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Abstract: Our ability to predict the impact of mutations on traits relevant for disease and 

evolution remains severely limited by the dependence of their effects on the genetic 

background and environment. Even when molecular interactions between genes are known, it 

is unclear how these translate to organism-level interactions between alleles. We therefore 

characterized the interplay of genetic and environmental dependencies in determining fitness 

by quantifying ~4,000 fitness interactions between expression variants of two metabolic 

genes, in different environments. We detect a remarkable variety of environment-dependent 

interactions, and demonstrate they can be quantitatively explained by a mechanistic model 

accounting for catabolic flux, metabolite toxicity and expression costs. Complex fitness 

interactions between mutations can therefore be predicted simply from their simultaneous 

impact on a few connected molecular phenotypes. 

 

Despite its centrality to medical and evolutionary genetics, our ability to predict the impact of 

mutations on even the apparently simplest of organismal traits (1–8), let alone complex ones 

(9), remains minimal. Three of the main factors proposed to account for this “missing 

heritability” (9) are: the large number of possible alleles at any locus, each having a 

potentially different impact on a gene’s function; interaction between alleles at different loci 

(intergenic epistasis), such that their combined effect is not simply the sum of their individual 

effects; and interaction between genotype and environment, such that different genotypes 

respond to the environment in different ways (1–9). A promising inroad is the increasingly 

refined characterization of molecular interaction networks enabled by –omics approaches 

(10). Metabolic networks are the best-characterized of these, and are of great practical 

interest for medicine and engineering, but even for metabolic genes it remains unclear how 
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functional interactions at the molecular level translate to allelic interactions at the level of 

integrated traits relevant for disease, industry and adaptation (11).   

We therefore developed an experimental system with which to systematically quantify the 

fitness interactions occurring between many alleles of two metabolic genes from the same 

pathway. Further, the design enabled us to probe the dependence of these interactions on 

environmentally modulated gene expression, a common non-genetic mechanism for the 

modification of physiological traits (5, 12).  

Our system was composed of the genes (araA and araB) encoding the enzymes responsible 

for the first two steps of the well-studied Escherichia coli L-arabinose-utilization pathway 

(13): L-arabinose isomerase (AraA) and L-ribulokinase (AraB), who together transform the 

sugar, L-arabinose, into the intermediate, L-ribulose-5-phosphate (Fig. 1A). L-ribulose-5-

phosphate enters the pentose phosphate pathway (PPP) of central metabolism via further 

enzymatic reactions, ultimately supporting cell growth, but like many intermediates (14, 15), 

its accumulation is toxic, retarding growth (16). Environmental modulation of gene 

expression was achieved by placing each of the two genes under an independent, trans-

regulated chemically-inducible promoter. 

For each promoter, 36 single-base variants were constructed, along with the initial “wildtype” 

sequence, and combined with all variants of the other promoter (Fig. 1B). The organismal 

phenotype, competitive fitness, was then measured for the entire set of 1,369 genotypes under 

three different inducer concentration combinations (Figs. 1C-D). Fitness was measured by 

tagging the mutant library with unique DNA barcodes (tens to thousands per genotype) (Figs. 

S1-2), culturing the pooled library for ~30 mean generations, and tracking barcode 

frequencies over time with Next-Generation Sequencing (Fig. S3). The barcodes act as 

internal replicates for every genotype, enabling precise fitness estimates at high-throughput 
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(log relative fitness, Frel, median standard deviation of 0.0011 for single mutants and 0.0047 

for double mutants; Fig. S4). 

The overall distribution of fitness effects depended critically on the inducer environment, ie. 

the trans-regulatory input (Fig. 2A; Fig. S5A; Data S1). The proportion of beneficial effects 

varied from 88% in Env1 (median Frel = 0.12) to 51% in Env3 (median Frel = -0.03) and 12% 

in Env2 (median Frel = -0.12). Further, the correlation of fitness effects between environments 

ranged from strongly positive (Env1-Env3, Pearson’s r = 0.74, p < 2.2x10-16) to weakly 

negative (Env1-Env2, Pearson’s r = -0.11, p = 1x10-4) (Fig. S5B), demonstrating that fitness in 

one environment can be an extremely poor predictor of fitness in other environments due 

simply to expression differences. At the level of individual alleles, all but one had changing 

patterns of effects across environments (Fig. 2B). In some environments, they were 

universally beneficial or deleterious across genetic backgrounds, and in others they switched 

between being beneficial and deleterious depending on the allele at the second promoter. This 

pervasive and inconsistent variability poses a clear challenge for the prediction of mutation 

effects. 

To further characterize how the effects of mutations in one gene depended on the allele 

present at the other gene, we computed epistasis (17) for all mutation pairs in each 

environment. Epistasis evaluates quantitatively and qualitatively how the log fitness of a 

double mutant deviates from the sum of that of the constituent single mutants (Fig. 3A, Fig. 

S6A). Epistasis was found to be pervasive (89%, 39% and 81% of pairs in Env1-3, 

respectively), heterogeneous and environment-dependent. A trend of antagonism reported for 

several other systems (18) was recovered between pairs of individually beneficial (negative 

epistasis in 89%, 72% and 100% in Env1-3, respectively) and individually deleterious 

(positive epistasis 100% (1/1), 97% and 98%, respectively) mutations, while interactions 

between a beneficial and a deleterious mutation could be mostly positive or mostly negative, 
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depending on the environment and on which gene carried the beneficial/deleterious mutation. 

This epistatic diversity extended to individual mutation pairs, with more than 20% interacting 

both positively and negatively across environments (Figs. S6B-C). Notably, sign epistasis, an 

extreme interaction which occurs when the sign of a mutation effect changes in the presence 

of a second mutation (Fig. 1D), represented 31% of significant interactions in Env1, 17% in 

Env2 and 34% in Env3.  

Confronted with such a variety of interactions, we asked whether they might be understood 

simply in terms of the quantitative fitness effects of the interacting mutations, as has been 

found for some other mutation sets (19). We found that the effects of individual mutations 

were weakly predictive of the type and value of epistasis they exhibited with mutations at the 

second promoter (Fig. 3A scatterplots). In all environments, there was a significantly 

negative correlation between the sum of individual fitness effects and the value of epistasis 

(Pearson’s r = -0.36, -0.37, -0.51 in Env1-3, respectively; p < 2.2x10-16 for all), a trend of 

diminishing returns that appears common across experimental systems (19–22) (Fig. S7A). 

However, when the two genes were considered separately, the relationship between 

individual fitness effects and epistasis was found to be markedly different between araA and 

araB: the negative correlation was stronger for PLtetO-1-araA mutations being added to 

existing PLlacO-1-araB mutations than for the inverse case (Figs. S7B-C; Pearson’s r = -0.67, -

0.73, -0.63 in Env1-3,  p < 2.2x10-16 for all, vs. 0.12, -0.20 and -0.34, p < 1.6x10-5 for all), in 

which the correlation can even be positive, an extremely rare trend in existing studies (19). 

Moreover, we found that the average trend was in some cases strikingly non-monotonic 

(Figs. S7B-C), revealing that different alleles of a particular promoter can cause similar 

fitness changes on their own but interact very differently with alleles at the second promoter. 

The relationship between individual mutation effects and epistasis was further complicated 

by the fact that it could be different for different alleles of the same promoter. For example, 
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in Env1, the numerous beneficial PLtetO-1-araA mutations caused the average negative trend 

with PLlacO-1-araB background fitness, while the rare deleterious PLtetO-1-araA mutations 

showed no such trend (Fig. 3B, top panel). For individual PLlacO-1-araB mutations in PLtetO-1-

araA backgrounds, the relationship was consistently non-monotonic, but had a different 

average direction for individually beneficial or deleterious alleles (Fig. 3B, bottom panel). 

Moreover, the trend for a given allele could vary greatly with the environment (Figs. S7B-C). 

These results demonstrate that genes interacting simply through their common participation 

in a linear pathway can exhibit complex, allele- and environment-dependent trends of 

epistasis. The smooth patterns exemplified by Fig. 3B, however, suggest that they may in 

principle be understood from an underlying phenotypic mechanism. 

To this end, we constructed a quantitative model of the metabolic pathway, where fitness 

results from a balance between the benefit of flux (23) and the costs of intermediate toxicity 

(14, 24, 25) and AraA and AraB protein expression (26–28). Log fitness was computed as 

𝐹 = (𝜔 + 𝑢𝜑 −
𝑣

1/𝜂−𝜑
) (1 – 𝜃𝐴𝐴 – 𝜃𝐵𝐵), with 𝜔 a basal growth rate, u and v terms 

describing the catabolic benefit and toxicity cost of pathway flux (𝜑), A and B the cellular 

activity of the two enzymes, and θ the cost of enzyme expression. Flux depended on AraA 

and AraB activities as 𝜑 =
1

1/𝐴+1/𝐵+𝜂
 (25, 29). 

Each promoter mutation was then characterized as a change in the activity (via expression) of 

AraA or AraB. Because most mutations lay outside of the repressor binding sites governing 

promoter inducibility (Fig. 1B), the fold-change in activity caused by each mutation was kept 

constant across inducer environments. Parameters describing the fitness function, wildtype 

activities in the 3 environments and expression effects of individual mutations were then 

optimized to fit the observed data (Data S2; Fig. S8A). 
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The fitted model is in excellent agreement with our data, yielding r2 values of 0.98 between 

experimental and simulated fitness effects and 0.82 between experimental and simulated 

epistasis coefficients (Fig. 4A-B; Fig. S8B-C; see Fig. S9 for more minimal models). 

Notably, the model is capable of recapitulating the diverse and complex trends of epistasis 

seen in the data. In particular, we find that the non-monotonic relationships between single-

mutant fitness and the fitness impact of alleles at the second promoter are well explained by 

the single mutants lying at two sides of a phenotypic optimum (Fig. 4B). Such overshooting, 

which is also the cause of sign epistasis (Fig. 4C) (30), is relatively common in our dataset, 

mostly because L-ribulose-5-phosphate toxicity results in an optimum in the flux-fitness 

relationship (24, 25) (Fig. S10). Two alleles of the same gene may thus result in similar 

fitness changes individually but cause substantially different expression levels and fluxes, 

resulting in different responses to mutations at the second gene. This is principally due to 

enzymes possessing different degrees of flux control on each side of the optimum, with lower 

levels of one resulting in the second having less control. 

The model reveals how the biology underlying a linear pathway can result in heterogeneous, 

environmentally dependent intergenic interactions. When fitness depends solely on flux (23, 

25), the nature of epistasis should be guaranteed by pathway topology alone (25). Under the 

slightly more complex selection pressure resulting from metabolite toxicity (24, 25) and gene 

expression costs, however, interactions can be both positive and negative. We find that 

epistatic categories form several localized zones over the fitness landscape, their size and 

position dependent on the wildtype phenotype, controlled here by the environment (Fig. 4C; 

Fig. S11). Encouragingly, these zones are generally large and orderly enough to be 

predictable, but only through knowledge of the underlying landscape and the position of the 

relevant genotypes within it. 
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The importance of this knowledge becomes immediately apparent when considering the 

existence of a disease threshold (Fig. 4D). The two alleles shown can lead to disease, but only 

when they co-occur, and only in one particular environment. The model thus provides a 

mechanism by which potential physiological defects can be manifested, aggravated or 

alleviated by particular combinations of alleles and environments (1–7, 9). Insight into 

intergenic fitness landscapes for other biological systems, and for genes connected by more 

complex topologies, will be indispensable for progress across medicine, bio-engineering and 

evolution. 
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Fig. 1. Quantitative mapping of fitness interactions between expression variants of two 

metabolic genes in expression-modifying environments. (A) L-arabinose pathway of E. coli. 

(B) araA and araB were placed under the control of inducible promoters, making their 

expression sensitive to the concentration of their respective inducers, anhydrotetracycline 

(aTc) and isopropyl β-D-1-thiogalactopyranoside (IPTG). A barcoded library of mutant 

promoter combinations was constructed, with mutations targeting the -35 and -10 RNA-

polymerase binding hexamers (black letters). Underlined bases are annotated repressor 

binding sites. (C) Competitive fitness was measured under different inducer concentrations 

defining three environments. PLtetO-1 single mutants – green; PLlacO-1 single mutants – purple; 

double mutants - orange. Contours are hypothetical fitness isoclines. (D) Epistasis was 

quantified for all mutant promoter pairs across environments. Epistasis can be categorized as 

either magnitude or sign type. Sign epistasis is further categorized as simple (effect of one 
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mutation changes sign in presence of the other) or reciprocal (effects of both mutations 

change sign in the presence of the other). Capitalized letters represent mutant alleles of PLtetO-

1-araA and PLlacO-1-araB. Superscript plus and minus denote that individual alleles are 

beneficial or deleterious, respectively. 
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Fig. 2. Fitness effects of promoter mutations across backgrounds and environments. (A) 

Genotypes are colored according to the natural logarithm of their fitness relative to the 

wildtype (Frel). Grey denotes unquantifiable fitness effects. Letters show wildtype bases, and 

the 3 mutations at each position are ordered alphabetically, as in B. Single promoter mutants 

make up the right-most column (araA) and top row (araB). Inducer concentrations were: 20 

ng/ml aTc and 30 µM IPTG (Env1); 5 ng/ml aTc and no IPTG (Env2); 200 ng/ml aTc and no 

IPTG (Env3). (B) Fitness changes when an allele of one promoter is added to alleles of the 

second promoter. Large points indicate the “background” promoter is wildtype. Red, blue and 

grey points indicate positive, negative and non-significant fitness changes, respectively. Red, 

blue and grey rectangles indicate, in that environment, an allele can be beneficial but never 

deleterious, deleterious but never beneficial, or both beneficial and deleterious. G7A of PLtetO-
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1-araA (*) is the only allele conferring a qualitatively consistent fitness effect (beneficial) 

across all backgrounds and environments. 
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Fig. 3. Strength, types and trends of epistasis across environments. (A) Violins show epistasis 

for different kinds of mutation pairs (white point - median; black point - mean). Mutation 

pairs may contain mutations that are individually both beneficial (A+ B+), both deleterious (A- 

B-) or mixed (A+ B- and A- B+), or one of which confers an undetectable effect (A0 B+/- and 

A+/- B0). The number of each such pair is provided. Stacked bars show fractions of different 

epistasis types (colors as Fig. 1D, with white where epistasis could not be computed). 

Scatterplots show fitness of double mutants against that expected if mutation effects 

combined additively. Points colored as in Fig. 1D. (B) Relationship between background 

fitness and the fitness change induced by mutations in the second promoter, in Env1. Top: 

araA promoter mutations added to existing araB promoter mutations; bottom: inverse case. 

Colored points highlight particular alleles. Top: PLtetO-1-araA alleles T2C (red) and G7C 

(blue). Bottom: PLlacO-1-araB alleles T1A (red) and C11A (blue). Large points show effects in 

the wildtype background. 
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Fig. 4. Mechanistic basis of heterogeneous, environmentally dependent epistasis. (A) Fitted 

activity-fitness model. Spheres are positioned according to predicted activity levels and 

observed Frel (Env1-3 – red, blue, orange). Three largest spheres are wildtype, intermediate-

sized spheres are single mutants, small pale spheres are double mutants. (B) Upper plots 

recapitulate Fig. 3B. Lower plots show highlighted genotypes within fitness landscape (black 

point is wildtype; other large points are single mutants, grey for the gene considered as 

carrying the “background” alleles). (C) Fitness surface on log activity scale, colored by 

predicted intergenic epistasis type (colors as Fig. 1D; determined as non-significant (grey) if 

magnitude < 0.005). Large black point is wildtype. Smaller, opaque blue, red and black 

points are single mutants, colored by observed Frel (deleterious, beneficial and neutral, 

respectively). Transparent points are double mutants, colored by observed epistasis type and 
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sized by epistasis strength. (D) Dark grey marks area below a hypothetical disease threshold 

(40% of maximum fitness). Points are four genotypes in Env2 (blue) and Env3 (orange): 

wildtype (largest), C11A of PLtetO-1-araA and G7T of PLlacO-1-araB (intermediate size), and 

the resulting double-mutant (smallest). Green arrow represents a change in activity levels 

caused by non-genetic factors like ageing or environment. A disease state results here from 

one combination of alleles and environment (pale orange). 
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