et al. (2007) PLINK: a tool set for whole-genome association and population-based 35 
linkage analyses. Am. J. Hum. Genet., 81, 559–575. 36 

31. Yang,J., Lee,S.H., Goddard,M.E. and Visscher,P.M. (2011) GCTA: A tool for genome-wide complex trait 37 
analysis. Am. J. Hum. Genet., 88, 76–82. 38 

32. Munafò,M.R., Tilling,K., Taylor,A.E., Evans,D.M. and Davey Smith,G. (2017) Collider scope: when selection 39 
bias can substantially influence observed associations. Int. J. Epidemiol., 10.1093/ije/dyx206. 40 

33. Bulik-Sullivan,B., Finucane,H.K., Anttila,V., Gusev,A., Day,F.R., Loh,P.-R., ReproGen Consortium, Psychiatric 41 
Genomics Consortium, Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control 42 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/304030doi: bioRxiv preprint 

https://doi.org/10.1101/304030
http://creativecommons.org/licenses/by/4.0/


 18 

Consortium 3, Duncan,L., et al. (2015) An atlas of genetic correlations across human diseases and traits. Nat. 1 
Genet., 47, 1236–1241. 2 

34. Winkler,T.W., Kutalik,Z., Gorski,M., Lottaz,C., Kronenberg,F. and Heid,I.M. (2015) EasyStrata: evaluation and 3 
visualization of stratified genome-wide association meta-analysis data. Bioinformatics, 31, 259–261. 4 

 5 

 6 

  7 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/304030doi: bioRxiv preprint 

https://doi.org/10.1101/304030
http://creativecommons.org/licenses/by/4.0/


 19 

Tables and Figures 1 
 2 
Table 1 | Large-scale meta-analysis in body fat distribution. We performed a meta-analysis of fat distribution as 3 
measured by WHRadjBMI in up to 694,649 individuals. We performed analyses of WHR as a sensitivity measure. 4 
Our analyses increase the number of WHRadjBMI-associated loci (p < 5 x 10-9, to account for SNP density in UK 5 
Biobank) to 346 loci. SNP-based heritability (IJK ) results, estimated using the restricted maximum likelihood method 6 
implemented (10), and top-associated loci indicate patterns of sex-dimorphism. The top-associated index SNPs 7 
explain 3.9% of the overall phenotypic variance (i.e., adjusted R2) in fat distribution (calculated in an independent 8 
dataset, N = 7,721). 9 
 10 
 11 

Phenotype Sex Sample sizes Associated loci 
p < 5 x 10-9 

Dimorphic index 
SNPs  

(% of total) 
IJK (se) Variance 

explained 

  UKBB GIANT Meta Loci Independent 
signals    

WHRadjBMI 

Combined 484,563 210,086 694,649 346 463 53 (15.3) 0.174 
(0.002) 3.9% 

Women 262,759 116,742 379,501 266 363 77 (28.9) 0.256 
(0.003) 3.6% 

Men 221,804 93,480 315,284 91 102 13 (14.3) 0.167 
(0.003) 1.0% 

WHR 

Combined 485,486 212,248 697,734 316 382 37 (11.7) 0.194 
(0.002) 3.0% 

Women 263,148 118,004 381,152 203 261 64 (31.5) 0.254 
(0.003) 4.0%  

Men 222,338 94,434 316,772 79 82 10 (12.7) 0.208 
(0.003) 0.3% 
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Figure 1 | Sex-dimorphic association signals in fat distribution. For each associated locus from either the 1 
combined or sex-specific meta-analyses, we tested the index SNP for sex-dimorphism. We plot here all index SNPs 2 
from each of the three meta-analyses (combined, women only, and men only). SNPs that are significantly sex-3 
dimorphic (pdiff < 3.3 x 10-5) are represented by boldly-colored circles, while index SNPs that are not sex-dimorphic 4 
are plotted with faded colors. Despite the expectation that SNPs identified in the combined sample (men and 5 
women, grey points) will be biased away from sex-dimorphism, and index SNPs identified in the sex-specific 6 
sample will be biased towards sex-dimorphism (due to winner’s curse), we observed stronger effects in women 7 
across all SNPs. Of the index SNPs from the men-only analysis (orange points), 14% showed evidence of sex-8 
dimorphism. In contrast, ~29% of the index SNPs from the women-only analysis (blue points) show evidence of 9 
dimorphism. Over all sex-dimorphic SNPs, 92.4% show a stronger effect in women compared to men. Points are 10 
sized by the -log10(pdiff) of the sex-dimorphism test. Horizontal bars indicate standard error in men; vertical bars 11 
indicate standard error in women. 12 
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Figure 2 | Effects of WHRadjBMI-associated SNPs on body fat percentage. (a) We investigated the impact of the 346 WHRadjBMI index SNPs (discovered 1 
in the combined analysis) on body fat percentage (BF%) in 449,001 UK Biobank individuals. Of the 346 SNPs, 59 (17.1%) are associated with BF% (p < 2 
0.05/346 = 1.44 x 10-4, dark grey points). We oriented the effects of the SNPs to the WHRadjBMI-increasing effect, and found that 34 of the 59 BF%-associated 3 
SNPs associate with increased BF%, while 25/59 associate with decreased BF%, indicating that WHRadjBMI-associated SNPs can effect BF% in both 4 
directions. (b) Given the sex-dimorphic signature observed in WHRadjBMI-associated SNPs and the increased number of SNPs with stronger effects on 5 
WHRadjBMI in women, we investigated the effect of the 105 sex-dimorphic index SNPs identified from the three meta-analyses (in the combined sample, in 6 
women only, in men only) on BF% in men or women separately. Of the 105 dimorphic SNPs, 97 were female specific (aquamarine points) and conferred a 7 
stronger effect on WHRadjBMI (on average) compared to the 8 male-specific SNPs (orange points). We plot the 105 sex-dimorphic SNPs by their effect on BF% 8 
in men (x-axis) and in women (y-axis). Of the 105 SNPs, 56 associate with BF% (p < 0.05/05 = 4.8 x 10-3). Despite the fact that these SNPs confer different 9 
effects on WHRadjBMI within sex-specific groups, we found that they confer relatively similar effects in BF% in sex-specific groups. All points are scaled in 10 
size to their strength of association in BF%.  11 
 12 
  13 

SNP effect (beta) on body fat % in men

SN
P 

ef
fe

ct
 (b

et
a)

 o
n 

bo
dy

 fa
t %

 in
 w

om
en

-0.1 0.0 0.1 0.2

-0.1

0.0

0.1

0.2 Associated to WHRadjBMI in women and BF% in women

Associated to WHRadjBMI in women only

Associated to WHRadjBMI in men and BF% in men

Associated to WHRadjBMI in men only

pBF < 1e-5

pBF < 1e-25

pBF < 1e-50

SNP effect (beta) on WHRadjBMI in the combined sample

S
N

P
 e

ffe
ct

 (b
et

a)
 o

n 
bo

dy
 fa

t %
 in

 th
e 

co
m

bi
ne

d 
sa

m
pl

e

-0.1 0.0 0.1 0.2 0.3 0.4

-0.1

0.0

0.1

0.2 Associated to WHRadjBMI (combined sample) and BF% (combined sample)

Associated to WHRadjBMI (combined sample) only

pdiff < 1e-5

pdiff < 1e-25

pdiff < 1e-50

a

pBF% < 1 x 10-5

pBF% < 1 x 10-25

pBF% < 1 x 10-50

b

pBF% < 1 x 10-5

pBF% < 1 x 10-25

pBF% < 1 x 10-50

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/304030doi: bioRxiv preprint 

https://doi.org/10.1101/304030
http://creativecommons.org/licenses/by/4.0/


 22 

Abbreviations 1 
 2 
BMI  Body mass index 3 
WHR  Waist-to-hip ratio 4 
WHRadjBMI Waist-to-hip ratio, adjusted for body mass index 5 
GWAS  Genome-wide association study 6 
BF%  Body fat percentage 7 
LD  Linkage disequilibrium 8 
SNP  Single nucleotide polymorphism 9 
UKBB  UK Biobank 10 
T2D  Type 2 diabetes 11 
GRS  Genetic risk score 12 
CT  Computerized tomography 13 
MR  Magnetic resonance imaging 14 
BOLT-LMM BOLT Linear Mixed Model 15 
BOLT-REML BOLT restricted maximum likelihood 16 
PCA  Principal component analysis 17 
SAT  Subcutaneous adipose tissue 18 
VAT  Visceral adipose tissue 19 
PAT  Pericardial adipose tissue 20 
GRM  Genetic relationship matrix 21 
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