
Manuscript submitted to bioRxiv

Topological segregation of functional1

networks increases in developing2

brains3

Wei He1,2, Paul F. Sowman1,2, Jon Brock2, Andrew C. Etchell2, Cornelis J. Stam3,4

Arjan Hillebrand3*5

*For correspondence:
wei.he@mq.edu.au (Wei He) 1Department of Cognitive Science, Macquarie University, 16 University Avenue, Sydney,6

Australia; 2Australian Research Council Centre of Excellence in Cognition and Its7

Disorders, 16 University Avenue, Sydney, Australia; 3Amsterdam UMC, Vrije Universiteit8

Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam9

Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands10

11

Abstract A growing literature conceptualises human brain development from a network12

perspective, but it remains unknown how functional brain networks are refined during the13

preschool years. The extant literature diverges in its characterisation of functional network14

development, with little agreement between haemodynamic- and electrophysiology-based15

measures. In children aged from 4 to 12 years, as well as adults, age appropriate16

magnetoencephalography was used to estimate unbiased network topology, using minimum17

spanning tree (MST) constructed from phase synchrony between beamformer-reconstructed18

time-series. During childhood, network topology becomes increasingly segregated, while cortical19

regions decrease in centrality. We propose a heuristic MST model, in which a clear developmental20

trajectory for the emergence of complex brain networks is delineated. Our results resolve21

topological reorganisation of functional networks across temporal and special scales in youth and22

fill a gap in the literature regarding neurophysiological mechanisms of functional brain maturation23

during the preschool years.24

25

Introduction26

Modern network science has revealed that normal brain networks exhibit fundamental properties27

of three canonical network extremes - a random network (Erdös and Rényi, 1959), a locally connected28

and highly ordered (regular) network (Mulder, 1992), and a scale-free network with a small number29

of highly connected nodes (so-called "hubs", Barabasi and Albert 1999). Adult brain networks also30

display hierarchical modularity (Meunier et al., 2009; Stam, 2014;Wig, 2017), in which modules that31

include regions from the default mode, fronto-parietal, parieto-temporal, or subcortical networks32

support specific cognitive functions (Bullmore et al., 2009; Fornito et al., 2011; Power et al., 2011).33

A heuristic model of complex brain networks has been proposed (Stam and van Straaten, 2012) to34

characterise the properties of real brain networks in an abstract “network space” defined by the35

four network models (i.e., regular, random, scale-free, and hierarchical modular networks). This36

heuristic model of “network space” suggests that the hierarchical modular network is an “attractor”37

for healthy brain networks and the other three extreme networks are "attractors" for different38

stages or patterns of brain diseases (Stam and van Straaten, 2012; Stam, 2014).39

Despite the robust and reproducible description of adult brain networks, there is relatively40
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scant data regarding the maturation of brain networks. Such data can be acquired non-invasively41

using magnetic resonance imaging (MRI) or electrophysiological techniques (such as magnetoen-42

cephalography/MEG and electroencephalography/EEG). Studies using MRI-based measurements43

have demonstrated that both functional and structural brain networks become more segregated44

during childhood (e.g., functional MRI: Fair et al. 2009; Gu et al. 2015; Supekar et al. 2009; structural45

MRI: Huang et al. 2015; and diffusion-weighted imaging: Baum et al. 2017). Such development46

allows for an ongoing balance between the integration of converging information from distributed47

brain regions, and at the same time the segregation of divergent specialised information streams48

(Fair et al., 2009; Grayson and Fair, 2017; Richmond et al., 2016; Rubinov and Sporns, 2010). How-49

ever, most studies to date have only focused on children older than 6 years or younger than 3 years50

of age (Grayson and Fair, 2017), leaving the preschool years of childhood (between 3 and 6 years of51

age) understudied – a knowledge gap that has been termed “the missing neurobiology of cognitive52

development” (Poldrack, 2010).53

Furthermore, there is little agreement between MRI- and electrophysiology-based network de-54

scriptions. Correspondence between functional MRI and electrophysiological measures of functional55

brain networks (Brookes et al., 2011) implies that changes in functional MRI network organisation56

should be, at least partially, preserved in higher temporally-resolved electrophysiological investi-57

gations (Grayson and Fair, 2017). It follows then, that electrophysiological networks are expected58

to become increasingly segregated during childhood development. However, prior EEG studies59

have reported conflicting results, which include increasing segregation (Boersma et al., 2011, 2013;60

Janssen et al., 2017; Toth et al., 2017), decreasing segregation (Smit et al., 2016; Bathelt et al., 2013;61

Miskovic et al., 2015), or no changes with age (Schafer et al., 2014). Discrepancy between develop-62

mental MRI- and electrophysiology-based network findings has been difficult to reconcile, partly63

due to the different spatial scales that functional networks have been examined at (sensor-level64

in most EEG versus cortical-level in fMRI studies). Modern whole-head magnetoencephalography65

(MEG) allows for sophisticated spatial filtering techniques to accurately (varying from sub-millimetre66

to a few centimetres) reconstruct millisecond electrophysiological time series across the cortex67

(Hillebrand et al., 2005; Troebinger et al., 2014; Barratt et al., 2018), and thus MEG is a critical tool68

in the quest to resolve these discrepancies.69

To better understand how the topology of functional brain networks develops over the whole70

period of childhood, we used MEG to collect resting-state electrophysiological signals from children71

whose ages spanned 4 to 12 years, as well as from adults. Importantly, we utilised a paediatric72

MEG system with a child-sized helmet for data collection in children aged under 6 years (He et al.,73

2014; Johnson et al., 2010). We hypothesised that, based on the heuristic model of complex brain74

networks, the healthy brain develops from a more random and integrated structure towards a75

configuration that offers a balance between network integration and segregation during norma-76

tive development (Stam, 2014). Specifically, we predicted that: (1) functional networks become77

more segregated, shifting from a centralised network topology to a de-centralised configuration78

(Boersma et al., 2013; Toth et al., 2017); (2) individual brain regions become more diverse in their79

connectedness, i.e., centrality of brain regions increases for hubs (e.g., regions in the default mode80

and the fronto-parietal areas), but decreases in non-hub regions (e.g., regions in the primary visual81

and auditory areas).82

Results83

We applied an atlas-based beamforming approach (Hillebrand et al., 2012) to reconstruct time84

series of neuronal activity recorded using a child-customised 125-channel whole-head gradiometer85

MEG system optimised for children aged around 5 years (5 year-olds (Y.O.), N = 10, 5.4 ± 1.1 years, 586

males). We used a 160-channel whole-head gradiometer MEG system for children aged around 1087

years (10 year-olds (Y.O.), N = 14, 9.8 ± 1.5 years, 12 males) and adults (N = 24, 40.6 ± 17.4 years,88

16 males). Functional connectivity between the 80 regions of interest (ROIs; 78 cortical ROIs and89

bilateral hippocampi) in the automated anatomical labelling (AAL; Tzourio-Mazoyer et al. 2002) atlas90
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was estimated using the phase lag index (PLI). Averaged PLI was computed between a region and91

all 79 other regions, resulting in a single estimation of functional connectivity per participant. There92

were no significant PLI differences between the three age groups for any of the 5 frequency bands93

(delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13-30 Hz, and low gamma: 30–48 Hz).94

Figure 1. Minimum spanning tree (MST) topology and hierarchy of three representative tree models. Top panel:
(A) a line-like tree, and (C) a star-like tree. (B) an intermediate configuration between the two extremes. Nodes

are indicated by circles, and links by connecting lines. Green nodes are leaves, which have a Degree (i.e.,
number of links to neighbouring nodes) of 1; red nodes are hubs that have the highest Degree and
Betweenness Centrality (i.e., the fraction of the smallest number of links between any two nodes in a network
that pass through a node); the yellow node and the red node in B, have the lowest Eccentricity (i.e., the largest
number of links required for a node reaching any other node in a network). The Diameter in B is 5 (i.e., the
longest distance between any two nodes in a network). The three lower graphs are the same trees as those

overlayed on the template brains above but represented in a way that illustrates that trees with more leaves

have fewer layers (nodes with the lowest Eccentricity are placed on top). Network A requires many steps for an
individual node, especially a leaf node in green, to connect to other nodes (low integration and high segregation).
The steps required for nodes to connect with each other are fewer in C but the central hub/red node is

considered ‘overloaded’ (high integration but low segregation). The network between these extremes - network B
- represents a hierarchical tree, which offers a balance between information integration and segregation.

Subsequently, we reconstructed the minimum spanning tree (MST; Figure 1; Kruskal 1956;Wang95

et al. 2008), so that the topology of functional networks could be characterised and compared96

without biases that are inherent in conventional graph theoretical approaches (Stam, 2014; Tewarie97

et al., 2015). The MST is a sub-network that contains the strongest connections within a weighted98

network without forming cycles or loops; it provides an unbiased reconstruction of the core of a99

network, making it possible to create a unique backbone or empirical reference network (e.g., for100

large datasets such as the human brain connectome project; van Dellen et al. 2018). Moreover,101

MST parameters are sensitive to alterations in the topology of brain networks at the functional- (e.g.,102

Boersma et al. 2013; de Bie et al. 2012; Janssen et al. 2017) and structural-level (e.g., Otte et al.103

2015; van Dellen et al. 2018), and importantly, can be interpreted along the lines of conventional104

graph theoretical measures (Tewarie et al., 2016).105

Topological segregation of the large-scale functional networks106

We first sought to understand whether the topology of the functional networks become more107

segregated during childhood development. To this end, we calculated 5 global MST measures for108

each participant: Diameter, Leaf Fraction, Tree Hierarchy, Degree Correlation, and Kappa. Small109

Diameter and high Leaf Fraction are characteristic for a highly integrated topology such as a star-like110

network (A in Figure 1), whereas large Diameter and low Leaf Fraction are representative of a more111

segregated topology or line-like network (C in Figure 1). An optimal MST topology, requiring a small112

Diameter without overloading central nodes, is quantified by Tree Hierarchy (Boersma et al., 2013;113

Tewarie et al., 2015). Such a network topology also tends to have larger Degree Correlation and114

Kappa, suggesting it is resilient against random damage (Barrat et al., 2008; Van Mieghem et al.,115
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Figure 2. Minimum spanning
tree (MST) global metrics

estimated from individual

phase lag index adjacency

matrices in the delta (0.5–4

Hz), theta (4–8 Hz), alpha

(8–13 Hz), beta (13-30 Hz),

and low gamma (30–48 Hz)

bands for three age groups (5

year-olds (Y.O.), 10 year-olds

(Y.O.), and Adults). Error bars

depict 95% confidence

intervals estimated using

bootstrapping with 1000

random iterations. *

indicates statistically

significant group differences

(p < 0.05, 50000 random
permutations), ** for p <
0.01, and *** for p < 0.001.
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2010).116

Figure 3. Minimum spanning trees (MSTs) for adults (N
= 24) and children (N = 24) in five frequency bands

(delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta:

13-30 Hz, and low gamma: 30–48 Hz), displayed on a

template brain with blue dots depicting nodes and

yellow lines depicting functional connections. The MSTs

depicted are estimated from averaged phase lag index

adjacency matrices from adults (right panel) and

children (left panel) for illustrative purposes only. The

alpha-mediated MST in adults has fewer leaves and a

more line-like topology (with central nodes in occipital

regions) than the MST in children. This observation

agrees with the statistical comparisons between age

groups when the MST metrics were based on the

un-averaged adjacency matrices in Figure 2.

The 5 global MST measures were signifi-117

cantly different across all 5 frequency bands118

when comparing children (as a whole group)119

to adults: Kappa, Leaf Fraction, and Tree Hier-120

archy were higher, whereas Degree Correla-121

tion and Diameter were lower, in the children122

(Figure 2). These frequency-independent ef-123

fects were all highly significant (p < 0.001)124

when contrasting 5 Y.O. with the other two125

age groups, but less so when comparing 10126

Y.O. with adults. The 10 Y.O was adult like127

for most global MST topological measures,128

apart from larger Leaf Fraction in the delta129

(p = 0.036) and beta (p = 0.041) bands, larger130

Kappa (p = 0.017) and Leaf Fraction (p = 0.036)131

in the theta band, and smaller Diameter (p132

= 0.023) but larger Leaf Fraction (p = 0.038)133

and Tree Hierarchy (p = 0.007) in the alpha134

band. Overall, the MST topology becomes135

more line-like and segregated across all fre-136

quency bands with increasing age (Figure 3).137

Regional de-centralisation correlates138

with increasing topological segrega-139

tion140

Having established that the network topology141

is more segregated in adults than in children,142

we next investigated the centrality of brain re-143

gions. We calculated 3 nodal MST measures144

for each of the 80 regions in every participant:145

Degree, Betweenness Centrality, and Eccen-146

tricity. Larger Degree and Betweenness Cen-147

trality, but smaller Eccentricity characterise148

regions (or so-called “hubs”) that play a cen-149

tral role in the network. We found that, even150

though there were no significant group dif-151

ferences for the Degree and Betweenness152

Centrality, the Eccentricity showed significant153

increases from children (as a whole group) to154

adults, and from 5 Y.O. to adults in particular.155

The group differences for the Eccentricity, il-156

lustrated in Figure 4, show pervasive changes157

in Eccentricity over the cortex (the full results158

are shown in Tables 1-5 in Appendix 1).159

When contrasting adults and 5 Y.O.:160

• all 80 ROIs showed larger theta band Eccentricity in adults;161

• in alpha, beta, and delta mediated MSTs, most of the nodes showing larger Eccentricity were162

in fronto-parietal areas, followed by the nodes normally assigned to the default mode and163

parieto-temporal areas, and in hippocampal and occipital areas;164
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• about half of the nodes in the default mode, parieto-temporal, and the occipital areas showed165

larger Eccentricity in gamma mediated MSTs.166

When comparing adults and 10 Y.O.:167

• most of the nodes showing larger Eccentricity were in the default mode, occipital, parieto-168

temporal, and fronto-parietal areas in alpha band mediated MSTs;169

• nodes from the default mode, parieto-temporal and occipital areas showed larger Eccentricity170

in the theta mediated MSTs;171

• nodes from the fronto-parietal, parieto-temporal, and hippocampal areas, as well as the172

nodes from the default mode, showed larger Eccentricity in the beta mediated MSTs;173

• only nodes from occipital area and the default mode area showed larger Eccentricity in the174

gamma mediated MSTs;175

• no Eccentricity differences were found in the delta mediated MSTs.176

When contrasting adults to children (as a whole group), and 5 Y.O. to the other two age groups,177

the group differences in Eccentricity exhibited a similar pattern, namely that a larger Eccentricity178

was found mostly in nodes from the fronto-parietal area, followed by those from default mode,179

parieto-temporal, occipital and hippocampal areas in delta-to-gamma mediated MSTs.180

Discussion181

Capitalising on several novel approaches, we demonstrate in this cross-sectional MEG study that182

the topology of functional brain networks becomes segregated during childhood development.183

Increasing topological segregation is associated with increasing regional Eccentricity across the184

cortex, indicating that most brain regions become functionally specialised and less central in185

the network. Specifically, the reorganisation of network topology has the same profile across all186

frequency bands and is not routed via a few hub regions. Importantly, all topological network187

differences are highly significant between the preschool children/5 Y.O. and older age groups188

(i.e., older children/10 Y.O. and adults), suggesting that the preschool years present a unique189

and important period of network maturation. These converging results on topological network190

changes inform a heuristic MST model from which normal development during childhood can be191

characterised.192

The delineation of large-scale functional brain networks in adults has confirmed a number193

of hypotheses regarding the degradation of network function in aging and disease (Stam, 2014).194

However, the small number of developmental studies that have examined electrophysiological195

networks have produced heterogeneous results. Furthermore, these results do not align well with196

MRI-based haemodynamic imaging data. Critically, we resolved these discrepancies by utilising197

several technical and methodological advances: (1) age-appropriate MEG systems that are insensi-198

tive to age-related physiological and anatomical changes in biological tissues (e.g., bone thickness199

and density of the skull; Smith et al. 2012); (2) source-level functional connectivity estimation to200

facilitate interpretation of our results in an anatomical context, and to effectively mitigate spurious201

connectivity/network results inherent in sensor-level analyses (Antiqueira et al., 2010; Lai et al.,202

2017); (3) leakage insensitive connectivity estimation using PLI, which effectively ignores spurious203

connectivity due to field spread (Dominguez et al., 2007) and volume conduction/signal leakage204

(Lai et al., 2017; Schoffelen and Gross, 2009; Stam et al., 2007); (4) lastly, MST for unbiased network205

comparisons between different age groups (Tewarie et al., 2015; Van Mieghem et al., 2010).206

Leveraging data across multiple frequency bands in anatomical space, we demonstrate that207

the topology of electrophysiological networks becomes increasingly segregated during childhood,208

in line with MRI-based findings (Baum et al., 2017; Fair et al., 2009; Gu et al., 2015; Huang et al.,209

2015). The smaller Diameter and larger Leaf Fraction in children compared to adults indicates210

that the topology of the functional brain networks becomes segregated via a transition from a211

star-like (centralised) configuration toward a more line-like (de-centralised) configuration during212
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Figure 4. Significant differences in the minimum spanning tree (MST) Eccentricity displayed as a color-coded map on the parcellated template
brain, viewed from, in clockwise order, the left, top, right, right midline, and left midline. From left to right, pairwise differences (t-value, p < 0.05,

FDR-corrected for 3 nodal MST measures x 80 ROIs) between adults and children, 10 Y.O. and 5 Y.O., adults and 5 Y.O., as well as adults and 10 Y.O.,

are shown for all five frequency bands (delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13-30 Hz, and low gamma: 30–48 Hz).
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development. Such network topological change has been found in infants right after birth (Toth213

et al., 2017) and continues up to 18 years of age (Boersma et al., 2011). In addition, the observed214

larger Kappa in children compared to adults suggests a movement away from a scale-free network.215

This finding seems to be at odds with findings from most adult studies, which indicate that the216

mature brain network is approximately “scale-free” (Sporns, 2013). However, Kappa is not strictly217

tied to “scale-freeness”, but rather is a measure for the homogeneity of the degree distribution in218

the MST (especially in the case of small networks; Jinhui et al. 2009). Moreover, scale-freeness is a219

relative measure, and depends on the reference model that the experimental model is compared220

to (Stam and van Straaten, 2012). Thus, the adult brain may still be scale-free, although less so221

than brain networks in children. In accordance with the decreased scale-freeness of adult networks,222

the increase in Eccentricity found in a distributed set of brain regions across all frequency bands223

suggests that during development most brain regions, including hubs become less central, in order224

to prevent hub overloading, as well as to reduce vulnerability to targeted attacks (Stam et al., 2009).225

Together, decreasing nodal centrality possibly reflects a protective mechanism during normative226

brain development, since disturbances and insults to hub regions can produce lifelong changes227

in neurological and mental functioning (Crossley et al., 2014; DeSalvo et al., 2014; Stam et al.,228

2009; Tewarie et al., 2014; Yu et al., 2017). Lastly, the smaller Tree Hierarchy found in adults is229

less straightforward to understand here, as a decrease in network hierarchy is often observed in230

clinical groups (Stam and van Straaten, 2012). Tree Hierarchy is a composite MST measure that231

takes into account several aspects of the MST, namely the maximum Betweenness Centrality and232

the number of leafs (Stam, 2014). Given that Betweenness Centrality and Degree did not differ233

between children and adults, the observed decrease in Tree Hierarchy, in our data, is likely to be234

driven by a decrease in Leaf Fraction. A more straightforward quantification of network hierarchy,235

other than Tree Hierarhcy, in complex network neuroscience is warranted though. Nevertheless,236

the present data point to a balance between network integration and segregation (i.e., a network237

topology that becomes increasingly segregated) with locally specialised regions, during childhood238

development.239

Most network differences in the current study are frequency-independent, suggesting that240

similar network constraints manifest themselves across different physiological architectures (Barry241

et al., 2004; Bathelt et al., 2013; Murias et al., 2007). All global MST changes in our study share242

the same profile across the five frequency bands between age groups. Although the specific243

distributed regions that showed centrality differences varied across frequency bands, there were244

also some frequency invariant differences: the largest number of regions that exhibited between245

group Eccentricity differences was found in theta and alpha mediated MSTs; regions in the fronto-246

parietal and default mode areas displayed the largest differences across all frequency bands. This247

seems to contradict some frequency-specific network findings reported in lower frequency bands248

in previous developmental EEG studies (Boersma et al., 2011; Miskovic et al., 2015; Srinivasan,249

1999). These inconsistencies may be ascribed to differences between cohorts (e.g., age-profiles) and250

methodological differences (e.g., the use of weighted versus unweighted graphs, use of different251

thresholds, and/or the normalisation of networks/graphs via random surrogates; van Wijk et al.252

2010). Nevertheless, MST analysis used in our study effectively addressesmethodological limitations253

such as biased estimates of network topology and biased network comparisons (Tewarie et al.,254

2015).255

Furthermore, there is now a growing understanding that conventional graph theoretical metrics256

(such as the clustering coefficient and shortest path length) do not fully account for fundamental257

properties of brain networks, and the small-world model is often used inappropriately in the field258

of neuroscience (Papo et al., 2016). Therefore, we propose here a heuristic MST model space259

to better capture the trajectory of changes in functional brain networks underlying normative260

brain development (Figure 5). Within this MST model space, current findings suggest a clear261

developmental trajectory of brain networks along the right axis, suggesting a balance between262

integration and segregation in topology. An adequate delineation of different trajectories of263
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topological changes in abnormal development, which may be a more useful biomarker than the264

absolute values (Wolff and Piven, 2014), can also be provided by this network space. For instance,265

MST networks were found to be more star-like in ADHD children compared to age-matched typical266

children (Janssen et al., 2017) - a pattern that fits with a shift towards the lower-right corner of the267

network space. Such a trend indicates a delay in brain maturation for ADHD children. In contrast,268

MST networks become more line-like in children with dyslexia compared to typically developing269

children (Fraga Gonzalez et al., 2016) - a transition to the lower-left corner of the network space.270

This pattern indicates an alternative developmental trajectory along the horizontal axis for brain271

networks in dyslexia, veering from the typical developmental trajectory along the right axis. Our272

model space suggests that the normal adult brain that emerges during development is a special273

composite that combines optimal network integration and segregation, degree diversity, and274

hierarchy. Moreover, distinct pathological trajectories in adults, if projecting the normal adult brain275

onto the horizontal axis, could also be represented in this model space: a more de-centralised276

line-like MST was found in patients with early relapsing remitting multiple sclerosis (Tewarie et al.,277

2014) and Alzheimer’s disease (Yu et al., 2016), suggesting that networks in these diseases move278

towards the lower-left corner (more segregated); a more centralised star-like MST was observed in279

fronto-temporal dementia (Yu et al., 2016), indicating an opposite trend towards the lower-right280

corner (more integrated).281

Figure 5. A heuristic minimum spanning tree (MST) model for the emergence
of complex brain networks. This MST model space is based on the heuristic

model of complex brain networks proposed by Stam and Van Straaten 2012.

The model space consists of two extreme MSTs (representing network

integration/segregation), an optimal MST for the normal adult brain, and three

inter-connecting axes. Functional brain networks are proposed to develop

from a star-like MST toward the optimal MST along the up-right axis, i.e., a

balance between network integration and segregation. The solid line

represents a developmental trajectory supported by this study, dashed lines

represent trajectories that require future rigorous empirical support.

There are a few caveats282

worth mentioning in re-283

lation to the future ap-284

plication of this work.285

From a theoretical point286

of view, it is conceded287

that there are currently288

no simple mathematical289

models that fully charac-290

terise healthy brain net-291

works, such as its hierar-292

chical modularity, in or-293

der to fill the gap be-294

tween the existing small-295

world and scale-free net-296

work models. Tree Hi-297

erarchy is a composite298

measure of network hi-299

erarchy, and thus is in-300

herently correlated with301

other measures such as302

leaf number and maxi-303

mum betweenness cen-304

trality (see methods for305

details). Therefore, dis-306

covery of new mathe-307

matical models will likely308

support a deeper under-309

standing of network con-310

straints on the develop-311

ing brain (Stam and van Straaten, 2012). From a methodological point of view, although in the312

present study we took care of signal leakage in source space using the leakage-invariant PLImetric,313

and loops were discarded in the MST construction, the data may still have suffered to some extent314
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from so-called secondary leakage (Palva and Palva, 2012; Wang et al., 2018). Therefore, future315

studies would also benefit from advanced methods such as implementing Lowdin Orthogonali-316

sation (Lowdin, 1950) in MEG connectivity/network analyses to reduce those “ghost” connections317

(Colclough et al., 2015). Furthermore, for the warping procedure in children, we initially tested with318

age-specific paediatric templates as it was suspected that, in comparison to the adult template, the319

paediatric ones would produce a better approximation to the child’s brain anatomy due to better320

alignment in terms of skull thickness and brain morphology. However, adult and child templates321

produced very similar results in a previous study (Cheyne et al., 2014). Moreover, the AAL atlas was322

not available for these paediatric templates, hence using the anatomical labelling from the AAL323

(adult) atlas (Tzourio-Mazoyer et al., 2002) in paediatric surrogate structural MRI would still only324

provide an approximate labelling. Therefore, the surrogate procedure (using the adult template),325

as well as the subsequent analyses, were kept the same for all participants. Nevertheless, the326

use of age-specific template brain images and atlases together with surface-based registration327

in further studies would help to minimise registration errors due to the heterogeneity of brain328

anatomy in young children (Fonov et al., 2011). In addition, canonically-defined frequency bands329

may overlook some physiological mechanisms underlying the development of oscillatory neural330

networks. Estimating network properties from age-appropriate frequency bands is critical in future331

work (Boersma et al., 2013), for example by parameterization of neuronal power spectral densities332

on the basis of putative oscillatory components (Haller et al., 2018). Lastly, the developmental333

trajectory found in this cross-sectional study should be replicated in a large longitudinal sample.334

In conclusion, a combination of an atlas-based beamformer in age-appropriate MEG data,335

leakage-insensitive PLI connectivity estimation, and unbiased MST network measures revealed that336

functional brain networks become more segregated during childhood. Increases in MST Diameter337

and decreases in Leaf Fraction indicate that functional networks develop into a more line-like (de-338

centralised) topology; increases in Degree Correlation and Eccentricity suggest that brain regions339

stay less central and become more locally specialised; decreases in Kappa and Tree Hierarchy340

emphasise that the network segregation during development balances the benefits of integration341

between distant brain regions against the risks of overload on central regions. Importantly, these342

topological network changes are most evident in the preschool years of childhood (i.e., the younger343

age group between 4-6 years in our data) and exhibit the same pattern for all ferquency bands344

(i.e., delta to low gamma). Our data resolves a long-standing debate in the field with respect345

to the normative brain development across spatial and temporal scales of investigation using346

MRI-based and electrophysiological measures. Finally, we propose a heuristic MST model for the347

emergence of complex brain networks, in which different patterns of network abnormality could be348

discerned depending upon their trajectories through this “network space”. Therefore, our study also349

represents the first attempt in providing a unifying network model for the development of functional350

brain networks in youth. We anticipate new data from both normative and abnormal developmental351

studies to be incorporated into this network space to enable us not only to understand new352

mechanisms for early brain development and resolve ambiguities in the field, but most importantly353

to translate brain network studies into solutions for clinical diagnosis and treatments.354

Methods and Materials355

Participants356

Included participants were control participants who took part in a larger project on stuttering. The357

dataset consisted of MEG recordings collected from 28 children and 24 adults during 3-5 minutes358

of eyes-open resting-state. Due to excessive head movement, incidental system noise or signs of359

drowsiness, data from 4 children were excluded. The present analyses were therefore completed360

on a total of 48 participants: 24 children aged from 4 to 12 years, and 24 adults (� = 40.6, � = 17.4,361

16 males). Children were further divided into two groups: a younger group with mean age centred362

at 5 years (5 Y.O., N = 10, � = 5.4, � = 1.1, 5 males) and an older group at 10 years (10 Y.O., N = 14, �363
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= 9.8, � = 1.5, 12 males).364

The experimental procedures were approved by the Human Participants Ethics Committee at365

Macquarie University. Written consent was obtained from the adult participants and from the366

parents/guardians of the children prior to the experiment. All participants were remunerated for367

their participation.368

Experimental Procedures369

Upon arriving at the laboratory, participants were familiarised with the magnetically shielded room370

where they would be tested in a supine position. Prior to MEG measurements, five head position371

indicators (HPIs) were attached to a tightly fitting elastic cap. The 3D locations of the HPIs, fiducial372

landmarks (nasion, and left and right pre-auricular points) and the shape of each participant’s head373

were measured with a pen digitiser (Polhemus Fastrak, Colchester, VT, USA).374

Children in the 5 Y.O. group were tested using the child-customized 125-channel whole-head375

gradiometer MEG system (Model PQ1064R-N2m, KIT, Kanazawa, Japan), and all other participants376

were tested using the 160-channel whole-head gradiometer MEG system (Model PQ1160RN2,377

KIT, Kanazawa, Japan). The gradiometers of both systems have a 50 mm baseline and 15.5 mm378

diameter coils, and are positioned in a glass fibre reinforced plastic cryostat for measurement of379

the normal component of the magnetic field from the human brain (Kado et al., 1999). In both380

systems, neighbouring channels are 38 mm apart and 20 mm from the outer dewar surface. The381

125-channel dewar was designed to fit a maximum head circumference of 53.4 cm, accommodating382

more than 90% of heads of 5-year olds (Johnson et al., 2010). Both systems were situated within383

the same magnetically shielded room, and therefore have comparable environmental noise level.384

During MEG data acquisition, participants were asked to remain relaxed, awake and with their385

eyes fixed on a white cross at the centre of a black 36 cm (width) x 24 cm (length) rectangular386

image with 4 x 4 degrees of visual angle. The visual presentation was done by video projectors387

situated outside the magnetically shielded room (child MEG projector: Sharp Notevision Model388

PG10S, Osaka, Japan; Adult MEG projector: InFocus Model IN5108, Portland, USA). Drowsiness was389

monitored online through a video-camera so that any affected data would be removed from further390

analysis. For child participants, an experienced researcher sat with them during the whole session391

to make sure they were comfortable.392

MEG Data Pre-processing393

MEG data were acquired at a sampling frequency of 1000 Hz and with an online bandpass of394

0.03-200 Hz. Head positions were measured at the beginning and end of the acquisition session; a395

movement tolerance of 5 mm and 10 mm was used in adults and children, respectively.396

The Yokogawa/KITMEG data were firstly converted to a CTF data format using BrainWave toolbox397

developed at the Hospital for Sick Children in Canada (http://cheynelab.utoronto.ca, version 3.3beta,398

see Cheyne et al., 2014 for details). Then, the CTF compatible MEG data were imported into and399

processed using DataEditor in the CTF MEG5 software (VSM MedTech Systems Inc., Coquitlam BC,400

Canada; Version 5.0.2). The continuous raw MEG data were firstly filtered from 0.5 to 100 Hz using401

bi-directional IIR Butterworth filters with DC removal and segmented into epochs of 4096 samples (=402

4.096 seconds). Epochs that contained physiological (e.g., muscle noise) or environmental artefacts403

were rejected by visual inspection. The cleaned datasets consisted on average of 23.8 (� = 3.02)404

epochs for the children and 40 epochs (� = 0.02) for the adults.405

Head Modelling and Surrogate MRIs406

For the head model construction, obtaining individual structural MRI scans of children - especially407

of those aged below 6 years - was impractical. A “surrogate” MRI approach was therefore used408

here to warp the adult Montreal Neurological Institute (MNI) template T1 structural brain image409

to each participant’s digitized head shape with an iterative closest point algorithm implemented410

in BrainWave (see Cheyne et al. 2014 for details). MEG data was co-registered with the warped411
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“surrogate”MRI using the digitised fiducial points. The outline of the scalp from this co-registered412

“surrogate” MRI was extracted using the MRIViewer in the CTF MEG5 software (VSM MedTech413

Systems Inc., Coquitlam BC, Canada; Version 5.0.2) and then used to fit a multisphere volume414

conductor model (Huang et al., 1999), which was subsequently used for the beamformer analysis415

described below.416

Beamforming417

An atlas-based beamforming approach (Hillebrand et al., 2012) was adopted to project sensor level418

MEG data to source space. The co-registered surrogate MRIs were normalised to the standard MNI419

(T1) template, using the SEG toolbox (Weiskopf et al., 2011) in SPM8. The automated anatomical420

labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) was used to label the voxels in a participant’s421

normalised co-registered surrogate MRI, following which the centroid for each AAL regions of422

interest (80 ROIs; 78 cortical and bilateral hippocampal) was inversely transformed to native space423

(Hillebrand et al., 2016).424

For each centroid, beamformer weights were computed using Synthetic Aperture Magnetom-425

etry (SAM, Robinson 1999. This beamformer selectively weights the contribution from each MEG426

sensor to a voxel’s activity based on the broad-band (0.5-48 Hz) data covariance matrix, which was427

computed from (1) all selected time-series, (2) the forward solution (lead field) for a dipolar source428

with optimum orientation at that location, and (3) a unity noise covariance that was scaled by the429

smallest singular value in a decomposition of the data covariance matrix. The broad-band MEG data430

were subsequently projected through the normalised beamformer weights Cheyne et al. (2007).431

From the resulting time-series, the first 15 artifact-free epochs, containing 4096 samples (= 4.096432

seconds), were selected for further analyses of functional connectivity and network topology. These433

selected epochs were then band-pass filtered, using an offline discrete Fast Fourier Transform filter434

without phase distortion, as implemented in the BrainWave toolbox developed at VU University435

Medical Centre (C.J. Stam; http://home.kpn.nl/stam7883/brainwave.html, version 0.9.152.4.1), into436

five canonical MEG frequency bands (delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13-30437

Hz, and low gamma: 30–48 Hz). Subsequently, the instantaneous phase for each time-series was438

determined by taking the argument of the analytic signal as computed using the Hilbert transform439

(Marple, 1999).440

Connectivity Analysis441

Pair-wise frequency band-specific functional connectivity between the 80 ROIs was estimated using442

the phase lag index (PLI) for each of the 15 artifact-free epochs (= 4.096 seconds). PLI reflects the443

consistency by which one signal is phase leading or lagging with respect to another signal (Stam444

et al., 2007), which can be expressed as:445

PLI = |

|

⟨sign[sinΔ'(tk)]⟩|| (1)

where Δ' refers to the instantaneous phase difference between two time-series, tk are discrete446

time steps calculated over all K = 1…N , sign refers to the signum function, <> and ∣∣ denote447

the mean and absolute value, respectively. Specifically, PLI quantifies phase synchronisation as a448

measure of the asymmetry in the distribution of instantaneous phase differences between two449

time-series (in our case the beamformer reconstructed time-series for two ROIs). The value of PLI450

ranges from zero (random phase differences/no functional connectivity or only zero-lag/mod �) and451

one (perfect non-zero-lag synchrony). Because the effects of volume conduction/field spread/signal452

leakage give zero-lag (mod �) phase differences, PLI is insensitive to these effects at the cost of453

being blind to true zero-lag interactions. For each frequency band and each epoch, the 80 x 80454

connectivity matrix of pairwise PLI values was computed. ROI-PLI was computed as the average PLI455

between a node and all other nodes, and whole-brain PLI was calculated as the average across all456

nodal PLI values.457
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Minimum Spanning Tree Analysis458

For each epoch and participant separately, the minimum spanning tree (MST) sub-graph was459

constructed using the PLI connectivity matrix. The MST is constructed by connecting all n nodes in460

such a way that the cost (the sum of all link weights) is minimised without forming cycles. For the461

computation of the MST, 1/PLI is used as the link weights since we are interested in the strongest462

connections in the network. MSTs were constructed in BrainWave by applying Kruskal’s algorithm463

(Kruskal, 1956), which starts with an unconnected network, adds the link with lowest weight, then464

adds the link with next lowest weight (if this does not create a loop), until all nodes are connected,465

thereby forming a tree consisting of m = n − 1 links.466

Two extreme tree topologies exist: (1) a line-like tree (A in Figure 1) where all nodes are connected467

to two other nodes with the exception of the two so-called "leaf-nodes" at either end that have468

only one link, and (2) a star-like tree (C in Figure 1) where all leaves are connected to one central469

node. There are many different tree types between these two extremes (e.g., B in Figure 1). The470

tree topology can be characterised with various measures (Boersma et al., 2013).471

Global MST network measures are informative about the functional integration and segregation472

of the entire network. Five different global MST measures were used here: (1) the “Leaf Fraction” is473

computed as the number of leaf nodes, divided by the total number of nodes; (2) the “Diameter”474

is the longest shortest path between any two nodes, where the shortest path is defined as the475

path with smallest number of links between two nodes; (3) the “Tree Hierarchy” was introduced476

(Boersma et al., 2013) to describe a balance between a small diameter without overloading central477

nodes in the tree (Figure 1). It is defined as TH = l
2mBCmax

, where l is the leaf number and BCmax478

represents the maximal betweenness centrality in the tree. In a line-like tree, l = 2 and with m479

approaching infinity, TH approaches 0; and in a star-like tree, l ≈ m, so TH approaches 0.5; for480

l between these two extremes, TH can have higher values (with an upper bound of 1); (4) the481

“Degree Correlation” is an index of whether the degree of a node is correlated with the degree482

of its neighbouring nodes (Van Mieghem et al., 2010); (5) “Kappa” (also called degree divergence;483

Barrat et al. 2008) measures the broadness of the degree distribution, and is high in graphs with a484

scale-free degree distribution, and low in graphs with a degree distribution that approaches the485

normal distribution. Kappa also relates to network robustness: high kappa reflects high resilience486

against random damage in networks.487

Nodal MST network measures capture the importance of a node within the network. Three488

different nodal measures for centrality (“hubness”) were used: (1) the “Degree” is the number of489

connections of a node to its neighbouring nodes; (2) the “Betweenness Centrality” is the fraction of490

the shortest paths that pass through a node; (3) the “Eccentricity” of a node is the longest shortest491

path between a node and any other node, and is low if the node is central in the graph (Bullmore492

and Sporns, 2012).493

Statistical Analysis494

Statistical analyses were performed using permutation testing as implemented in the Resampling495

Statistical Toolkit for Matlab 2016a. We used 50,000 permutations of group membership to empiri-496

cally approximate the distribution for the null hypothesis (i.e., no difference between groups) for497

each contrast. For each permutation, the F/t values were derived for a contrast of interest, and any498

F/t values for the original data that exceeded the significance threshold for the F/t distribution were499

deemed reliable. Furthermore, p values were corrected for multiple comparisons at the threshold500

of 0.05 using the false discovery rate (FDR, Benjamini and Hochberg 1995).501

For each frequency band and each participant separately, whole-brain PLI were averaged over502

the 15 epochs per participant. The ROI-PLI values, global and nodal MST measures were averaged503

over 15 epochs, yielding 80 ROI-PLI, 5 global MST, and 3 x 80 (= nodal MST measures x ROIs) values504

per participant for each frequency band, respectively.505

Permutation tests were initially performed, for each frequency band separately, between adults506

and children (as a whole group), for the whole-brain PLI and the global MSTmeasures (FDR corrected507
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for the number of global measures (5)); if the whole-brain PLI or the global MST measures were508

significantly different in a specific frequency band, then the ROI-PLI and the nodal MST measures509

were compared (FDR corrected for three nodal measures x 80 ROIs). Second level permutation tests510

were performed in pairwise groups (10 Y.O. versus 5 Y.O., adults versus 5 Y.O., adults versus 10 Y.O.)511

for the whole-brain PLI or the global MST measures if adults and children (as a whole group) showed512

significant differences for these measures in any specific frequency band, and for the ROI-PLI or the513

nodal MST measures if these measures were significantly different in any specific frequency band514

between adults and children (as a whole group).515
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Appendix 1734

Appendix 1 Table 1. Regions of interest (ROIs) that manifest significant Eccentricity differences
between groups in the delta band.

735

736737

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus ↑

Olfactory Cortex ↑

Superior frontal gyrus,

orbital part

↑ ↑

Frontal gyrus, medial

orbital part

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus ↑

Middle frontal gyrus ↑

Inferior frontal gyrus,

opercular part

↑

Inferior frontal gyrus,

triangular part

↑ ↑

Superior frontal gyrus,

medial

↑

Supplementary motor area ↑

Paracentral lobule

Precentral gyrus ↑ ↑

Rolandic operculum ↑

Postcentral gyrus

Superior parietal gyrus ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑

Supramarginal gyrus

Angular gyrus ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑

Middle occipital gyrus ↑

Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

Cuneus ↑

Lingual gyrus

Fusiform gyrus ↑ ↑
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Heschl gyrus ↑ ↑

Superior temporal gyrus

Middle temporal gyrus

Inferior temporal gyrus

Temporal pole: superior

temporal gyrus

↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus

Anterior cingulate and

paracingulate gyri

Median cingulate and

paracingulate gyri

↑ ↑

Posterior cingulate gyrus ↑ ↑

Insula ↑

Hippocampus

Right Hemisphere

Gryus Rectus ↑ ↑

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

Frontal gyrus, medial

orbital part

↑

Middle frontal gyrus, orbital

part

↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus ↑ ↑

Middle frontal gyrus ↑ ↑ ↑

Inferior frontal gyrus,

opercular part

Inferior frontal gyrus,

triangular part

↑

Superior frontal gyrus,

medial

↑

Supplementary motor area ↑ ↑

Paracentral lobule

Precentral gyrus ↑

Rolandic operculum ↑

Postcentral gyrus

Superior parietal gyrus ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑

Supramarginal gyrus

Angular gyrus ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑

Middle occipital gyrus
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Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

↑

Cuneus

Lingual gyrus ↑

Fusiform gyrus ↑

Heschl gyrus ↑ ↑

Superior temporal gyrus

Middle temporal gyrus

Inferior temporal gyrus ↑ ↑

Temporal pole: superior

temporal gyrus

↑

Temporal pole: middle

temporal gyrus

Parahippocampal gyrus ↑ ↑

Anterior cingulate and

paracingulate gyri

↑

Median cingulate and

paracingulate gyri

↑ ↑

Posterior cingulate gyrus ↑ ↑

Insula ↑

Hippocampus
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738

Appendix 1 Table 2. Regions of interest (ROIs) that manifest significant Eccentricity differences
between groups in the theta band.

739

740741

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus ↑ ↑ ↑

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

↑ ↑ ↑

Frontal gyrus, medial

orbital part

↑ ↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑ ↑

Superior frontal gyrus ↑ ↑ ↑

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑ ↑

Superior frontal gyrus,

medial

↑ ↑

Supplementary motor area ↑ ↑ ↑

Paracentral lobule ↑ ↑ ↑

Precentral gyrus ↑ ↑ ↑

Rolandic operculum ↑ ↑ ↑

Postcentral gyrus ↑ ↑ ↑

Superior parietal gyrus ↑ ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

Supramarginal gyrus ↑ ↑ ↑

Angular gyrus ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑ ↑

Middle occipital gyrus ↑ ↑ ↑ ↑

Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

↑ ↑ ↑

Cuneus ↑ ↑

Lingual gyrus ↑ ↑

Fusiform gyrus ↑ ↑ ↑ ↑
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Heschl gyrus ↑ ↑ ↑

Superior temporal gyrus ↑ ↑

Middle temporal gyrus ↑ ↑ ↑

Inferior temporal gyrus ↑ ↑

Temporal pole: superior

temporal gyrus

↑ ↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑

Parahippocampal gyrus ↑ ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑ ↑

Median cingulate and

paracingulate gyri

↑

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑

Hippocampus ↑ ↑ ↑

Right Hemisphere

Gryus Rectus ↑ ↑

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

↑ ↑ ↑

Frontal gyrus, medial

orbital part

↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑ ↑

Superior frontal gyrus ↑

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑ ↑

Superior frontal gyrus,

medial

↑ ↑ ↑ ↑

Supplementary motor area ↑ ↑ ↑ ↑

Paracentral lobule ↑ ↑ ↑ ↑

Precentral gyrus ↑ ↑ ↑

Rolandic operculum ↑ ↑

Postcentral gyrus ↑ ↑ ↑

Superior parietal gyrus ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑ ↑ ↑

Supramarginal gyrus ↑ ↑ ↑

Angular gyrus ↑ ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑

Middle occipital gyrus ↑ ↑
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Inferior occipital gyrus ↑ ↑ ↑

Calcarine fissure and

surrounding cortex

↑ ↑

Cuneus ↑ ↑

Lingual gyrus ↑ ↑ ↑

Fusiform gyrus ↑ ↑

Heschl gyrus ↑ ↑ ↑

Superior temporal gyrus ↑ ↑

Middle temporal gyrus ↑ ↑

Inferior temporal gyrus ↑ ↑ ↑

Temporal pole: superior

temporal gyrus

↑ ↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑ ↑

Median cingulate and

paracingulate gyri

↑ ↑ ↑

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑ ↑

Hippocampus ↑ ↑ ↑
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Appendix 1 Table 3. Regions of interest (ROIs) that manifest significant Eccentricity differences
between groups in the alpha band.

743

744745

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus ↑

Olfactory Cortex ↑

Superior frontal gyrus,

orbital part

Frontal gyrus, medial

orbital part

↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑ ↑

Superior frontal gyrus ↑

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑ ↑

Superior frontal gyrus,

medial

↑ ↑

Supplementary motor area ↑ ↑

Paracentral lobule ↑ ↑ ↑

Precentral gyrus ↑ ↑

Rolandic operculum ↑ ↑ ↑

Postcentral gyrus ↑ ↑

Superior parietal gyrus ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑ ↑

Supramarginal gyrus ↑ ↑

Angular gyrus ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑ ↑

Middle occipital gyrus ↑ ↑ ↑

Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

↑ ↑ ↑

Cuneus ↑ ↑

Lingual gyrus ↑ ↑ ↑

Fusiform gyrus ↑ ↑ ↑
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Heschl gyrus ↑ ↑

Superior temporal gyrus ↑ ↑

Middle temporal gyrus ↑ ↑ ↑

Inferior temporal gyrus ↑ ↑ ↑

Temporal pole: superior

temporal gyrus

↑ ↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑

Parahippocampal gyrus ↑ ↑

Anterior cingulate and

paracingulate gyri

↑

Median cingulate and

paracingulate gyri

↑ ↑ ↑

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑

Hippocampus

Right Hemisphere

Gryus Rectus ↑ ↑

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

↑ ↑ ↑

Frontal gyrus, medial

orbital part

↑

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus ↑ ↑

Middle frontal gyrus ↑ ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑ ↑

Superior frontal gyrus,

medial

↑ ↑ ↑

Supplementary motor area ↑ ↑ ↑

Paracentral lobule ↑ ↑ ↑

Precentral gyrus ↑ ↑

Rolandic operculum

Postcentral gyrus ↑ ↑

Superior parietal gyrus ↑ ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑ ↑

Supramarginal gyrus

Angular gyrus ↑

Precuneus ↑ ↑ ↑

Superior occipital gyrus ↑

Middle occipital gyrus ↑
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Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

↑ ↑

Cuneus ↑ ↑

Lingual gyrus ↑ ↑

Fusiform gyrus ↑

Heschl gyrus ↑ ↑

Superior temporal gyrus

Middle temporal gyrus

Inferior temporal gyrus ↑

Temporal pole: superior

temporal gyrus

↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus ↑ ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑

Median cingulate and

paracingulate gyri

↑ ↑ ↑

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑

Hippocampus ↑ ↑
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Appendix 1 Table 4. Regions of interest (ROIs) that manifest significant Eccentricity differences
between groups in the beta band.

747

748749

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

↑ ↑

Frontal gyrus, medial

orbital part

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus ↑ ↑

Middle frontal gyrus

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑

Superior frontal gyrus,

medial

↑ ↑ ↑ ↑

Supplementary motor area ↑ ↑ ↑

Paracentral lobule

Precentral gyrus ↑ ↑

Rolandic operculum

Postcentral gyrus ↑

Superior parietal gyrus

Inferior parietal, but

supramarginal and angular

gyri

↑ ↑

Supramarginal gyrus ↑

Angular gyrus

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑

Middle occipital gyrus

Inferior occipital gyrus ↑

Calcarine fissure and

surrounding cortex

Cuneus ↑

Lingual gyrus

Fusiform gyrus ↑ ↑
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Heschl gyrus

Superior temporal gyrus

Middle temporal gyrus ↑ ↑

Inferior temporal gyrus ↑ ↑

Temporal pole: superior

temporal gyrus

↑ ↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus ↑ ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑

Median cingulate and

paracingulate gyri

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑

Hippocampus ↑

Right Hemisphere

Gryus Rectus ↑ ↑ ↑

Olfactory Cortex

Superior frontal gyrus,

orbital part

↑ ↑

Frontal gyrus, medial

orbital part

↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑ ↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑

Superior frontal gyrus,

medial

↑ ↑ ↑

Supplementary motor area ↑

Paracentral lobule

Precentral gyrus ↑ ↑

Rolandic operculum ↑ ↑ ↑

Postcentral gyrus ↑ ↑

Superior parietal gyrus

Inferior parietal, but

supramarginal and angular

gyri

Supramarginal gyrus ↑

Angular gyrus ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus

Middle occipital gyrus ↑ ↑

29 of 33

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/378562doi: bioRxiv preprint 

https://doi.org/10.1101/378562


Manuscript submitted to bioRxiv

Inferior occipital gyrus

Calcarine fissure and

surrounding cortex

↑

Cuneus

Lingual gyrus

Fusiform gyrus ↑ ↑

Heschl gyrus ↑ ↑ ↑

Superior temporal gyrus ↑

Middle temporal gyrus ↑ ↑

Inferior temporal gyrus ↑

Temporal pole: superior

temporal gyrus

↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑

Parahippocampal gyrus ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑

Median cingulate and

paracingulate gyri

Posterior cingulate gyrus ↑ ↑

Insula ↑ ↑ ↑

Hippocampus ↑ ↑
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Appendix 1 Table 5. Regions of interest (ROIs) that manifest significant Eccentricity differences
between groups in the low gamma band.

751

752753

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus

Olfactory Cortex

Superior frontal gyrus,

orbital part

↑

Frontal gyrus, medial

orbital part

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑ ↑

Superior frontal gyrus

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

Superior frontal gyrus,

medial

Supplementary motor area

Paracentral lobule ↑

Precentral gyrus ↑ ↑

Rolandic operculum

Postcentral gyrus

Superior parietal gyrus

Inferior parietal, but

supramarginal and angular

gyri

Supramarginal gyrus ↑ ↑

Angular gyrus ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑

Middle occipital gyrus ↑ ↑ ↑

Inferior occipital gyrus ↑

Calcarine fissure and

surrounding cortex

↑

Cuneus ↑ ↑ ↑

Lingual gyrus

Fusiform gyrus
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Heschl gyrus ↑

Superior temporal gyrus ↑ ↑ ↑

Middle temporal gyrus

Inferior temporal gyrus

Temporal pole: superior

temporal gyrus

↑ ↑

Temporal pole: middle

temporal gyrus

Parahippocampal gyrus

Anterior cingulate and

paracingulate gyri

Median cingulate and

paracingulate gyri

↑ ↑

Posterior cingulate gyrus ↑ ↑

Insula ↑

Hippocampus

Right Hemisphere

Gryus Rectus ↑ ↑

Olfactory Cortex

Superior frontal gyrus,

orbital part

↑

Frontal gyrus, medial

orbital part

↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus

Middle frontal gyrus

Inferior frontal gyrus,

opercular part

Inferior frontal gyrus,

triangular part

Superior frontal gyrus,

medial

↑ ↑ ↑

Supplementary motor area

Paracentral lobule ↑ ↑

Precentral gyrus ↑ ↑

Rolandic operculum ↑

Postcentral gyrus

Superior parietal gyrus

Inferior parietal, but

supramarginal and angular

gyri

Supramarginal gyrus ↑ ↑

Angular gyrus ↑

Precuneus

Superior occipital gyrus

Middle occipital gyrus ↑ ↑
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Inferior occipital gyrus

Calcarine fissure and

surrounding cortex

↑ ↑

Cuneus ↑ ↑

Lingual gyrus

Fusiform gyrus ↑

Heschl gyrus

Superior temporal gyrus

Middle temporal gyrus ↑

Inferior temporal gyrus ↑

Temporal pole: superior

temporal gyrus

↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus

Anterior cingulate and

paracingulate gyri

↑

Median cingulate and

paracingulate gyri

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑

Hippocampus ↑ ↑
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