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Abstract: 
Non-genetic factors can cause individual cells to fluctuate substantially in gene expression 
levels over time.  Yet it remains unclear whether these fluctuations can persist for much longer 
than the time for a single cell division. Current methods for measuring gene expression in single 
cells mostly rely on single time point measurements, making the time of a fluctuation of gene 
expression or cellular memory difficult to measure. Here, we report a method combining Luria 
and Delbrück’s fluctuation analysis with population-based RNA sequencing (MemorySeq) for 
identifying genes transcriptome-wide whose fluctuations persist for several cell divisions. 
MemorySeq revealed multiple gene modules that express together in rare cells within otherwise 
homogeneous clonal populations. Further, we found that these rare cell subpopulations are 
associated with biologically distinct behaviors in multiple different cancer cell lines, for example, 
the ability to proliferate in the face of anti-cancer therapeutics. The identification of non-genetic, 
multigenerational fluctuations has the potential to reveal new forms of biological memory at the 
level of single cells and suggests that non-genetic heritability of cellular state may be a 
quantitative property. 
 

 
Main text: 
Cellular memory in biology, meaning the persistence of a cellular or organismal state over time, 
occurs over a wide range of timescales and can be induced by a variety of mechanisms. 
Genetic differences are one form of memory, encoding variation between organisms on 
multi-generational timescales. Within an organism, epigenetic mechanisms encode the 
differences between cell types in different tissues, with cells retaining memory of their state over 
a large number of cell divisions (1 ). In contrast, recent measurements suggest that expression 
of many genes in single cells may have very little memory, displaying highly transient 
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fluctuations in transcription. These rapid fluctuations have been referred to as gene expression 
“noise” and has generally been difficult to associate with physiological distinctions between 
single cells (2 , 3 ). 
 
Less well studied have been intermediate memory timescales; i.e., cellular states that are 
ultimately transient, and thus are not indefinitely heritable, but may persist for several divisions, 
and thus are not “noise” either. Such timescales would be long enough to allow for coordinated 
fluctuations in the expression of many genes at once in individual cells, potentially resulting in 
biological activity within that cell that is distinct from the rest of the population. Yet it remains 
unclear how prevalent such longer duration fluctuations might be, because finding the molecular 
markers of these longer fluctuations is difficult: current “snapshot” methods are unable to 
distinguish between fast and slow fluctuations because they lack any temporal component, 
while time lapse microscopy is laborious and difficult to scale to all genes. Thus, we sought to 
develop a method that would enable us to find genes whose expression fluctuations would be 
maintained over several cell divisions. Ultimately, our goal was to use these markers of slow 
fluctuations to identify functionally distinct subpopulations within otherwise indistinguishable 
cells. 
 
The methodology we developed to distinguish heritable from non-heritable fluctuations in 
expression levels in single cells (MemorySeq) is based on the fluctuation analysis from Luria 
and Delbrück’s beautiful 1943 experiments on resistance to phage in bacteria, which they used 
to discriminate heritable from non-heritable mechanisms for resistance (4 ) (also used in cancer 
(5 , 6 )). In our context of cellular memory, the experiment consisted of growing a number of 
“MemorySeq clones” (~48) of isogenic melanoma cells (WM989-A6) in individual wells, 
eventually growing them to around 100,000 cells per clone (Fig. 1B). If a fluctuating gene 
transitioned in and out of the “high” expression state relative rapidly compared to the cell 
division rate, then a fairly constant proportion of those 100,000 cells would be in the high 
expression state for that gene (with some dispersion due to Poisson sampling). This constancy 
is because the cells do not remember the state through cell division. At the opposite extreme, if 
the high expression state was long-lived compared to the cell division time, then if a cell 
occasionally moves into the high expression state early in the family tree, all of its progeny will 
remain in the high expression state, leading to a very high proportion of the final 100,000 cells 
being in the high expression state. Thus, across multiple MemorySeq clones, we would find a 
high variance in the proportion of cells in the high expression state in the final population, where 
most clones would have low expression of that gene and a few clones would have high 
expression, depending on exactly how far up in the family trees the cells transitioned into the 
high expression state. To measure variability in the proportion of cells in the high expression 
state for any particular gene, we used bulk RNA sequencing to measure the transcription of all 
genes in each expanded clone, and we then looked for variability in the expression of all genes 
across these clones (Fig. 1B). To measure the technical variability in our experiment, we also 
grew a large population of cells that we split into 48 wells containing 100,000 cells each and 
subjected those cells to RNA sequencing and gene expression analysis; this procedure allows 
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us to assess the technical noise between clones due to both sequencing and sampling 
variability, and due to errors (Fig. 1B right). 
 
We first applied MemorySeq to the melanoma cell line WM989-A6. We chose this cell line and 
culture system because we had already verified the presence of rare cells within the population 
marked by the expression of a particular subset of genes such as EGFR, NGFR and AXL . 
These rare cells were strongly associated with resistance to the targeted melanoma drug 
vemurafenib (6 , 7 ), and the independent observation that sister cells often expressed the same 
genes suggested that these genes displayed some degree of memory (6 ). Thus, in this system, 
we have already identified several genes that are both associated with a phenotype and appear 
to exhibit some degree of heritability. These genes naturally serve as positive controls for the 
MemorySeq methodology. 
 
Upon performing MemorySeq in this cell line, we first checked the distribution of expression 
levels across MemorySeq clones for a number of previously identified (6 ) resistance-associated 
genes and non-resistance associated genes (Fig. 1C). As hoped, we found that the resistance 
marker genes displayed far greater variability across clones than the technical noise controls. 
Conversely, housekeeping genes and other genes that do not exhibit much cell-to-cell variability 
showed far less increased variance as compared to technical noise controls. Intriguingly, MYC, 
a proto-oncogene for which we have seen high levels of cell-to-cell variability (Supp. Fig. 1), 
showed little increased variance across clones compared to controls, suggesting that its 
transcriptional memory was much lower than that observed in the marker genes (as verified by 
alternative means in Fig. 2C). We observed similar behavior for CCNA2, a cell cycle gene 
whose expression would similarly be expected to be variable but not heritable (8 ); Fig. 2C. 
 
Given that RNA sequencing provides expression levels for all these, MemorySeq is able to 
measure heritability in the expression of all genes at once. Thus, we analyzed expression 
variance across clones for all genes. We found that for many genes across a range of average 
transcription levels, variance across clones was much higher than technical noise controls, 
suggesting that those genes exhibited high levels of transcriptional memory (Fig. 1D). We found 
that genes with higher expression levels typically had systematically lower variance across 
clones. By explicitly fitting this relationship, we could identify genes as high memory based upon 
their large residuals from the fit. We generated a panel of high memory genes with residuals in 
the 98th percentile or greater and a minimum expression level of 1.5 transcripts per million to 
eliminate spurious inclusion of lowly expressing genes, resulting in 227 genes identified as 
potentially having high heritability in WM989-A6. 
 
We next sought to verify by independent means that the genes we identified by MemorySeq 
indeed expressed in a heritable fashion. First, we performed experiments in fixed cells grown on 
culture dishes to measure heritability in gene expression by using spatial proximity as a proxy 
for relatedness. We seeded cells sparsely in culture dishes and then allowed them to grow for 
around 10 days, at which point we fixed the cells and subjected them to iterative single molecule 
RNA FISH to measure the expression of 18 genes in individual cells while preserving their 
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spatial context (Fig. 2A; as per (6 )). Our reasoning was that as cells divide, their spatial 
proximity would reflect their relatedness (9 ). In the case of a gene with non-heritable expression, 
one would expect to find no particular spatial correlations in which cells were deemed high 
within the population. In contrast, for genes with heritable expression, one would expect to find 
the high cells to appear in patches corresponding to related neighboring cells that share a 
common ancestor that transitioned to the high expression state. We found that genes identified 
by MemorySeq as being highly heritable (e.g. EGFR, NGFR, NDRG1, SERPINE1 ) tended to 
show patch-like expression patterns across large numbers of cells, confirming that their 
expression was indeed heritable. In contrast, genes that MemorySeq would predict to not be 
heritable exhibited a more salt-and-pepper (variable but not heritable) expression pattern, as 
expected (Fig. 2B). 
 
We wondered to what extent MemorySeq could measure differences in how heritable the high 
expression state was for different genes, so we further compared the degree of heritability from 
MemorySeq (given by the amount of skewness in the distribution of expression across 
MemorySeq clones) to the degree of heritability from spatial RNA FISH analysis (given by the 
amount of patchiness in the population). We found a strong correspondence between these two 
metrics (adjusted R2 = 0.6193), suggesting that MemorySeq can stratify genes by the gradations 
in the degree of heritability that they display (Fig. 2C; see Supp. Fig. 2 for further analysis). 
 
Motivated by our previous work in this cell line, we also looked for correspondences between 
the degree of heritability and the rarity of gene expression as measured by the Gini coefficient, a 
metric for inequality (6 , 10 , 11 ). We observed that that indeed the two metrics were correlated 
(adjusted R2 = 0.4898) (Fig. 2D), suggesting that heritable genes identified by MemorySeq are 
more likely to express only in rare cells. This may be due to the design of the MemorySeq 
experiment, in which skewness can reach potentially higher levels for rarer expressing genes 
than for less rarely expressing genes. 
 
The MemorySeq results suggest that many genes do not have indefinite memory (i.e., remain in 
the high expression state indefinitely). This implies that cells could transition both in and out of 
the high expression state, which we sought to directly confirm using time-lapse microscopy to 
trace the expression state of individual cells. We used a split-fluorescent protein approach (see 
methods) to fuse mNeonGreen to NGFR and then tracked NGFR levels by fluorescence 
microscopy over a period of 8 days (Fig. 2E; see Supp. Fig. 3 for cell line validation). We found 
cells that transitioned both from the low state to the high state and vice versa . 
 
Having validated that MemorySeq was accurately identifying genes displaying transcriptional 
memory, we then asked what these genes were and what their expression in rare cells signified. 
The underlying hypothesis was that these slow fluctuations are more likely to be associated with 
distinct cellular behaviors in those cell subpopulations than fast fluctuations. Our reasoning was 
that a distinct cellular behavior would likely require a persistently different gene expression 
pattern, likely involving deviations in the expression of several genes simultaneously, as 
opposed to a transient (and, as we hypothesized, likely inconsequential) fluctuation. In this 
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melanoma cell line, we have previously shown that rare cells have high levels of expression of 
certain genes associated with therapy resistance (including EGFR, NGFR, and AXL ), and that 
these rare cells are much more likely to survive the initial application of drug to develop into 
resistant clusters. Thus, we first wondered whether the genes that mark rare cells identified by 
MemorySeq overlapped the set of genes associated with resistance. We found that most 
MemorySeq heritable genes (162 out of 227) overlapped with resistance markers (as 
determined by Shaffer et al., Supp. Fig. 4). Moreover, by sorting EGFR-high cells out of the total 
untreated cell population and performing RNA sequencing, we were able to measure the 
transcriptional profile of the rare cells alone. We again found a strong overlap between the 
profiles of the EGFR-high cells and the MemorySeq heritable genes (Fig. 3A, p-value < 10 -45); 
furthermore, genes whose expression levels correlated with EGFR/NGFR across MemorySeq 
clones also tended to correlate with EGFR-high/NGFR-high RNA sequencing results (Supp. Fig. 
5). (Note that we did not expect a perfect overlap because it is possible that some genes could 
have expression levels that correlated with EGFR but are not strongly heritable, and there are 
strongly heritable genes whose expression may not correlate with EGFR, as we will 
demonstrate later.) Together, these results suggest that the genes identified by MemorySeq are 
expressed in cell populations that are phenotypically distinct from the bulk of the population. 
 
To verify the phenotypic differences of these cells, we sorted cells by either NGFR or EGFR 
expression and subjected them to a combination of drugs used to treat melanoma (dabrafenib 
and trametinib; BRAFV600E and MAPK signaling inhibitors, respectively). On unsorted 
populations, upon treatment with these drugs, a small percentage of cells will continue to grow 
and form colonies, mimicking the acquisition of drug resistance. In congruence with previous 
results, the EGFR/NGFR-high subpopulations resulted in far more resistant colonies after 
application of the drug combination, showing that this subpopulation is highly enriched for 
pre-resistant cells (Fig. 3B; Supp. Fig. 6). This result demonstrated that MemorySeq revealed 
the same subset of cells that we had previous determined to be highly enriched for drug 
resistant cells. 
 
Our results thus far highlight MemorySeq’s ability to prospectively reveal functionally distinct 
subpopulations within clonal populations of apparently homogeneous cells. In the case of the 
WM989-A6 melanoma cell line, we had already established the existence of such a 
subpopulation, but for most cell lines, there is little to no information about fluctuations in single 
cells that exhibit memory and thus may also be associated with distinct phenotypes. We thus 
set about testing MemorySeq in another cell line, MDA-MB-231-D4, which is a clonal derivative 
of a triple negative breast cancer cell line (does not express HER2 , estrogen or progesterone). 
Paclitaxel (Taxol) is a drug used to combat such breast cancers, but while it is able to kill most 
MDA-MB-231-D4 cells, some cells in the population are still able to survive the drug and 
continue to proliferate, thus leading to drug resistance (Fig. 4A). However, prospective markers 
to isolate the subpopulation of cells that are resistant to drug have remained elusive (12 ), and 
we hypothesized that MemorySeq might be able to reveal genes whose expression was 
associated with this single cell phenotype. 
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To test this hypothesis, we performed MemorySeq on the MDA-MB-231-D4 cell line by growing 
each of 48 subclones to around 100,000 cells, after which we performed RNA sequencing and 
quantification as described for WM989-A6. As with the melanoma cell lines, MemorySeq 
revealed a large number of genes in the MDA-MB-231-D4 cell line, with putative heritable 
expression patterns (230 genes, Fig. 4B). The properties of variability between the MemorySeq 
clones across the transcriptome was comparable to that identified by MemorySeq for the 
WM989-A6 cell line. Interestingly, however, the overlap between the gene sets was relatively 
small (Supp. Fig. 7), suggesting that different cell lines may have distinct sets of “memory 
genes” and that there is no universal “memory gene expression program” (with a potential 
exception noted below). 
 
(As with WM989, we confirmed both the rarity and heritability of the expression pattern by using 
RNA FISH on cells initially seeded sparsely and then allowed to grow in place for 10 days as we 
had also performed for the melanoma lines (Supp. Fig. 8, compare to Fig. 2C).) 
 
Given the existence of these rare, slowly fluctuating subpopulations in the MDA-MB-231-D4 
cells, we next asked whether these newly identified subpopulations were associated with 
phenotypic differences such as differential sensitivity to Taxol. Amongst the genes identified by 
MemorySeq was CA9, a surface marker known to be negatively associated with breast cancer 
chemosensitivity (13 , 14 ), but for which there was no reason to suspect that its expression at 
the single cell level would be indicative of which cells specifically survived upon drug treatment. 
We thus immunolabeled the MDA-MB-231-D4 cells using antibodies targeting CA9 and then 
used FACS to isolate a rare population of CA9 positive cells (2-4% percent, along with CA9 low 
and mixed subpopulations; validation of sorting in Supp. Fig. 9), after which we added taxol to 
both and grew the cells for 5 days. We found that, when treated with 1nM taxol, the CA9 
positive cells were more likely to be resistant than either the CA9 low or mixed subpopulations. 
These results, in a cancer cell line of a completely different type involving a drug with a 
completely different mechanism of action, demonstrate that MemorySeq is able to identify de 
novo  heritable, rare cell expression states, and that these rare cells are phenotypically distinct 
from the others in the population. 
 
Behavioral differences such as drug resistance are typically associated with the differential 
expression of many genes at once. We further hypothesized that the long timescale of these 
single cell fluctuations could allow for significant co-fluctuation; that is, if a cell expresses a high 
level of one high memory gene for a sufficiently long time period, it could also have a higher 
probability of expressing another slowly fluctuating gene simultaneously. Indeed, should such a 
phenomenon be prevalent, it would allow us to organize these high memory genes into 
characteristic modules of genes that co-fluctuate in single cells. 
 
To isolate such modules, we calculated the correlation coefficient between the expression of all 
pairs of heritable genes across the MemorySeq clones derived from WM989-A6. We reasoned 
that if a particular clone had a high abundance of a particular transcript, then the abundance of 
transcripts of co-fluctuating genes would also be high in that particular clone. We saw large 
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blocks of genes whose expression appeared to correlate strongly with each other, suggesting 
that they co-fluctuate at the single cell level  (Fig. 5B). To validate that the programs so 
identified by MemorySeq corresponded to single cell correlations, we compared the correlations 
between MemorySeq and single cell RNA FISH on a panel of genes across two separate 
clusters. We found a strong general correspondence between these two assays, suggesting 
that MemorySeq is able to identify groups of genes de novo  that co-fluctuate in rare-cell 
expression programs (Fig. 5C). We observed similar clustering in another melanoma cell line 
(WM983B-E9; see Supp. Fig. 10) and MDA-MB-231-D4, although the specific genes were 
typically different (Supp. Fig. 7). 
 
The appearance of distinct clusters of slowly co-fluctuating genes led us to use community 
detection algorithms for network data to demarcate these groups of genes for further analysis. 
We used a weighted version of k-clique community detection (15 – 17 ) to identify such groups of 
genes (Fig. 5D) (see Methods for more information). We chose k-clique community detection 
because it allows for nodes to be in multiple communities at once, echoing the ability of a 
protein to simultaneously play multiple roles within the cell. In WM989-A6 cells, one large 
community of genes overlapped very strongly with the vemurafenib pre-resistance marker gene 
set that we identified earlier (6 ). We verified this correspondence by comparing the 
transcriptomes of sorted subpopulations of EGFR-high cells to the clusters of genes identified 
by MemorySeq, showing that the expression levels of genes specifically in this cluster 
correlated well with that of genes that correlated with EGFR expression (Fig. 5E). 
 
We also found other communities within the set of heritable genes in WM989-A6 cells, 
suggesting the existence of multiple independent heritable gene expression programs. One 
prominent one included DDX58  (RIG-I), IFIT1 , and OASL , which may be related to type 1 
interferon signaling (18 ), and was notable because it also appeared to some extent in 
MDA-MB-231-D4 and WM983B-E9 (Supp. Fig. 11). This cluster appeared relatively distinct from 
the primary community associated with drug resistance and EGFR expression, and indeed, did 
not show any association with the EGFR-high transcriptome (Fig. 5E). Another community in 
WM989-A6 cells was somewhat less coherent, and included genes such as VGF. VGF also 
shows strong heritability (Fig. 2C) but its expression levels appeared not to correlate with the 
other pre-resistance genes at the single cell level (Fig. 5E), and was not associated with the 
drug resistance phenotype (6 ). 
 
The fact that multiple genes appeared to coordinate their expression across multiple 
chromosomes suggested that the mechanism for maintaining memory occurs in trans, i.e., 
through the regulatory milieu rather than just a short but intense pulse of transcription that 
propagates to daughters through partitioning upon cell division. Labeling sites of nascent 
transcription for EGFR (19 ) revealed that transcriptional activity also occurred in patches (as 
opposed to just transcript abundance), further suggesting that memory of the high expression 
state was due to sustained transcriptional activity as opposed to a single sporadic, large, 
transient burst of transcription in a precursor cell (Supp. Fig. 12). 
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In sum, we believe MemorySeq is a simple but powerful method for identifying rare, heritable 
cell expression patterns in cells. We have shown here that such rare, heritable expression 
programs may be related to non-genetic mechanisms of therapy resistance in cancer (6 , 
20 – 23 ). However, they may also be important in other contexts in which rare cells behave 
differently than the rest of the population, both in cancer (such as metastasis), but also in 
otherwise healthy tissues or in cellular reprogramming contexts like the induction of iPS cells 
(24 ). 
 
It is also interesting that MemorySeq was quantitative in the sense that it was not just able to 
report that a gene’s expression is heritable, but was also able to provide a relative sense of how 
heritable that expression is, meaning how many cell divisions does it require before cells begin 
to forget the rare-cell expression state. By revealing such intermediate timescales of fluctuation, 
the results of MemorySeq suggest that the classic use of the concept of somatic epigenetics 
(non-genetic heritability) may require reevaluation as a quantitative, rather than qualitative, 
property of some cellular states. 
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Materials and Methods: 

 
Cell lines and culture: We used 3 cell lines in our study: WM989-A6, which is a subclone of the 
melanoma line WM989 (Wistar Institute, a kind gift of Meenhard Herlyn); WM983B-E9, a 
subclone of WM983B (Wistar Institute, a kind gift of Meenhard Herlyn); and MDA-MB-231-D4, a 
subclone of MDA-MB-231 (ATCC HTB-26). We verified all cell lines by DNA fingerprinting 
(WM989-A6 and WM983B-E9 performed at the Wistar Institute by DNA STR Microsatellite and 
MDA-MB-231 by ATCC human STR profiling cell line authentication services). We cultured all 
melanoma cell lines in the recommended medium, which is TU2% for the melanoma lines 
(containing 80% MCDB, 10% Leibovitz’s L-15, 2% FBS, and 2.4mM CaCl 2) and DMEM with 
10% FBS for MDA-MB-231.  
 
To create the NGFR-mNG2 WM989-A6-G3 cell line, we used the split mNeonGreen2(mNG2) 
system described in (25 ). In brief, we first transduced WM989 A6-G3 with 10/11ths of mNG2, 
which is non-fluorescent without the remaining 1/11th of the protein. We then electroporated 
cells with Cas9 RNP containing a guide RNA specific to the C terminus of NGFR and a 
single-stranded DNA template encoding the remaining 1/11th of the protein flanked by 
sequences homologous to the targeted locus (sequences available on Dropbox in 
https://www.dropbox.com/s/3orb3hi1fex32nq/FlucSeq_supplementalSequences.xlsx?dl=0 ). We 
then isolated fluorescent cells by FACS and generated clonal cell lines by serial dilution. To 
verify in-frame integration of the mNG2(11) construct, we PCR amplified the C-terminus NGFR  
locus from cell lysates and cloned the amplicon into a recipient plasmid. Half of the resulting 
plasmids contained the in-frame mNG2(11) sequence and the remaining half contained the 
unedited NGFR sequence without substitutions, insertions or deletions. Sanger sequencing 
traces can be found at 
https://www.dropbox.com/sh/qwcbljyuurmfmzr/AAAW_MjU1_AWUDwiT6k4L4Zya?dl=0 ) We 
further confirmed that mNG2 fluorescence correlates with NGFR mRNA abundance at the 
single-cell level by RNA FISH and validated that the NGFR-mNG2 WM989-A6-G3 cell line 
recapitulates phenomenology described in Shaffer et al. 2017, showing increased resistance to 
vemurafenib in the mNG2-high cells (Supp. Fig.  3; experiments described in RNA FISH, FACS, 
and drug treatment methods below). To facilitate cell tracking in the timelapse images, we 
transduced NGFR-mNG2 tagged cell lines with lentivirus encoding an H2B-iRFP670 which 
localizes to the nucleus, thus enabling us to track cell nuclei. Following transduction, we derived 
clonal cell lines by serial dilution before imaging. All plasmid sequences are available on 
Dropbox here 
https://www.dropbox.com/sh/z6y5bl66nix48u6/AABNPWeLnT3DFGP872XfWfqMa?dl=0 . 
 

MemorySeq: Our experiment roughly followed the design of Luria and Delbrück’s original 
fluctuation analysis, but with RNA sequencing as the terminal readout instead of the number of 
resistant colonies. From the parental cell line (WM989-A6, WM983B-E9, MDA-MB-231-D4), we 
isolated a single cell, let it proliferate until reaching roughly 100-200 cells, then plated these 
cells into a 96 well plate at a dilution in which we expected roughly 0.5 cells per well. From 
these wells, we isolated ~100 clones for further expansion. Of the 100 starting clones, we used 
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48 clones from each cell line for downstream analysis. We grew the clones until they reached a 
minimum of around 100,000 cells, with some reaching as high as roughly 200,000 cells. At that 
point, we used miRNAeasy RNA extraction kit (Qiagen 217004) to isolate RNA from each clone, 
followed by library preparation using the NEBNext Poly(A) Magnetic Isolation Module (NEB and 
NEBNext Ultra RNA sequencing library prep kit for Illumina). At the time of RNA isolation for the 
clones, we also isolated 48 separate samples of 100,000 cells from the parental line and 
prepared these samples for RNA sequencing as controls. For each cell line, we sequenced a 
total of 96 samples, including 48 clones and 48 controls from a mixture of the parental cell line. 
We sequenced to a depth of at least 500,000 reads per RNA sequencing library (with a typical 
depth of around 4 million reads) on a NextSeq500 (Illumina). We aligned the reads using STAR 
and enumerated read counts per gene using HTseq (code available at 
https://bitbucket.org/arjunrajlaboratory/rajlabseqtools). 
 
For computational analysis of the Luria-Delbruck RNA sequencing data, we calculated the 
transcripts per million of every gene in each sample. We then calculated metrics of the variation 
across the different 48 clonal samples, including the coefficient of variation, skewness, and 
kurtosis. We also compared these metrics in the clonal samples to those observed in the mixed 
controls. We found that the relationship between the coefficient of variation and the transcripts 
per million for every gene could be fit by a Poisson regression model. We fit this model for each 
cell line and then defined the panel of heritable genes as those with residuals greater than the 
98th percentile. We also set a minimum level of expression for heritable genes as 1.5 transcripts 
per million for WM989 and MDA-MB-231 and 1.5 transcripts per million for WM983B. This 
approach yielded 227 heritable genes in WM989, 230 heritable genes in MDA-MB-231, and 230 
heritable genes in WM983B. We generated correlation matrices from the pairwise Pearson 
correlations for heritable genes across all clones. Full computational analysis of 
RNA-sequencing data is available on the dropbox here 
https://www.dropbox.com/sh/rihjom7dt5cct08/AAAfwADapO9NINmCAG3sw7Jua?dl=0 . Lists of 
heritable genes are in Supplementary Table 1. 
 
Fluorescence Activated Cell Sorting (FACS): We stained WM989 A6-G3 melanoma cells for 
fluorescence assisted cell sorting using antibodies for EGFR and NGFR. We note that while we 
stained for both proteins, we did not isolate enough EGFR high cells for testing trametinib 
resistance in all three replicates. First, for EGFR staining, we trypsinized 40-50 million cells, 
washed once with 0.1% BSA in 1x PBS, and incubated for 1 hour at 4℃ with 1:200 mouse 
anti-EGFR antibody, clone 225 (Millipore, MABF120) in 0.1% BSA PBS. Next, we washed with 
0.1% BSA PBS and then incubated for 30 minutes at 4℃ with 1:500 donkey anti-mouse IgG 
labeled with Alexa Fluor 488 (Jackson Laboratories, 715-545-150). We washed the samples 
again with 0.1% BSA PBS and then incubated for 10 minutes at 4ºC with 1:250 anti-NGFR 
antibody conjugated directly to PE-Cy7 (Biolegend, 400126, clone ME20.4) in 0.5% BSA PBS 
with 2mM EDTA. Finally, we washed the samples with 0.5% BSA PBS containing 2mM EDTA, 
then resuspended in 1% BSA PBS containing 100ng/mL propidium iodide or 200ng/mL 7-AAD 
and proceeded with sorting using a MoFlo Astrios (Beckman Coulter) or FACSJazz (BD 
Biosciences). To aid with gating, we incubated control samples without the anti-EGFR primary 
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antibody and with a PE/Cy7 mouse IgG1 isotype control (Biolegend, 400126). After gating for 
live cells, we collected either the top 0.02-0.2% EGFR+ cells or the top 0.5% NGFR+ cells. We 
also collected equal numbers of the bulk population by using the same gating for live cells, but 
without gating on either the EGFR or NGFR stains. 
 
For testing the response of CA9-high cells to paclitaxol, we trypsinzized MDA-MB-231 cells, 
washed with 0.1% BSA-PBS, then stained cells with anti-carbonic anhydrase 9 antibody 
conjugated to PE (Miltenyi Biotech clone REA658, 130-110-057) at a dilution of 1:11 for 30 
minutes at 4C. We gated for live cells, and then we sorted the top 2-3% percent of CA9 stained 
cells (CA9-high), the bottom 2-3% of CA9 cells (CA9-low), and a mixed population using only 
the live cell gates (CA9-mix). We performed single-molecule RNA FISH for CA9 confirming that 
sorting with CA9 antibody enriched for CA9-high expressing cells (Supp. Fig. 9).  
 
To validate that NGFR-high cells tagged by the mNG2 fluorescent protein are more resistant to 
vemurafenib, we trypsinized and pelleted the NGFR-mNG2 WM989-A6-G3 cell line, washed 
cells once with 1x PBS containing 2mM EDTA, then resuspended in 1xPBS containing 2mM 
EDTA and 100ng/mL propidium iodide or 200ng/mL 7-AAD and proceeded with sorting. Using a 
MoFlo Astrios (Beckman Coulter) or FACSJazz (BD Biosciences), we isolated the top 0.5-1% of 
mNG2 fluorescent cells and equal numbers of the bulk population gated only for live cells. We 
then treated these samples with vemurafenib as described in the drug treatment methods 
below. All flow cytometry data is available on the dropbox here 
https://www.dropbox.com/sh/08unb7zuazi729g/AABfkRnsetuOdoCoj3dKWD6Oa?dl=0. 
 
Drug treatment experiments: We made stock solutions of 4mM trametinib (GSK1120212, 
Seleckchem, S2673), 4mM vemurafenib (PLX4032, Selleckchem, S1267), and 4mM paclitaxol 
(LifeTechnologies, P3456). For drug treatment experiments, we diluted the stock solutions in 
culture medium to a final concentration of 10nM for trametinib, 1µM for vemurafenib, and 1nM 
for paclitaxol. For trametinib treatment experiments, we cultured NGFR FACS sorted 
WM989-A6 (sorting is described in the FACS section of methods) for 2-3 weeks. For 
vemurafenib experiments, we cultured the FACS sorted NGFR-mNG2 WM989-A6-G3 in 
vemurafenib for 21 days. For paclitaxol experiments, we cultured CA9 FACS sorted 
MDA-MB-231 cells in paclitaxol for 5 days. At the end of all drug treatment regimens, we fixed 
each sample in 4% formaldehyde for 10 minutes, permeabilized the sample in 70% ethanol, and 
then performed cell quantification. 
 
Cell quantification: We quantified cell numbers for drug treatment experiments by fixing the 
cells, staining with DAPI, then imaging across the majority of the well via image scanning at 20x 
magnification. After scanning, we computationally stitched the images together, after which we 
used custom software written in MATLAB to identify nuclei.  
 
Time-lapse imaging: Our timelapse images were taken on a Nikon Ti-E microscope encased in 
a plexiglass chamber ventilated with heated air and CO2. We took images at 60x magnification 
of mNG2 fluorescence every 6 hours and images of the iRFP nuclear reporter (H2B-iRFP670) 
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every hour for 9 days. We chose these time intervals based on pilot experiments we performed 
to minimize overt signs of phototoxicity (cell death, growth inhibition, nuclear morphology 
changes) and enable the tracking of cell lineages. 
 
For analysis of timelapse images we used custom MATLAB scripts available at 
https://www.dropbox.com/sh/9caovkv858r8gcn/AADHy_KkovcrqCpDD_kgYR1Ja?dl=0 . For 
each timepoint, this pipeline stitches together images from each scan, adjusts image contrast 
then overlays mNG2 and iRFP670 images for the final video (Supplementary video 1). From this 
video, we identified three cells that first increased and then decreased NGFR expression during 
the course of the timelapse. We manually tracked positions of these cells using the Manual 
Tracking FIJI plugin, and we then used these tracks along with custom MATLAB scripts to 
create cropped and annotated videos (Supplementary videos 2-7).  
 
RNA FISH: We designed custom oligonucleotide probe sets complementary to our genes of 
interest using custom probe design software written in MATLAB (code freely available for 
non-commercial use here https://flintbox.com/public/project/50547/) and ordered them with an 
amine group on the 3’ end (probe sequences available in Supplementary Table 2). We pooled 
15-32 oligonucleotides targeting each gene and coupled each set of probes to either Cy3 (GE 
Healthcare), Alexa 594 (Life Technologies), Atto647N or Atto 700 (Atto-Tec). We performed 
single molecule RNA FISH as described in Raj et al. 2008 for multiple cycles of hybridization. 
We fixed cells in 4% formaldehyde solution for 10 minutes at room temperature, permeabilized 
in 70% ethanol, and stored samples at 4C. For hybridization, we first washed samples with 
washing buffer containing 10% formamide and 2x SSC. We then applied hybridization buffer 
containing custom RNA FISH probes and 10% formamide, 2x SSC, and 10% dextran sulfate. 
We hybridized samples overnight at 37ºC and then performed two cycles of 30 minute washes 
at 37ºC with washing buffer. For imaging, we first DAPI stained the cells and then transferred 
them to 2x SSC. 
 
RNA FISH imaging: We imaged RNA FISH samples on an inverted Nikon TI-E microscope with 
a 60x Plan-Apo or a 100x Plan-Apo using filter sets for DAPI, Cy3, Atto647N, Alexa594, and 
Atto700. We took images in either z-stacks of 30 planes at 0.3µm intervals using custom 
journals built in Metamorph or tiled grids of single-plane images using Metamorph Scan Slide 
Application. We used a Nikon Perfect Focus system to maintain focus across the imaging area. 
 
RNA FISH image analysis: For analysis of gridded image scans, we used custom MATLAB 
software designed for the analysis in (6 ). This pipeline consists of first segmenting the nuclei of 
individual cells using DAPI images. Next, the software calculates regional maxima for all RNA 
FISH dyes and then the user specifies a global threshold for calling individual spots. Through a 
GUI interface the user then reviews the high expressing cells and uses editing tools to remove 
artifacts or autofluorescent debris. Lastly, we extract tables containing RNA FISH spot counts 
for each gene in individual cells.  
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For image z-stacks, we used custom MATLAB software to count spots for each cell. Briefly, this 
image analysis pipeline includes manual segmentation of cell boundaries, thresholding of each 
channel in each cell to identify individual spots, and then extraction of spot counts for each gene 
in each cell. The software for analysis of RNA FISH images is available on the bitbucket here 
https://bitbucket.org/arjunrajlaboratory/rajlabimagetools/wiki/Home . After extracting spot counts 
from either data format, we performed the remainder of the analysis of mRNA distributions in R. 
We calculated Gini coefficients (as described in (10 )) for each gene using the “ineq” package. 
The code for this analysis is on the dropbox here 
https://www.dropbox.com/s/kn6otdws01gcgi5/gini_coef_analysis.R?dl=0 . 
 
Spatial analysis: We used spatial single cell analysis to enable us to independently measure 
the heritability of high expression states. We sparsely plated cells (WM989-A6, 
MDA-MB-231-D4, WM983B) on a 2-well chambered coverglass, and then we allowed the cells 
to grow for 10 days (sometimes fewer for MDA-MB-231-D4 if they grew faster), at which point 
we performed iterative RNA FISH, image analysis, and thresholding for high expression as 
described above. Intuitively, the stronger the heritability (i.e., over several generations), the 
larger the clusters of high-expressing cells we would find. To quantify clustering, we created, for 
each cell in the dataset, a “bucket” consisting of the 20 (or 50, 100, 200) closest cells and then 
kept track of the number of high-expressing cells in that bucket. We then computed the variance 
and the mean of this number across all buckets, allowing us to then calculate the heritability 
index, which is the Fano factor (defined as the variance divided by the mean). In the case of 
complete spatial randomness, the distribution would be Poisson, and the heritability index would 
be 1. To verify this null distribution, we permuted the label of cells as jackpots or non-jackpots 
uniformly at random 1000 times, and recomputed the heritability index for each permutation. 
This approach allowed us to compute 95% confidence intervals for the null distribution given our 
particular spatial configuration of cells (the data for null distributions is not shown, but is 
available online here 
https://www.dropbox.com/sh/xsa46euxi2n1jub/AABgY2wVyx3qWt59f2v-2-wQa?dl=0 ). 
 
Network community identification: For each pair of significantly heritable genes (from gene 
lists described in MemorySeq RNA sequencing analysis section of Methods), we calculated the 
Pearson correlation coefficient between their expression across clones. This procedure resulted 
in a symmetric weighted matrix of size 227 genes x 227 genes in WM989 (and 230 genes x 230 
genes in WM983B, as well as MDA-MB-231-D4). We represent these matrices as undirected 
weighted networks with nodes corresponding to genes and edges between nodes assigned the 
value of the correlation coefficient. We sought tightly connected groups of nodes within this 
network known as network communities. We performed k-clique community detection (15 – 17 ) 
with k=4 on binarized networks created by thresholding the original weighted network at 
decreasing values (26 , 27 ). More specifically, a k-clique is a collection of k nodes that are 
all-to-all connected and a k-clique community is a collection of k-cliques that are connected 
through adjacent k-cliques (two k-cliques are adjacent if they share k-1  nodes). Repeatedly 
thresholding the network at decreasing values creates a sequence of binary graphs, each of 
which is included in the next. Since the addition of edges to a binary graph can only enlarge or 
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merge k-clique communities, we can track communities from one binary network to the next in a 
well-defined manner. This allows us to both observe which nodes were included in the 
community at slightly lower threshold values and to qualitatively assign statistical significance to 
communities based on the range of threshold values for which they stay isolated from the rest of 
the network. 
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Figure legends: 

 

Figure 1: MemorySeq can identify genes with high transcriptional memory. A. Rare cell 
gene expression patterns, both with and without heritability. Histograms of single cell expression 
levels are unable to discriminate between these two alternatives. B. Schematic of MemorySeq 
experiment. We started with a single melanoma cell (WM989-A6), grew it to ~100 cells, then 
seeded 48 wells from those cells and allowed the cells to proliferate to around ~100,000 cells 
before subjecting the entire MemorySeq clone to RNA sequencing to determine expression 
levels. In the case of non-heritable expression, the levels of expression would not vary 
dramatically between MemorySeq clones, whereas in the heritable case, some clones would 
exhibit much higher levels of expression when a cell moved into the high expression level state 
early in the family tree of the clone. We also performed control experiments for technical noise 
by taking a population of cells, plating around ~100,000 cells directly into individual wells and 
performed RNA sequencing to determine how much variability in expression would arise for 
purely technical reasons. C. Expression histograms across n=43 MemorySeq clones for genes 
identified as non-heritable (left) or heritable (right). D. Coefficient of variation versus mean 
expression levels for all 23,669 genes that we analyzed across all MemorySeq clones. Points 
labeled with blue dots (on MemorySeq clones plot) or pink dots (on Noise controls plot) passed 
the threshold for being identified as a heritable gene. These genes were identified by first fitting 
a Poisson regression model to the data, and then selecting genes with residuals in the top 2%. 
This approach identified 227 heritable genes from the MemorySeq clones, but only 30 genes 
passed this threshold in the Noise control condition. Particular genes from panel C noted as 
indicated on both plots.  
 
Figure 2: Single cell RNA FISH and time-lapse microscopy verify quantitative nature of 

MemorySeq for measuring heritability. A. Schematic of space-FISH experiment. We plated 
WM989-A6 melanoma cells sparsely on a dish and allowed them to grow for 10 days, which is 
approximately 10 cell divisions. We then fixed the cells and performed iterative RNA FISH to 
measure the expression of 20 genes. Closely related cells will remain in close proximity, thus 
heritable rare-cell expression would manifest as “patches” of on cells, whereas non-heritable 
rare-cell expression would display a more “salt and pepper” pattern of expression. Right: 
micrographs of RNA FISH for 4 genes, EGFR (heritable), NGFR (heritable), EEF2 
(housekeeping) and GAPDH (housekeeping). B. Each spot is a cell from an RNA FISH image 
scan of 12,192 cells (subset of 2,103 cells shown). Cells above a threshold (6 for EGFR, 36 for 
NGFR and 320 for EEF2 ) were considered to be in the high expression state and colored green. 
C. Quantitative comparison of heritability as measured by MemorySeq (X axis: skewness across 
MemorySeq clones) and spatial RNA FISH analysis (Y axis). We used the Fano factor 
measured for spatial bins of 20 nearest cells as a spatial clustering metric; randomly placed 
high-expression-state cells would display a Poisson distribution and thus give a Fano factor of 1. 
Cell populations with a Fano factor greater than 1 would display some degree of spatial 
clustering. D. We plotted MemorySeq heritability versus the Gini coefficient (from RNA FISH). 
The Gini coefficient measures expression inequality, and thus indicates the rareness of 
expression, with 0 being completely equal and 1 being completely unequal. E. We generated a 
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cell line (WM989-A6-G3 C10-C2 clone E9) that expresses a large but incomplete (and thus 
nonfluorescent) portion of the mNeonGreen2 fluorescent protein with the remaining piece of 
mNeonGreen2 fused to NGFR at the endogenous locus. When the NGFR fusion protein 
expresses, the remaining portion of mNeonGreen2 binds to the NGFR fusion protein and 
becomes fluorescent. We then performed time-lapse microscopy imaging the NGFR protein 
(nucleus labeled with H2b-iRFP670) at 6 hour intervals for 8 days. Here, we show a series of 
fluorescent micrographs of a single cell tracked over time having gone through 2 divisions over 
72 hours, with the red arrow indicating the tracked cell. Scale bars are all 5µm long. 
 
Figure 3: High memory genes overlap with pre-resistance markers. A. We compared the 
set of genes identified as high memory by MemorySeq to the set of genes associated with 
pre-resistance (6 ). We identified genes associated with pre-resistance by performing RNA 
sequencing followed by differential expression analysis on cells sorted by EGFR levels. Genes 
with increased expression in EGFR-high cells have a minimum of 5 reads per million in at least 
one sample and log2 fold change (EGFR-high/EGFR-Mix) > 1.5. The p-value displayed reflects 
the statistical significance of the overlap between the sets of genes in the universe indicated. B. 
Rare cells within clonal WM989-A6 populations marked by high levels of NGFR protein were 
sorted, cultured for 8-16 hours and then subjected to trametinib treatment at 10nM (MEK 
inhibitor) for 3 weeks. Image shows number of resistant colonies (circled) along with number of 
cells within the resistant colony as indicated. Biological replicate in Supp. Fig. 6. 
 
Figure 4: MemorySeq reveals a rare subpopulation of MDA-MD-231-D4 cells associated 

with drug resistance. A. Most MDA-MD-231-D4 cells die upon treatment with paclitaxel for 5 
days, but a small subpopulation of cells (cell marked with “?”) survive and become resistant (red 
cell). B. We performed MemorySeq analysis on MDA-MD-231-D4 cells (n=39 clones, left; n=46 
control clones, right). The blue colored dots correspond to genes that we statistically identified 
as being highly heritable by fitting a Poisson regression model and selecting genes with 
residuals in the top 2% (same approach as applied to WM989 data). C. We stained cells with 
antibody targeting the CA9 surface marker and then sorted out the top 2-4% of cells, the lowest 
2-4% of cells, and the total “mix” population into chamber wells, after which we applied 
paclitaxel 1 day after sorting for 5 days. Transmitted light micrographs show the number of cells 
remaining after drug treatment for the different populations, and the quantification of the number 
of cells was performed using cell counting based on nuclear identification by imaging the DAPI 
nuclear stain and computationally identifying cells. All scale bars are 50µm long. 
 
Figure 5: MemorySeq enables the identification of coordinated rare-cell expression 

programs. A. We measured correlations between genes across MemorySeq clones derived 
from WM989-A6 melanoma cells. Shown is an example correlation between MMP1  and 
SERPINB2  across 43 MemorySeq clones. B. Correlations between all pairs of genes exhibiting 
heritability as determined by the threshold described in Fig. 1. C. Comparison of coherence 
between MemorySeq bulk RNA-seq analysis and single cell correlations as measured by single 
molecule RNA FISH. We performed RNA FISH on 20 genes in WM989-A6 cells, keeping for 
further analysis genes whose RNA FISH Gini coefficient was greater than 0.6 (13 genes 
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remaining). The correlation between bulk MemorySeq RNA-seq levels is on the left, RNA FISH 
on the right. Callout shows raw single cell RNA FISH counts for 12,192 cells between MMP1 
and SERPINB2 . D. Community detection within the network defined by the correlation matrix of 
co-expression patterns among the heritable genes. Gray circles indicate genes that did not 
comprise a network community. Green and Red indicate the two communities detected; KEGG 
pathway and GO Biological Process analysis results shown for both communities. E. 
Comparison of rare cell expression programs identified by MemorySeq and those identified by 
sorting EGFR (left) or NGFR (right) high cells (using fluorescent antibody labeling followed by 
RNA-seq on the High versus Mix populations). 
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Validating Luria-Delbruck RNA sequencing using single-molecule RNA FISH
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