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Abstract 17 

Marine phytoplankton are responsible for over 45% of annual global net primary 18 

production. Ocean warming is expected to drive massive reorganisation of 19 

phytoplankton communities, resulting in pole-ward range shifts and sharp declines in 20 

species diversity, particularly in the tropics. The impacts of warming on phytoplankton 21 

species depend critically on their physiological sensitivity to temperature change, 22 

characterised by thermal tolerance curves. Local extinctions arise when temperatures 23 

exceed species’ thermal tolerance limits. The mechanisms that determine the 24 

characteristics of thermal tolerance curves (e.g. optimal and maximal temperatures) 25 

and their variability among the broad physiological diversity of marine phytoplankton 26 

are however poorly understood.  Here we show that differences in the temperature 27 

responses of photosynthesis and respiration establish physiological trade-offs that 28 

constrain the thermal tolerance of 18 species of marine phytoplankton, spanning 29 

cyanobacteria as well as the red and green super-families.  Across all species we found 30 

that rates of respiration were more sensitive to increasing temperature and typically 31 

had higher optimal temperatures than photosynthesis. Consequently, the fraction of 32 

photosynthetic energy available for allocation to growth (carbon-use efficiency) declined 33 

exponentially with rising temperatures with a sensitivity that was invariant among the 34 

18 species. Furthermore, the optimal temperature of growth was generally lower than 35 

that of photosynthesis and as a result, supra-optimal declines in growth rate were 36 

associated with temperature ranges where the carbon-use efficiency exhibited 37 

accelerated declines. These highly conserved patterns demonstrate that the limits of 38 

thermal tolerance in marine phytoplankton are underpinned by common metabolic 39 

constraints linked to the differential temperature responses of photosynthesis and 40 

respiration.  41 

 42 

Significance Statement 43 

The impacts of warming on marine phytoplankton depend on their sensitivity to rising 44 

temperatures, yet there is currently limited understanding of the mechanisms that limit 45 

thermal tolerance among the diversity of marine phytoplankton. Using a comparative study 46 

on the dominant, ecologically important lineages of marine phytoplankton – 47 

Bacillariophyceae, Dinophyceae, Cyanophyceae, Prasinophyceae, Prymnesiophyceae – we 48 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 30, 2018. ; https://doi.org/10.1101/358002doi: bioRxiv preprint 

https://doi.org/10.1101/358002


show that rates of respiration are consistently more sensitive to increasing temperature than 49 

photosynthesis. Consequently, the fraction of photosynthetic energy available for growth 50 

declines with rising temperatures with a sensitivity that is invariant among species. Our 51 

results suggest that declines in phytoplankton performance at high temperatures are driven by 52 

universal metabolic constrains linked to rising respiratory costs eventually exceeding the 53 

supply of reduced carbon from photosynthesis. 54 

 55 

Introduction 56 

The planet’s oceans are changing at an unprecedented rate (1); over the past half-57 

century average sea surface temperatures have been increasing by 0.1 ºC per decade (2) and 58 

are projected to rise by a further 3ºC or more by the end of the century (3). Ocean warming is 59 

thought to be a key driver of recent declines in phytoplankton productivity (4–6), and models 60 

of marine biogeochemistry predict further reductions in productivity over the 21st century as 61 

temperatures exceed limits of thermal tolerance and nutrient limitation increases in warmer, 62 

more stratified oceans (7). Thermal tolerance curves of marine phytoplankton (like all 63 

ectotherms) exhibit characteristic unimodality and left-skew, meaning that fitness declines 64 

more sharply above the optimum temperature than below (8). Marine phytoplankton species 65 

exhibit substantial variability in their thermal tolerance. Optimal temperatures for growth 66 

range between approximately 2 to 38ºC and are positively correlated with the average 67 

temperature of the environment, indicating a global pattern of thermal adaptation (8, 9). 68 

Ocean warming is expected to result in major reorganisation of marine phytoplankton 69 

communities as temperatures exceed the thermal optima of some species but not others. In 70 

particular, tropical and sub-tropical regions are projected to experience pronounced declines 71 

in species diversity and productivity (8, 9) because many of the taxa in these areas already 72 

exist close to their limits of thermal tolerance. Despite its importance for predicting the 73 

impacts of global warming on marine phytoplankton communities, we currently understand 74 

very little about the physiological processes that determine the limits of thermal tolerance in 75 

marine phytoplankton. 76 

To address this fundamental knowledge gap we carried out a large-scale experiment 77 

to investigate the physiological mechanisms that set the limits of thermal tolerance in marine 78 

phytoplankton. Our experiments span a representative sample of the broad physiological and 79 

phylogenetic diversity of the marine phytoplankton; including 18 species belonging to 80 
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ecologically important functional groups – Cyanobacteria, Diatoms, Dinoflagellates, 81 

Coccolithophores, Rhodophytes, Chlorophytes and Prasinophytes (Table 1, SI). These 82 

species were chosen to encompass the putative primary and secondary endosymbionts of both 83 

the red and green super-families, and thus reflect the complex evolutionary histories of 84 

marine phytoplankton (10, 11). This allowed for us to investigate whether, in spite of such 85 

physiological diversity in plastid evolution, similar physiological constraints underpin the 86 

limits of thermal tolerance. 87 

 88 

Results & Discussion 89 

We first characterised variability in thermal tolerance curves among taxa by 90 

measuring growth rates for each species across a temperature gradient spanning 15 to 37°C 91 

and fitting the Sharpe-Schoolfield equation for high temperature inactivation to the data using 92 

non-linear mixed effects modelling (12, 13) (Fig.1). The upper limits of thermal tolerance 93 

varied across the taxa, with 𝑇𝑚𝑎𝑥
        𝜇  

(maximum temperature of observed growth), ranging from 94 

27°C to 37°C. The optimal temperature of growth, 𝑇𝑜𝑝𝑡
      𝜇

, ranged from 23.8°C to 34.0°C and 95 

the activation energy, 𝐸𝑎
  𝜇

 – which characterises the increase in rate up to 𝑇𝑜𝑝𝑡
      𝜇

 – ranged from 96 

0.40 eV to 1.46 eV, with an average 𝐸𝑎
  𝜇

 of 0.77eV  (95% CI: 0.58 to 0.97) (Fig.1, and Table 97 

2, SI).  These 𝐸𝑎
  𝜇

 values 
 
highlight that the temperature dependence of growth at the species 98 

level is significantly higher than previously reported temperature dependence parameters, 99 

such as the canonical Eppley coefficient (equivalent to 𝐸𝑎
  𝜇

 ≈ 0.3 eV), that are derived by 100 

comparing maximum growth rates across many species and are the standard way in which the 101 

impacts of warming on phytoplankton productivity are represented in models of marine 102 

biogeochemistry (14–16). These findings suggest that the Eppley coefficient (and other 103 

values from similar analyses (16)), which capture the broad-scale, macroecological impacts 104 

of temperature along geographic gradients, might significantly under estimate the impacts of 105 

temperature fluctuations on phytoplankton growth at local to regional scales (see 106 

Supplementary Information : additional text, S1, for further discussion).  107 

To determine the physiological processes that shape the thermal tolerance curves, in 108 

particular those that determine the optimum temperature and supra-optimal declines in 109 

growth rate, it is essential to understand how the key metabolic pathways that drive biomass 110 

synthesis respond to warming. Despite having diverse evolutionary histories, all unicellular 111 
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phytoplankton share common, key metabolic pathways (17) and their ability to sequester 112 

carbon, and therefore grow, is ultimately determined by photosynthesis and respiration (18, 113 

19). The light-dependent reactions of photosynthesis account both for the processes that 114 

convert inorganic carbon to organic carbon stores and those that facilitate the production of 115 

ATP and reductant used to fuel biomass synthesis (20). The dark reactions in respiration can 116 

be conceptually divided into ‘growth’ and ‘maintenance’ components (18–21). ‘Growth-117 

respiration’ provides the ATP, reductant and carbon skeletons required for producing new 118 

biomass and is expected to be proportional to the rate of growth. By contrast, ‘maintenance-119 

respiration’ provides the ATP for macromolecular turnover and the maintenance of solute 120 

gradients, and is proportional to cell biomass (20). Whilst dark respiration clearly plays an 121 

important role in photolithotrophic growth in microalgae, the majority of the energy used to 122 

fuel biosynthesis (between 60 – 90%) is thought to derive from photosynthesis (20, 21). To 123 

understand the physiological constraints that shape the variability in phytoplankton thermal 124 

tolerance, we quantified temperature-dependent variation in rates of photosynthesis and dark 125 

respiration in the 18 species of marine phytoplankton.  126 

For each species, we measured the acute responses of gross photosynthesis and dark 127 

respiration across a temperature gradient spanning 7°C to 49°C, and quantified the resultant 128 

thermal response curves by fitting the Sharpe-Schoolfield equation for high temperature 129 

inactivation to the data using non-linear mixed effects modelling (see Methods).  We found 130 

consistent differences in the parameters characterising the thermal responses of 131 

photosynthesis and respiration across all the species in this study despite their diverse 132 

evolutionary histories (Fig.2, Fig.3 and 4, SI). The activation energy for respiration was 133 

greater than that of photosynthesis (i.e. 𝐸𝑎
  𝑅  >   𝐸𝑎

  𝑃; Fig. 3B, Fig. 3 and 4, SI) in all 18 134 

species. Pooling the parameters across species yielded an average activation energy for 135 

photosynthesis of 𝐸𝑎
  𝑃= 0.74 eV (95% CI: 0.69 to 0.79), whilst the average for respiration was 136 

𝐸𝑎
  𝑅  = 1.07 eV (95% CI: 0.98 to 1.15). Critically, the average activation energy for 137 

photosynthesis was statistically indistinguishable from that of growth rate (𝐸𝑎
  𝜇

 = 0.77eV, 95% 138 

CI: 0.58 to 0.97). These results demonstrate that respiratory costs become an increasingly 139 

large proportion of photosynthetic carbon fixation and biomass synthesis as temperatures rise 140 

toward the peak of the thermal response curves. We also found that for most species, the 141 

optimum temperature for respiration was higher than that of photosynthesis (i.e.  𝑇𝑜𝑝𝑡
      𝑅  >142 

  𝑇𝑜𝑝𝑡
      𝑃), with the average thermal optimum for photosynthesis, 𝑇𝑜𝑝𝑡

      𝑃 = 31.18°C ± 0.83 (s.e.m.) 143 

and respiration, 𝑇𝑜𝑝𝑡
      𝑅  = 32.91°C ± 0.48 (s.e.m.) (Fig. 3C, Fig. 3 and 4, SI). Furthermore, in 144 
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all species, the deactivation energy, which characterises the speed that rates decline past the 145 

optimum, was lower for respiration relative to photosynthesis (i.e. 𝐸ℎ
  𝑃 >   𝐸ℎ

  𝑅 ), with the 146 

average across species for photosynthesis 𝐸ℎ
  𝑃 = 6.08 (95% CI: 5.04 to 7.12) and respiration 147 

𝐸ℎ
  𝑅 = 2.62 (95% CI: 2.31 to 2.93) (Fig. 3D, Fig. 3 and 4, SI). Thus, as temperatures rise 148 

beyond 𝑇𝑜𝑝𝑡, rates of photosynthesis decline faster than rates of respiration. Overall these 149 

findings show remarkable consistency across diverse taxa (Fig. 3 and 4, SI) in how 150 

differences in the parameters that characterise the thermal responses of photosynthesis and 151 

respiration result in increasing respiratory expenditure of carbon fixed by photosynthesis as 152 

temperatures rise. 153 

The carbon-use efficiency (CUE = 1-R/P), is an estimate of the fraction of 154 

photosynthetic energy (P) that can be allocated to growth after accounting for respiration (R). 155 

Recent work on both marine and freshwater phytoplankton species suggests that declines in 156 

CUE at high temperature may be linked to impaired performance at supra-optimal 157 

temperature (22, 23). Furthermore, observations that the evolution of elevated thermal 158 

tolerance are coupled with adaptive shifts in metabolic traits that increase CUE at high 159 

temperature (22–24), imply an important role for CUE in constraining thermal tolerance that 160 

could provide a general explanation for high-temperature impairment of growth across the 161 

diversity of the phytoplankton. To determine whether the differential thermal responses of 162 

photosynthesis and respiration can help explain the physiological processes that constrain the 163 

thermal tolerance curves of diverse phytoplankton, we quantified how the CUE varied as a 164 

function of temperature. Consistent with previous work, we found that the CUE decreased 165 

with increasing temperature in all 18 species. Declines in the CUE with rising temperature 166 

were however highly non-linear, with the fall in CUE dramatically accelerating at high 167 

temperatures. Because 𝑇𝑜𝑝𝑡
      𝑅  >   𝑇𝑜𝑝𝑡

      𝑃 and 𝐸ℎ
  𝑃  >   𝐸ℎ

  𝑅 for most species, as temperature rose 168 

beyond 𝑇𝑜𝑝𝑡
      𝑃 the CUE exhibited an accelerated decline at high temperatures. To quantify this 169 

non-linear response and the location of the inflection point where declines in CUE become 170 

accelerated, we fitted a break-point model to the thermal responses of the CUE. We found a 171 

significant break-point in the thermal response of the CUE for all 18 species that was tightly 172 

coupled with 𝑇𝑜𝑝𝑡
      𝑃  

(Fig.3). As 𝐸𝑎
  𝑅  >   𝐸𝑎

  𝑃 for all species, temperature dependent declines in 173 

CUE up to the break-point were universal across the species (Fig.4) with an average 174 

activation energy, 𝐸𝑎
  𝐶𝑈𝐸, of -0.12eV (95% CI: -0.16 to -0.08).  Furthermore, in all 18 species 175 

the optimum temperature for growth (𝑇𝑜𝑝𝑡
      𝜇

) either coincided with the CUE break-point (i.e. 176 
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the 95% CIs of the CUE break-point included 𝑇𝑜𝑝𝑡
      𝜇

), or was lower than the CUE break-point 177 

(Fig.3). This finding suggests that temperature-driven declines in the CUE, linked to 178 

fundamental differences in the intrinsic thermal responses of photosynthesis and respiration, 179 

could play an important role in constraining the thermal tolerance of diverse marine 180 

phytoplankton. Because the metabolic costs for repair and maintenance are largely accounted 181 

for by dark respiration (20, 21) the temperature-driven declines in the CUE likely reflect 182 

increases in the costs associated with maintenance and repair of heat-induced cellular damage 183 

that eventually exceed the rate of substrate supply by photosynthesis, causing rates of growth 184 

to decline at supra-optimal temperatures. 185 

  It is important to note that our experiments were conducted under nutrient replete 186 

conditions. A recent study has suggested that the temperature sensitivities of photosynthesis 187 

and respiration (25) in some marine phytoplankton may decline under nutrient limitation and 188 

that the differential temperature sensitivities of photosynthesis and respiration may be 189 

negligible under limited conditions. This work however quantified the temperature 190 

sensitivities of photosynthesis and respiration at only 3 or 4 temperatures leading to estimates 191 

of thermal sensitivities with large error margins and a high probability of generating type II 192 

errors (i.e. accepting the null hypothesis of no difference in the thermal sensitivity of 193 

photosynthesis and respiration). Furthermore, measurements were made only under resource 194 

limited conditions precluding a quantitative comparison with nutrient replete conditions via 195 

the same methodology. Whilst we expect that the absolute values of the thermal sensitivities 196 

of photosynthesis and respiration are likely to decline under resource limitation, it is highly 197 

improbable that the intrinsic differences between photosynthesis and respiration documented 198 

in this study under nutrient replete conditions will be erased under nutrient limitation. Indeed, 199 

our analyses demonstrate that light limitation had a negligible impact on the temperature 200 

sensitivity of photosynthesis  and in particular, the fundamental differences in the impacts of 201 

temperature on photosynthesis and respiration were preserved under light limited conditions 202 

(see Fig.2 and Table 6, SI).  We therefore anticipate that the supra-optimal declines in growth 203 

linked to temperature-driven decoupling between photosynthesis, respiration and biomass 204 

synthesis that we have shown here, apply equally under nutrient replete and limited 205 

conditions. Whilst large areas of the global ocean are under nutrient limited conditions for 206 

long periods (26), understanding the impacts of temperature under nutrient replete conditions 207 

(as we have done here)  remains critically important because a large proportion of marine 208 

primary productivity occurs during episodic bloom events driven by short periods of 209 
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increased nutrient concentrations (27–29). Clearly, significant further work is required to 210 

understand the interplay between temperature and nutrient availability on phytoplankton 211 

physiology and to assess whether  the patterns we have shown here apply to conditions of 212 

nutrient limitation, given that current experimental evidence (25) is not sufficient to draw 213 

meaningful conclusions.  214 

 215 

Conclusions 216 

Overall, our findings highlight marked similarities in the temperature dependence of 217 

photosynthesis and respiration across diverse taxonomic groups, spanning the cyanobacteria 218 

and red and green super families and suggest that common physiological trade-offs underpin 219 

the thermal tolerance of marine phytoplankton. We found that rates of respiration were more 220 

sensitive to temperature, had higher thermal optima and declined less abruptly past the 221 

optimum than those of photosynthesis. Consequently, the fraction of photosynthetic energy 222 

available for allocation to growth (the CUE) exhibited an accelerated decline with rising 223 

temperatures in a manner that was highly conserved among the 18 species investigated. We 224 

also found that the optimal temperature for growth coincided with, or was lower than, an 225 

inflection point in the temperature dependence of the CUE, which marked a transition that led 226 

to accelerated declines at high temperatures. These patterns suggest that universal metabolic 227 

constraints driven by the differential temperature sensitivity of photosynthesis and respiration 228 

play a key role in setting the limits of thermal tolerance of diverse marine phytoplankton. Our 229 

results therefore help pave the way for improving representations of phytoplankton 230 

biodiversity in models of ocean biogeochemistry by providing a process-based understanding 231 

of the factors that shape the limits of temperature tolerance for diverse species of marine 232 

phytoplankton, which can be used to aid predictions of immigration and local extinctions 233 

driven by global warming. 234 

 235 

Methods 236 

Culturing of marine phytoplankton strains 237 

18 marine phytoplankton strains were obtained from CCAP (The Culture Collection of Algae 238 

and Protozoa) and RCC (Roscoff Culture Collection) between autumn 2015 and spring 2016. 239 
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Strains of eukaryotic phytoplankton were selected from phylogenetic groups of both the red 240 

and green superfamilies (10, 11),  in addition to two strains of cyanobacteria. We tried to 241 

work with organisms that had been well studied in the literature, were known to be globally 242 

abundant and play crucial roles for marine ecology and global carbon cycling. The strains 243 

were originally isolated from a range of latitudes and some have been in culture for up to 65 244 

years (Table 1, SI). Stocks of each of the strains were cultured on their previous culture 245 

collection medium (Table 1, SI) using artificial sea water. The following media were used: 246 

Guillard’s F/2 and F/2 + Si, Keller’s K, K + Si and K/2, and PCR-S11 Red Sea medium (with 247 

Red Sea salts). All stock cultures were incubated in Infors HT incubators at 20°C, under a 248 

12:12 hour light-dark cycle with a PAR intensity of 45-50 µmol m
2 

s
-1 

and shaken at 65RPM. 249 

Where possible we tried to obtain strains from the culture collections that matched, or were 250 

close to, these conditions. The red alga Porphyridium purpureum was an exception, which we 251 

cultured at 20-25 µmol m
2 

s
-1

. Cultures were kept under exponential, nutrient replete, growth 252 

conditions for ~ 2 months before any physiological data was collected.   253 

 254 

Measuring the thermal tolerance curve 255 

For each species, a minimum of 3 technical replicates were inoculated with the same starting 256 

density into fresh growth medium across a range of temperatures (15°C - 37°C). Cell counts 257 

were made daily using flow cytometry (Accuri C6 flow cytometer, BD Scientific), and 258 

population density was tracked until cultures reached carrying capacity. Per capita growth 259 

rates (𝜇) were quantified from a modified Baranyi growth model without the lag phase(30), 260 

using non-linear least squares regression via the ‘nlsMicrobio’ package in R statistical 261 

software (v3.3.1).  Models were fitted using the ‘nlsLoop’ function in the R github package 262 

‘nlsLoop’. This draws on the ‘nlsLM’ function in the ‘minpack.lm’ R package, which uses a 263 

modified Levenberg-Marquardt optimisation algorithm.  Model parameters were determined 264 

by running 2000 random combinations of estimated starting parameters, which were then 265 

selected using the Akaike Information Criterion (AIC) to determine the set of parameters that 266 

best characterised the data. Growth rates derived for each technical replicate at each growth 267 

temperature were then used to determine the thermal tolerance curves (Fig.1A).  268 

Estimates of Cell Carbon and Nitrogen 269 

For each species, an exponentially growing culture from the 20°C stock was divided into 3 270 

technical replicates and centrifuged at 3500RPM, at 4°C for 30 minutes. The resultant pellets 271 
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were rinsed with deionised water and re-spun 3 times to remove any artificial sea water 272 

residue. For the calcifying organisms (Emiliania huxleyi, Gephyrocapsa oceanica, 273 

Thoracosphaera heimii i.e. those with a calcium carbonate coccoliths) it was necessary to 274 

dissolve the extra-cellular inorganic carbon (31, 32). This was achieved by treating these 275 

pellets with 0.5 mL of 3M HCl for 1 hour before being rinsed with deionised water and re-276 

pelleted. All pellets were freeze-dried using a CoolSafe (95-15 PRO, ScanVac) over 24 hours 277 

and then weighed to obtain dry weight. Samples were placed in tin cups and sent to Elemtex 278 

(Elemtex Ltd, Cornwall, UK, PL17 8QS) for elemental analysis of %C and %N using a 279 

SerCon Isotope Ratio Mass Spectrometer (CF-IRMS) system (continuous flow mode). For 280 

each technical replicate we then calculated the C:N ratio as well as μg C cell−1 (Table 3, SI).  281 

 282 

Measuring the metabolic thermal response curves 283 

Measurements of photosynthesis and dark respiration were collected across a range of assay 284 

temperatures (7°C to 49°C) for a minimum of 3 biological replicates per species. We used a 285 

clark-type oxygen electrode as part of a Chlorolab 2 system (Hansatech Ltd, King’s Lynn, 286 

UK) to measure net rates of oxygen evolution in the light (net primary production, NP) and 287 

oxygen consumption in the dark (dark respiration); both in units  of µmol O2 mL
-1 

s
-1

. All 288 

biological replicates were sampled from the stock cultures, which had all been growing at 289 

20°C and were taken at the mid-logarithmic growth phase to ensure that the samples were not 290 

substrate limited. To improve the signal to noise ratio when measuring rates, all biological 291 

replicate samples were concentrated by centrifugation at 1500rpm, 20°C, for 15 minutes and 292 

re-suspended into an adequate volume of fresh growth medium. Prior to running a sample at 293 

each assay temperature, all samples were given ~ 15 minutes to pre-acclimate to the assay 294 

temperature in the dark before any data was collected. This also gave the electrode system 295 

sufficient time to stabilise before metabolic rates were measured. This was necessary for two 296 

reasons, i) as the sample adjusts to the assay temperature this will naturally cause changes in 297 

the dissolved oxygen concentration, ii) the electrode system results in oxygen signal drift, and 298 

this too is temperature dependent. We measured rates of oxygen depletion from 21 sterilised 299 

artificial seawater samples across a range of temperatures 4°C - 44°C and found that the 300 

impact of drift was minimised after ~15 minutes of stabilisation time. Nevertheless, signal 301 

drift was linearly temperature dependent after this time. To account for drift in our dataset we 302 

corrected all our raw data using the following empirically derived relationship:  303 
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𝑑𝑟𝑖𝑓𝑡 =  (−0.392 ×  𝑇) − 6.51                                                                [1] 304 

Where T is assay temperature (°C), and drift is the non-biological depletion in oxygen 305 

concentration measured in units µmolO2 mL
-1 

s
-1

 after approximately 15 minutes of 306 

stabilisation. The raw O2 flux data was then corrected by subtracting the estimated drift. 307 

Rates of net photosynthesis, measured as O2 evolution, were collected across a range of light 308 

intensities from 0 to 1800 µmol m
2 

s
-1

 with increments of 50 µmol m
2 

s
-1 

between 0 to 200 309 

µmol m
2 

s
-1,

 100 µmol m
2 

s
-1 

between 200 and 1000 µmol m
2 

s
-1

, followed by 1200 µmol m
2 
s

-310 

1
, 1500 µmol m

2 
s

-1 
and finally 1800 µmol m

2 
s

-1
. This enabled us to model a photosynthesis-311 

irradiance (PI) curve for each assay temperature, and therefore obtain an estimate of light 312 

saturated net photosynthesis, 𝑁𝑃𝑚𝑎𝑥 , see Eq. 2. Respiration (R) was measured as oxygen 313 

consumption in the dark, over a 3-minute period directly following the light response outlined 314 

above. The photosynthesis-irradiance curve was then quantified by fitting Eiler’s 315 

photoinhibiton model to the data using non-linear least squares regression (as described 316 

above) (33, 34): 317 

𝑁𝑃(𝐼) =
𝑁𝑃𝑚𝑎𝑥𝐼

𝑁𝑃𝑚𝑎𝑥

𝛼𝐼𝑜𝑝𝑡
        2 𝐼2+(1−2

𝑁𝑃𝑚𝑎𝑥
𝛼𝐼𝑜𝑝𝑡

)𝐼+
𝑁𝑃𝑚𝑎𝑥

𝛼

                                                 [2]                                                                                 318 

Where 𝑁𝑃(𝐼)  is the rate of net primary production at light intensity,  𝐼 , 𝑁𝑃𝑚𝑎𝑥  is the 319 

maximum rate of 𝑁𝑃  at the optimal light intensity, 𝐼𝑜𝑝𝑡 , and 𝛼  is the rate in which 𝑁𝑃 320 

increases up to 𝑁𝑃𝑚𝑎𝑥. 321 

Light saturated gross primary production (P) was then calculated for each assay temperature 322 

as:  323 

 𝑃 =  𝑁𝑃𝑚𝑎𝑥 +  𝑅                         [3]      324 

To investigate the effect of light limitation on the temperature dependence of photosynthesis 325 

we used Eq. 2 to determine the predicted 𝑁𝑃 at half the light saturated irradiance (0.5 ×326 

 𝐼𝑜𝑝𝑡). Thus replacing in  𝑁𝑃𝑚𝑎𝑥 in Eq. 3 with this prediction we derived 𝑃0.5 , a light limited 327 

value of gross primary production at half the saturating irradiance for each assay temperature 328 

response.                                                           329 

Metabolic rates were then converted from units µmol O2 mL
-1 

s
-1 

to µg C µg C
-1 

hour
-1

. We 330 

achieved this using the following equation: 331 
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𝑏(μg C μg C−1 h−1) =
 𝑏(µ𝑚𝑜𝑙 𝑂2 𝑐𝑒𝑙𝑙−1 ℎ−1) ×  32  ×  𝑀  × (

12

44
)

   𝜇𝑔𝐶 𝑐𝑒𝑙𝑙−1           [4]                 332 

Where 𝑏 is the metabolic rate (either P or R), 32 is the molecular weight of O2, 𝑀 is a species 333 

specific assimilation quotient for CO2:O2 (35) which is used to describe consumption or 334 

fixation of C in the cell per unit of O2 , and 12/44 is the ratio of molecular weight of C to CO2, 335 

thus 32 ×  𝑀 ×  
12

44
 converts from 𝜇𝑚𝑜𝑙 𝑂2 to μ𝑔𝐶. Samples from each strain were analysed 336 

to determine species-specific  μg C cell−1   values and the number of cells  mL−1  was 337 

measured for each biological replicate using flow cytometry. The calculation of M is based 338 

on the assumption that NO3
-
 is the main nitrogen source in the growth medium and that there 339 

is a balanced growth equation, where: 340 

𝑛𝐶𝑂2 + (𝑛 + 1)𝐻2𝑂 + 𝐻𝑁𝑂3  → (𝐶𝐻2𝑂)𝑛 𝑁𝐻3 + (𝑛 + 2)𝑂2                   [5] 341 

If the C:N ratio (n) of the phytoplankton is calculated in moles then the ratio of CO2:O2, or M,  342 

will be equal to n/n+2 (35). Our calculated values of M ranged from ~0.71 to ~0.89 (Table 3, 343 

SI). 344 

Quantifying the thermal response curves  345 

The thermal response curves for rates of growth, photosynthesis (at both saturated and half 346 

saturated irradiance) and respiration were quantified using a modified version of the Sharpe-347 

Schoolfield equation (12, 13): 348 

ln(𝑏(𝑇)) = 𝐸𝑎
  (

1

𝑘𝑇𝑐
−

1

𝑘𝑇
) + ln(𝑏(𝑇𝑐)) − ln (1 + 𝑒

𝐸ℎ
  (

1

𝑘𝑇ℎ
  −

1

𝑘𝑇
)
)                                    [6] 349 

where 𝑏 is either the rate of growth (d
-1

), photosynthesis or respiration (μg C μg C−1 h−1), k is 350 

Boltzmann’s constant (8.62×10
-5

 eV K
-1

), 𝐸𝑎
  is the activation energy (eV), indicative of the 351 

steepness of the slope leading up to the thermal optima, T is temperature in Kelvin (K), 𝐸ℎ
   is 352 

the deactivation energy which characterizes temperature-induced decrease in rates above 𝑇ℎ
  353 

where half the enzymes have become non-functional and 𝑏(Tc) is  rate  normalized to an 354 

arbitrary reference temperature, here Tc = 20ºC (+ 273.15), where no low or high temperature 355 

inactivation is experienced. Eq. 6 can be used to derive an optimum temperature where the 356 

maximum rate is predicted: 357 

𝑇𝑜𝑝𝑡
     =

𝐸ℎ
 𝑇ℎ

 

𝐸ℎ
  +𝑘𝑇ℎ

  ln(
𝐸ℎ

  

𝐸𝑎
  −1)

                                                                                                              [7] 358 
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The parameters 𝑏(𝑇𝑐), 𝐸𝑎
  , 𝐸ℎ

  , 𝑇ℎ
  , and 𝑇𝑜𝑝𝑡

     , can be considered as traits that characterise the 359 

unimodal response of biological rates to temperature change. We expect these traits to differ 360 

across the diverse taxa analysed in this study, owing to their diverse evolutionary histories 361 

and ancestral temperature regimes (given that they have been isolated from different 362 

latitudes/oceans). To test this assumption, we fitted the data for growth, photosynthesis and 363 

respiration across all species to Eq. 6 using non-linear mixed effects modelling with the 364 

‘nlme’ package in R. We used separate analyses to assess the thermal responses of growth, 365 

photosynthesis and respiration. All models included each of the parameters in Eq. 6 as fixed 366 

effects, which quantify the average value of the parameter across all species and replicates. 367 

For the analysis of the thermal response of growth rate, we included ‘species’ as a random 368 

effect on each parameter, which quantifies species-specific deviations from the average 369 

across all species (i.e. the fixed effect) that are assumed to be normally distributed with a 370 

mean of zero. For the analyses of photosynthesis and respiration, we included ‘replicate’ 371 

nested within ‘species’ to account for the fact that we measured a minimum 3 replicate 372 

thermal response curves for each species. Here the random effect quantifies species-specific 373 

deviations from the fixed effects as well as those attributable to variance among the replicates 374 

of each species. 375 

Because the Sharpe-Schoolfield equation can only take non-zero and positive rate values, in 376 

instances where either no observed growth rate, or a negative growth rate were measured 377 

(typically the highest and lowest temperature) we set the rate to the minimum value measured 378 

for the species in order to fit the model.  379 

 380 

Quantifying the carbon-use efficiency and modelling the break-point temperature 381 

The carbon-use efficiency (CUE) was calculated as:  382 

CUE = 1 − 𝑅/𝑃                                              [8] 383 

Due to the non-linear temperature response of the CUE, with accelerated declines at high-384 

temperatures, we fitted a segmented linear regression model to estimate the break-point in the 385 

temperature response after which the CUE exhibited an accelerated decline. We fitted the 386 

segmented linear regression model to CUE values derived from the fitted Sharpe-Schoolfield 387 

curves for each species enabling us to derive an estimate of CUE at every 1°C increment 388 

across the range of assay temperatures where metabolic rates were measured for each species 389 
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(Fig 2. Main text). We fitted the break-point model to the CUE values using the ‘segmented’ 390 

package in R, where the breakpoint estimate is defined in the segmented model as the 391 

intersection where there is significant difference in slopes (36), determined by the Davies test 392 

for performing hypothesis (37). It is for this reason that it was necessary to use the predicted 393 

values of respiration and photosynthesis to derive the break-point, as the measured data in 394 

most cases only provided one or two data points beyond the inflection point, and this would 395 

not have been sufficient to accurately model the second slope beyond this point (Fig.3, Main 396 

text). The model returned an estimate of the CUE break-point temperature and the 95% 397 

confidence intervals surrounding this value for each species (Table 7, SI).  398 

Determining the temperature dependence of the CUE 399 

We characterized the temperature dependence of the CUE up to the CUE breakpoint 400 

temperature for each species using the Arrhenius equation,  401 

ln CUE(𝑇) =  𝐸𝑎
  𝐶𝑈𝐸 (

1

𝑘𝑇𝑐
−

1

𝑘𝑇
) + ln CUE(𝑇𝑐)        [9] 402 

where ln CUE(𝑇) is the natural logarithm of the CUE at temperature 𝑇 (in Kelvin), 𝐸𝑎
  𝐶𝑈𝐸 is 403 

the apparent activation energy characterising the temperature dependence of CUE. We 404 

centred the temperature data using an arbitrary reference temperature 𝑇𝑐 = 283 K = 20ºC, so 405 

that  ln CUE(𝑇𝑐) is the CUE at 𝑇𝑐.  We fitted Eq. 9 to all the measurements of CUE, up to the 406 

CUE break-point temperature identified for each species (Fig.3 Main text, Table 7, SI) using 407 

a linear mixed effects model. This allowed us to derive an average value for 𝐸𝑎
  𝐶𝑈𝐸 and 408 

ln CUE(𝑇𝑐) across the 18 species. We also included random effects of ‘replicate’ nested 409 

within ‘species’  in the model to account for the fact we measured a minimum of 3 replicate 410 

responses of respiration and photosynthesis for each species. This allowed us to capture the 411 

species-specific and replicate specific estimates 𝐸𝑎
  𝐶𝑈𝐸 and ln CUE(𝑇𝑐). 412 
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 508 

Fig. 1. Thermal tolerance curves for 18 species of marine phytoplankton. (A) Thermal reaction 509 
norms for all 18 species used in this study.  The data points presented are the natural logarithm of per 510 
capita growth rate, 𝜇, for each replicate (n= minimum of 3 technical replicates per assay temperature 511 
for each species). The fitted lines are from the predicted random effect of species derived from non-512 
linear mixed effects modelling with a Sharpe-Schoolfield model. The vertical dashed lines correspond 513 
with the optimal temperatures of growth. (B) Boxplot distributions of optimal growth temperatures 514 
(𝑇𝑜𝑝𝑡) and maximum temperatures of growth (𝑇𝑚𝑎𝑥

        ) across all 18 species. (C) Boxplot distribution of 515 

growth activation energy, or temperature dependence (𝐸𝑎
  𝜇

), across all 18 species (Table 2, SI). The 516 
bold horizontal line corresponds to the median value, the top and bottom of the box correspond to the 517 
75

th
 and 25

th
 percentiles and the whiskers extend to the largest and smallest values no greater or less 518 

than 1.5 ×  the interquartile range, beyond which the points are plotted as outliers.  519 
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 520 

Fig. 2. Thermal performance curves for respiration and gross photosynthesis in 18 species of 521 
marine phytoplankton. (A) Metabolic thermal performance curves for all 18 species used in this 522 
study. Green colouring denotes gross photosynthesis, red colouring denotes respiration. The data 523 
points presented are the natural logarithm of mean metabolic, with error bars denoting ± s.e.m (n = 524 
minimum of 3 biological replicates per response for each species). The fitted lines for each species are 525 
from the random effects of a non-linear mixed effects model fitted to the rate data using the Sharpe-526 
Schoolfield equation (see Methods). The vertical dashed lines correspond with the optimal 527 
temperatures for each metabolic flux, with the black dashed line added to show optimal growth 528 
temperature. (B, C and D) Boxplots showing the distribution of the estimated values for activation 529 
energy ( 𝐸𝑎

  ), optimal temperature ( 𝑇𝑜𝑝𝑡
      ) and deactivation energy ( 𝐸ℎ

  ) for photosynthesis and 530 

respiration across the 18 species (Tables 4 and 5, SI). The bold horizontal line corresponds to the 531 
median value, the top and bottom of the box correspond to the 75

th
 and 25

th
 percentiles and the 532 

whiskers extend to the largest and smallest values no greater or less than 1.5 ×  the interquartile 533 
range, beyond which the points are plotted as outliers.  534 
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 535 

Figure. 3. Carbon-use efficiency breakpoints constrain the optimal temperature of growth. (A) 536 
Segmented linear regression models fitted to the predicted carbon use efficiency (CUE), derived from 537 
the thermal performance parameters of respiration and photosynthesis for each species (Fig 2). The 538 
modelled response is presented here alongside the calculated mean CUE at each assay temperature, 539 
with with error bars denoting ± s.e.m (n = minimum of 3 biological replicates per response for each 540 
species). The dashed vertical dashed blue line represents the predicted break-point in the model, 541 
where there was a significant change in the slope of the CUE thermal response. The dashed vertical 542 
black line represents the estimate optimal temperature of growth (Fig.1). In most cases this either 543 
coincides with the break-point, falling within the 95% CIs of the break-point, or was lower than the 544 
break-point. (B) Boxplots showing the distribution of the estimated values for the CUE break-point 545 
temperature, optimal temperature of gross photosynthesis (𝑇𝑜𝑝𝑡

      𝑃) and optimal temperature of growth 546 

(𝑇𝑜𝑝𝑡
      µ

) across the 18 species (Tables 2, 4 and 5, SI). The bold horizontal line corresponds to the 547 

median value, the top and bottom of the box correspond to the 75
th
 and 25

th
 percentiles and the 548 

whiskers extend to the largest and smallest values no greater or less than 1.5 ×  the interquartile 549 
range, beyond which the points are plotted as outliers. (C) The significant coupling between the CUE 550 
and  𝑇𝑜𝑝𝑡

      𝑃, illustrating that the sharp declines in CUE are determined by the universal metabolic 551 

constrains identified in Fig.2. 552 
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 553 

Figure. 4. The temperature dependence of the carbon-use efficiency. (A) A scatterplot showing 554 
the relationship between the natural logarithm of the carbon-use efficiency (CUE)  and standardised 555 
Boltzmann temperature up to the CUE break-point (Fig.3) for the pooled dataset of 18 species, where 556 
Tc = 20°C and k is the Boltzmann constant (8.62 × 10−5 eV). The fitted line represents the fixed 557 
effect of a linear mixed effects model fitted to the data using the Boltzmann-Arrhenius equation (see 558 
Methods). Values of ln(CUE) have been standardised by dividing by the species-specific intercept 559 
derived from the random effects of the mixed effects model. This standardisation was for visualisation 560 
of the data only.  The plot demonstrates that the CUE decreases up to the CUE break-point 561 
temperature with a consistent temperature dependence, equating to an average activation energy ( 562 
𝐸𝑎

  𝐶𝑈𝐸) of -0.12eV. (B) Boxplot of the species-specific 𝐸𝑎
  𝐶𝑈𝐸  values derived from the linear mixed 563 

effects model. The bold horizontal line corresponds to the median value, the top and bottom of the 564 
box correspond to the 75

th
 and 25

th
 percentiles and the whiskers extend to the largest and smallest 565 

values no greater or less than 1.5 ×  the interquartile range, beyond which the points are plotted as 566 
outliers. 567 

 568 

 569 

 570 
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