Strategies to improve photosynthetic nitrogen-use efficiency with no yield penalty: lessons from late-sown winter wheat

Running title: Strategies to improve photosynthetic nitrogen-use efficiency

Lijun Yina, Haicheng Xub, Shuxin Donga, Jinpeng Chua, Xinglong Daia, Mingrong Hea*

a Collaborative Innovation Team of Shandong Wheat-Corn Crops; National Key Lab. of Crop Biology, Key Lab. of Crop Ecophysiology and Farming System, Ministry of Agriculture, Agronomy College of Shandong Agricultural University, Tai’an 271018, Shandong, P.R. China.

b Yellow River Delta Agricultural Hi-tech Industrial Demonstration Zone, Guangbei Farm Zhongxin Street 19, Dongying, Shandong, P.R. China.

*Corresponding author. Tel: +86 05388244018

E-mail addresses: yinlijun326@163.com (Lijun Yin); xuhaich@126.com (Haicheng Xu); dongshuxin666666@163.com (Shuxin Dong); chuJP@sdau.edu.cn (Jinpeng Chu); adaisdny@163.com (Xinglong Dai), mrhe@sdau.edu.cn (Mingrong He).

Highlight

Optimal nitrogen allocation at several integration levels accounts for improved canopy PNUE while maintaining high grain yield in winter wheat

Abstract

Improving canopy photosynthetic nitrogen-use efficiency (PNUE) may maintain or even increase yield with reduced nitrogen (N) input. In this study, later-sown winter wheat was studied to reveal the mechanism underlying improved canopy PNUE while maintaining high yield. N allocation at several levels was optimised in late-sown wheat plants. N content per plant increased. Increased N was allocated to the flag leaf and second leaf, and to ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) in upper leaves. Constant or reduced N was allocated to leaf 3, leaf 4, and Rubisco in lower leaves. The specific green leaf area nitrogen (SLN) of upper leaves increased, while that of lower leaves remained unchanged or decreased. N allocation to the cell wall decreased in all leaves. As a result, the maximum carboxylation rate of upper leaves increased, and
that of lower leaves remained constant or decreased. CO₂ diffusion capacity was enhanced in all leaves. Outperformance by light-saturated net photosynthetic rate (P_{max}) over SLN led to improved PNUE in upper leaves. Enhanced P_{max} coupled with unchanged or decreased SLN resulted in improved PNUE in lower leaves. High yield was maintained because enhanced photosynthetic capacity at the leaf and whole plant levels compensated for reduced canopy leaf area.

Keywords

Leaf mass per area, Light-saturated net photosynthetic rate, N allocation, Photosynthetic nitrogen-use efficiency, Specific green leaf area nitrogen, Winter wheat

Abbreviations

C_c, chloroplastic CO₂ concentration
C_i, intercellular CO₂ concentration
ETR, total electron transport rate
g_m, mesophyll conductance
g_s, stomatal conductance
J_{max}, light-saturated potential rate of electron transport
LMA, leaf mass per area
N_m, the mass of nitrogen in the leaf per total mass of leaf
P_{max}, light-saturated net photosynthetic rate
$PPFD$, photosynthetic photon flux density
$PNUE$, photosynthetic nitrogen-use efficiency
Rubisco, ribulose-1, 5-bisphosphate carboxylase/oxygenase
R_r, nitrogen allocated to Rubisco
SLN, specific green leaf area nitrogen
V_{cmax}, maximum carboxylation rate

Introduction

Wheat ($Triticum aestivum$ L.) provides 20% of the calories and protein consumed by humans (Reynolds et al., 2012). An increase in crop yield by 70% is needed if we are to meet the projected demand for food
by 2050 (Tilman et al., 2011; Ray et al., 2013). The amount of nitrogen (N) applied will increase with the growing demand for food production in the future (Li et al., 2017). Increased economic costs and environmental concerns have heightened the desire to reduce crop N input while maintaining or even increasing grain yield (Cassman et al., 2003; Davidson et al., 2015; Zhang et al., 2015). Therefore, improving N-use efficiency (NUE) has become a top priority for crop improvement. NUE is defined as grain yield per unit of N available (from soil and/or fertiliser) and can be further divided into N-uptake efficiency and N-utilisation efficiency (UTE) (Moll et al., 1982). UTE, defined as grain yield per unit of N taken up, is an important parameter for determining the efficiency with which crop plants utilise N to achieve growth and grain yield (Foulkes et al., 2009).

At the end of the 1970s, the concept of plant N productivity, defined as the increase in plant dry matter per unit time and per unit N content, was introduced to interpret the dependency of plant growth on internal N (Ingestad et al., 1979). Following Lambers et al. (1990) and Garnier et al. (1995), plant N productivity was expressed as the product of N allocation to leaves within the plant and photosynthetic N use efficiency (PNUE). The latter was defined as the ratio between photosynthetic rate and N concentration in leaves. As most of the grain dry matter at maturity in wheat is contributed by photosynthates produced by leaves during the post-anthesis stage (Roberto et al., 2010; Carmo-Silva et al., 2017), UTE at the whole-plant level is dependent on N allocation to leaves and the PNUE of leaves during the post-anthesis stage.

Plants change N allocation to maximise their carbon assimilation at several integration levels. First, they allocate a given amount of N over a small or a large plant population through trade-offs between plant density per unit of land and N content in individual plants. Second, they change the fraction of N invested in leaves, stems and roots. Third, they modulate leaf area per unit N invested in leaves by altering their anatomy. Fourth, they change the relative investment of N among photosynthetic components. Small changes in N allocation can greatly affect the light-saturated photosynthetic rate (P_{max}) and PNUE, and therefore plant performance (Feng et al., 2009).

Strategies to improve PNUE have been proposed for many species (Poorter et al., 1998; Davey et al., 1999; Pang et al., 2014; Rotundo et al., 2016). Most studies have proposed that the potential benefit of increased photosynthetic capacity for PNUE can be realised only when it is not associated with increases in leaf mass per area ($LMA, \text{ g m}^{-2}$) or specific leaf N content (N content per unit leaf area, SLN), as an increase in LMA positively affects SLN and therefore reduces PNUE (Field and Mooney, 1986; Hirose et al., 1994; Hikosaka et al., 1995; Boote et al., 2003; Anand et al., 2007). However, a strategy that results in lower SLN may limit crop yield under some conditions, particularly those designed to produce high yields. Actually, previous studies have suggested that N remobilisation from vegetative tissues may be...
essential as a mobilisable N reservoir to sustain grain yield in cereal crops (Horton, 2000; Barbottin et al., 2005). The amount of N accumulated at anthesis largely determines the amount of N remobilised during grain filling (Martre et al., 2003; Pask et al., 2012). Taken together, these findings suggest that alternative approaches need to be explored to improve PNUE while maintaining high or even increasing grain yield.

Interspecific or intraspecific variations in PNUE have been explained by differences in the fraction of light absorbed by the leaf, CO₂ partial pressure at the intercellular space or at carboxylation sites within chloroplasts, N allocation to photosynthetic versus non-photosynthetic functions, N partitioning between light harvesting complexes, electron transport and CO₂ fixation, activation state or specific activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco), respiration in the light, and SLN (Field and Mooney, 1986; Evans et al., 1989; Quick et al., 1991; Lambers et al., 1992; Pons et al., 1994; Zhu et al., 2007).

Global warming over past decades has provided an additional growing period prior to wintering that has encouraged farmers to delay the winter wheat sowing date (Xiao et al., 2013, 2015). Previous studies have indirectly suggested that delayed sowing of winter wheat may have advantages in crop productivity as a function of plant N use (Widdowson et al., 1987; Ehdaie et al., 2001; Weiss et al., 2003; Sun et al., 2007; Jalota et al., 2013; Ding et al., 2016; Rasmussen et al., 2016). Our recent study suggested that delayed sowing improves UTE while maintaining a high yield by increasing spike grain weight with fewer spikes per unit area (Yin et al., 2018), suggesting concurrent improvement in PNUE and grain productivity at the whole-plant level. The following questions have arisen from these results: (i) What causes late-sown wheat plants to have a higher PNUE? (ii) How is coupling between improvement in PNUE at the whole-plant level and high grain yield at the canopy level achieved? To answer these questions, photosynthetic traits in plants, such as leaf gas exchange, chlorophyll fluorescence, Rubisco catalytic properties, and CO₂ diffusion capacity, were investigated along with N allocation at the canopy, whole-plant, leaf, and cellular levels. Our main goal was to test the hypothesis that optimal N allocation at several integration levels improves PNUE and grain productivity at the whole-plant level, which in turn results in improved canopy PNUE while maintaining high yield.

Materials and methods

Plant material and growing conditions

Tainong 18, a widely planted winter wheat cultivar, was grown in the field at the experimental station of Shandong Agricultural University, Taian, Shandong, China during the 2015–2016 and 2016–2017 growing seasons. The preceding crop was summer maize. The soil was sandy loam with a pH of 8.0. The
contents of organic matter (Walkley and Black method), total N (semi-micro Kjeldahl method), available phosphorus (P; Olsen method), and available potassium (K; Dirks–Sheffer method) in the 0–20-cm soil layer were 12.0, 1.0, 25.1, and 47.0 mg kg\(^{-1}\) during 2015–2016 and 12.1, 1.0, 25.3, and 47.1 mg kg\(^{-1}\) during 2016–2017, respectively. Rainfall levels during the growing seasons of 2015–2016 and 2016–2017 were 144.9 and 168.3 mm, respectively.

Seeds were sown at a density of 405 plants m\(^{-2}\), the optimal planting density of Tainong 18 for higher yield and NUE (Dai et al., 2013), in 2015 and 2016 on 8 October (normal sowing) and 22 October (late sowing) using a 12-row planter with 0.25-m row spacing. The cumulative temperature values (sum of daily average air temperature) prior to wintering of the normal and late-sown treatments were 679.4 and 444.5°C d during the 2015–2016 growing season and 682.4 and 449.5°C d during the 2016–2017 growing season, respectively. The plots were arranged in a completely random design with three replicates. The size of each subplot was 20.0 × 3.0 m. Basal fertilisation of each subplot included N as urea, P as calcium superphosphate, and K as potassium chloride at rates of 120 kg ha\(^{-1}\) N, 80 kg ha\(^{-1}\) P\(_2\)O\(_5\), and 120 kg ha\(^{-1}\) K\(_2\)O, respectively. An additional 120 kg ha\(^{-1}\) N as urea was applied at the beginning of the jointing stage. Irrigation was carried out before wintering, at jointing, and at anthesis, with approximately 60 mm each time. Pests and diseases were controlled chemically. No significant incidences of pests, diseases, or weeds occurred in any of the subplots.

Crop measurement

Biomass and nitrogen content of individual plant and leaves

Plants on 0.2 m\(^2\) were taken as samples and counted in each subplot at 7-day intervals from anthesis to maturity. All individual plants were divided into flag leaf, second leaf, leaf 3, leaf 4, and the remaining parts. The planar green area of each leaf was measured (in cm\(^2\)) using a green area meter (Li-Cor 3100, Li-Cor, Inc., Lincoln, NE, USA). Biomass was measured after oven drying to constant mass at 75°C. The samples were ground, and N mass per unit dry mass was determined using an elemental analyser (Rapid N Exceed, Elementar, Langenselbold, Germany). The \(LMA\) (g m\(^{-2}\) green leaf area) and \(SLN\) (g N m\(^{-2}\) green leaf area) values were calculated.

Grain yield, yield components, plant N productivity, and UTE

Plants were harvested from a 2.0-m × 6-row (1.5 m) quadrat in each subplot as described by Dai et al. (2013). The grain was air-dried, weighed, and adjusted to standard 12% moisture content (88% dry matter, kg ha\(^{-1}\)). This was considered grain dry matter yield.

Plant N productivity was defined as the increase in plant dry matter per unit time and per unit N content.
UTE was defined as grain yield per unit of N taken up (Moll et al., 1982).

Biomass and nitrogen content of the cell wall

Biomass and nitrogen content of the cell wall were measured according to the procedures described by Lamport (1965) and Onoda et al. (2004). Approximately 10 mg of freeze-dried leaves was extracted in 1.5 mL of buffer (50 mm tricine, pH 8.1) containing 1% PVP40 (average molecular weight 40,000, product no. 1407; Sigma Chemical Co., St Louis, MO, USA). The sample was vortexed and centrifuged at 12,000 g for 5 min (AG 5424; Eppendorf, Hamburg, Germany), and the supernatant was carefully removed. The pellet was resuspended in buffer without PVP containing 1% sodium dodecyl sulphate (SDS), incubated at 90°C for 5 min and centrifuged at 12,000 g for 5 min. This was repeated, and then two washes with 0.2 m KOH, two washes with deionised water, and then two washes with ethanol were carried out. The tube containing the pellet was oven-dried at 80°C. The remaining dry mass of the pellet was assumed to represent the leaf cell wall biomass, and N content was determined on 2–5 mg of material using the elemental analyser.

Biomass and Rubisco nitrogen content

The *Rubisco* content of each layer leaf at anthesis was determined according to Makino et al. (1985, 1986). Briefly, leaves were sampled and immersed in liquid N and then stored at −70°C. A 0.5-g aliquot of leaves was ground in a buffer solution containing 50 mM Tris-HCl (pH 8.0), 5 mM β-mercaptoethanol, and glycerol 12.5% (v/v), and the extracts were centrifuged for 15 min at 1,500 g at 2°C. The supernatant was mixed with dissolving solution containing 2% (w/v) SDS, 4% (v/v) β-mercaptoethanol, and 10% (v/v) glycerol, and the mixture was boiled in water for 5 min for the protein electrophoresis assay. An electrophoretic buffer system was used with sodium dodecyl sulphate–polyacrylamide gel electrophoresis in a discontinuous buffer system with a 12.5% (w/v) separating gel and a 4% (w/v) concentrated gel. The gels were washed with deionised water several times, dyed in 0.25% Coomassie Blue staining solution for 12 h, and decolourised until the background was colourless. Large subunits and relevant small subunits were transferred to a 10-ml cuvette with 2 ml of formamide and washed in a 50°C water bath at room temperature for 8 h. The wash solution was measured at 595 nm using background glue as the blank and bovine serum albumin as the standard protein. Because the amount of N per unit *Rubisco* is 16% (Field and Mooney, 1986), *Rubisco* N content per unit leaf area was calculated as *Rubisco* content multiplied by 16%.

Relative amount of mRNA
Total RNA was extracted from frozen leaf discs using Trizol according to the manufacturer’s specifications. RNA yield was determined using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA), and integrity was evaluated by agarose gel electrophoresis and ethidium bromide staining.

A two-step reaction process of reverse transcription and polymerase chain reaction (PCR) was used for quantification. Each reverse transcription reaction had two steps. The first step was 0.5 μg RNA, 2 μl of 4× g DNA wiper Mix and 8 μl of nuclease-free H2O. Reactions were performed in a GeneAmp® PCR System 9700 (Applied Biosystems, Foster City, CA, USA) for 2 min at 42°C. The second step was to add 2 μl of 5× HiScript II Q reverse transcription SuperMix IIa. Reactions were performed in a GeneAmp® PCR System 9700 for 10 min at 25°C, 30 min at 50°C, and 5 min at 85°C. The 10 μl of reverse transcription reaction mix was diluted ×10 in nuclease-free water and held at −20°C. Real-time PCR was performed using the LightCycler® 480 II Real-time PCR instrument (Roche, Basel Switzerland) with 10 μl of PCR reaction mixture that included 1 μl of cDNA, 5 μl of 2× QuantiFast® SYBR® Green PCR Master Mix (Qiagen, Hilden, Germany), 0.2 μl of forward primer, 0.2 μl of reverse primer and 3.6 μl of nuclease-free water. Reactions were incubated in a 384-well optical plate (Roche) at 95°C for 5 min, followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. Each sample was run in triplicate for the analysis. At the end of the PCR cycle, a melting curve analysis was performed to validate specific generation of the expected PCR product. The primer sequences were designed in the laboratory and synthesised by Generay Biotech (Generay, PRC) based on the mRNA sequences obtained from the NCBI database as follows: AGTAGCTGCCGAATCTTCT.

The expression levels of mRNAs were normalised to GAPDH and were calculated using the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001).

Activated and inactivated Rubisco content

Initial and total Rubisco activities were determined according to a procedure described by Keys and Parry (1990). Initial activity was determined by adding 25 μl of supernatant to 475 ml of a CO2-free assay buffer containing 100 mM bicine, pH 8.2, and 20 mM MgCl2, to which NaH14CO3 (7.4 kBq μmol−1) and RuBP had been added to concentrations of 10 and 0.4 mM, respectively, immediately prior to adding the extract. Total activity was determined by incubating 20 ml of extract for 3 min in 980 ml of the same assay buffer without RuBP, allowing for carbamylation of all available active sites. The assay was started by adding 0.4 mM RuBP as indicated above. The Rubisco activation state was determined from the ratio of initial to total activity. The inactive Rubisco content was the difference between the total amount of Rubisco and active Rubisco content.
Leaf gas-exchange and fluorescence measurements

Thirty culms with the same flowering date were tagged at anthesis. Gas-exchange measurements were conducted at intervals of 7 days from anthesis to maturity. The leaf light-saturated net photosynthetic rate \(\left(P_{\text{max}} \right) \), stomatal conductance \((g_s) \), and intercellular CO\(_2\) concentration \((C_i) \) of six tagged plants per plot were determined simultaneously. The average \(P_{\text{max}} \) values of the six plants in each plot were taken as a replicate. \(P_{\text{max}} \) was measured from 9:00 to 11:00 using a portable photosynthesis system (Li6400; LI-COR) at a light intensity of 1,200 \(\mu\text{mol m}^{-2}\text{s}^{-1} \). Leaf temperature during the measurements was maintained at 27.0 ± 0.1°C. The ambient CO\(_2\) concentration in the leaf chamber \((C_{a-c}) \) was adjusted as the atmospheric CO\(_2\) concentration \((C_a) \) (410 ± 1.5 \(\mu\text{mol CO}_2\text{ mol}^{-1} \)), and relative humidity was maintained at 60%. Data were recorded after equilibration to a steady state (~10 min). PNUE was calculated by dividing \(P_{\text{max}} \) by SLN.

Steady-state fluorescence \((F_s) \), dark-adapted minimum fluorescence \((F_o) \), dark-adapted maximum fluorescence \((F_m) \), and light-adapted maximum fluorescence \((F_{m'}) \) were simultaneously measured using a portable fluorescent instrument (FMS-2, Hansatech, King’s Lynn, UK). Data were recorded after equilibration to a steady state. The maximum capture efficiency of excitation energy by open PSII reaction centres \((F_v/F_m) \) and actual capture efficiency of excitation energy by open PSII reaction centres \((F_v'/F_{m'}) \) were estimated according to Genty et al. (1989).

Measurement of mitochondrial respiration rate in the light \((R_d) \) and the CO\(_2\) compensation point related to \(C_i \) \((\Gamma^*) \)

\(R_d \) and \(\Gamma^* \) were measured by the following steps, which utilised the photorespiration rate being dependent on and \(R_d \) being independent of photosynthetic photon flux density \((PPFD, \text{ reviewed by Brooks and Farquhar, 1985; Bernacchi et al., 2001}) \). When the \(P_{\text{max}}/C_i \) response curves were prepared at a series of CO\(_2\) concentrations and at a battery of \(PPFDs \), they intersected at one point where \(P_{\text{max}} \) was the same at different \(PPFDs \). Therefore, \(P_{\text{max}} \) at that point represented \(-R_d\), and \(C_i \) represented \(\Gamma^* \). In the present experiment, \(R_d \) and \(\Gamma^* \) were measured on different leaf layers from 0:00 h to 4:00 h (Brooks and Farquhar, 1985; Guo et al., 2005, 2007). \(PPFDs \) were controlled as a series of 150, 300, and 600 \(\mu\text{mol photons m}^{-2}\text{s}^{-1} \). At each \(PPFD \), \(C_{a-c} \) was adjusted as a series of 25, 50, 80 and 100 \(\mu\text{mol CO}_2\text{ mol}^{-1} \). The leaves were fixed in a leaf chamber with a \(PPFD \) of 600-\(\mu\text{mol photons m}^{-2}\text{s}^{-1} \) and a \(C_{a-c} \) of 100-\(\mu\text{mol CO}_2\text{ mol}^{-1} \) 30 min prior to initiating measurements.

Stomatal density and stomatal aperture
Epidermal peels were stripped from leaves. Stomatal density was recorded under a microscope (Olympus Corp., Tokyo, Japan) in a 0.196-mm² leaf area. A total of 1,000 stomatal apertures were measured under the microscope.

Electron microscopy

Approximately 1–2-mm² leaf sections were cut from the middle of each layer of leaves at anthesis using two razor blades, fixed in 2.5% glutaraldehyde (0.1 M phosphate buffer, pH 7.4), and post-fixed in 2% osmium tetroxide. Specimens were dehydrated in a graded acetone series and embedded in Epon 812. The leaf sections were cut on a Power Tome-XL ultramicrotome and stained with 2% uranyl acetate. Then, cell wall thickness, chloroplast number, and chloroplast size were examined with an H-7650 transmission electron microscope.

Calculation

Calculation of ETR: Total electron transport rate (ETR) was calculated from Eq. 1:

\[
ETR = \frac{(Fm' - Fs)}{Fm'} \times PPFD \times \alpha_{leaf} \times \beta,
\]

where \(\alpha_{leaf}\) is leaf absorbance, and \(\beta\) is the distribution of electrons between PSI and PSII. \(\alpha_{leaf}\) is dependent on chlorophyll content, and a curvilinear relationship between leaf absorption and chlorophyll content was observed by Evans (Evans et al., 1996; Evans and Poorter, 2001). However, curvature was extremely low when chlorophyll content was >0.4 mmol m⁻². According to Evans and Poorter (2001), the \(\alpha_{leaf}\) calculation demonstrates that \(\alpha_{leaf}\) is close to 0.85 (Asner et al., 1998; Manter and Kerrigan, 2004). In this study, \(\alpha_{leaf}\) was also assumed to be 0.85, and \(\beta\) was assumed to be 0.5 (Ehleringer and Pearcy, 1983; Alvertssom, 2001).

Calculation of \(V_{cmax}\): The \(V_{cmax}\) was calculated as described by Wilson et al. (2000).

\[
V_{cmax} = 6.25 \times V_r \times LMA \times N_m \times R_F.
\]

where 6.25 is the ratio of the weight of Rubisco to the weight of \(N\) in Rubisco; \(V_r\) is the specific activity of Rubisco, which is assumed to be only a function of temperature (20.7 µmol CO₂ (g Rubisco)⁻¹ s⁻¹ at 25°C); \(LMA\) is leaf mass per unit area (g m⁻²); \(N_m\) (g g⁻¹) is the mass of \(N\) in the leaf per total mass of leaf; and \(R_F\) is the apparent fraction of that \(N\) allocated to Rubisco.
Calculation of C_c and g_m: Carbon dioxide concentration in chloroplasts (C_c) and mesophyll conductance (g_m) were calculated from Eqs. 6 and 7 (Harley et al., 1992; Epron et al., 1995; Manter and Kerrigan, 2004):

$$C_c = \frac{\Gamma^* \left[ETR + 8(P_{\text{max}} + R_d) \right]}{\left[ETR - 4(P_{\text{max}} + R_d) \right]},$$
(3)

$$P_{\text{max}} = g_m \times (C_i - C_c),$$
(4)

where ETR and P_{max} were obtained from the gas-exchange and chlorophyll a fluorescence measurements conducted under saturating light; R_d and Γ^* were estimated as described above.

Statistical analysis

Our results were analysed using DPS v 7.05 software (Hangzhou RuiFeng Information Technology Co., Ltd., Hangzhou, Zhejiang, China). Multiple comparisons were made after a preliminary F-test. Means were tested based on the least significant difference at $P < 0.05$.

Results

N allocation at the canopy level, plant N productivity, grain yield, and UTE

Over two wheat growing seasons, late-sown wheat plants accumulated less N per unit area than did those sown on the normal sowing date (Fig. 1). These reduced amounts of N were spread to a smaller plant population (Table 1) with higher N content in individual plants (Fig. 2). The above-ground biomass and N uptake (AGN) per unit area at anthesis were both reduced when the sowing date was delayed from 8 to 22 October (Fig. 1). As a result, similar plant N productivity was obtained from sowing to anthesis on both sowing dates. Late-sown wheat plants also accumulated less AGN from anthesis to harvest, but more biomass per unit area than did those with the normal sowing date. An average 30.8% increase in plant N productivity was obtained from anthesis to harvest under the later sowing date over the normal sowing date for the two wheat growing seasons (Fig. 1), indicating that improved plant N productivity with delayed sowing mainly resulted from more efficient N use during the post-anthesis period.

A high grain yield of >9,000 kg ha$^{-1}$ was maintained, and UTE at harvest increased significantly when the sowing date was delayed (Table 1). In general, spike number per unit area decreased and spike grain weight increased as a result of increased spike grain number and unchanged grain weight (Table 1). These
results suggest that trade-offs between spike number per unit area and grain number per spike resulted in similar grain yields between the two sowing dates.

\textit{N allocation at the levels of the whole-plant and leaf, LMA, SLN, \(P_{\text{max}} \), and PNUE}

With increased AGN and biomass of individual plants (Fig. 2), later-sown wheat plant allocated higher fractions of AGN and biomass at anthesis to the upper leaves, including the flag leaves and second leaves. The fraction of AGN and biomass allocated to lower-position leaves, including leaves 3 and 4, remained constant or decreased (Fig. 3). Different responses to delayed sowing in LMA and SLN were observed with leaf position in the canopy, as the area of all positioned leaves was not affected (Fig. 4). The LMA and SLN of the upper leaves increased, and those of lower positioned leaves remained constant or decreased (Fig. 5). The \(N_m \) of all leaves remained unchanged. Therefore, changes in SLN were almost completely dependent on LMA.

Improvement in \(P_{\text{max}} \) and PNUE was attained in all leaves with delayed sowing. When the sowing date was delayed from 8 to 22 October, \(P_{\text{max}} \) at anthesis increased over two growing seasons by, on average, 21.5\%, 30.6\%, 14.5\%, and 25.4\% in flag leaves, second leaves, and leaves 3 and 4, respectively (Fig. 6). Overall mean PNUE values at anthesis over the two growing seasons increased by 18.5\%, 16.1\%, 20.9\%, and 31.2\% in flag leaves, second leaves, leaf 3, and leaf 4, respectively (Fig. 6). The PNUE performance of the post-anthesis stage in different leaf layers was similar to that of anthesis (Supplemental Fig. 1).

Taken together, these results suggest that strategies underlying improvements in PNUE in flag leaves and second leaves differed from that in leaves 3 and 4. Increased \(P_{\text{max}} \) coupled with higher LMA and SLN in flag leaves and second leaves contributed to improve PNUE, whereas the combination of constant or reduced SLN and enhanced photosynthetic capability in leaves 3 and 4 resulted in improved PNUE.

\textit{N allocation at the cellular level, Rubisco catalytic properties, and CO\textsubscript{2} diffusion capacity}

Optimising the functionality of Rubisco has large implications for improved plant productivity and resource use efficiency. Position-specific changes in transcript levels of the mRNAs coding Rubisco (Fig. 7) and the amount of Rubisco expressed as biomass and \(N \) content on a unit leaf area basis (Fig. 8) were observed with delayed sowing. As the allocation proportion of biomass and \(N \) to the cell wall decreased, the biomass and \(N \) content in the cell wall on a unit leaf area basis decreased for all positioned leaves (Fig. 8). The proportion of biomass and \(N \) allocated to total Rubisco and activated Rubisco in the flag and second leaves increased, while those in leaves 3 and 4 remained unchanged or decreased after the sowing date was delayed (Fig. 9). The \(V_{\text{cmax}} \) of the upper leaves increased, and that in the lower leaves remained constant or decreased (Fig. 10).
Diffusional conductance of CO₂ is the diffusive physiological determinant for the CO₂ concentration at the Rubisco carboxylation site that directly affects net photosynthetic rate by limiting the amount of substrate (CO₂) for fixation. The g_s, g_m, and associated traits, such as the number of stomata per unit area, stomatal aperture, cell wall thickness, chloroplast number, intercellular CO₂ concentration, and chloroplast CO₂ concentration, were measured or estimated. Higher g_s values were obtained in leaves at all positions with later sowing compared with normal sowing, resulting in higher intercellular CO₂ concentration (C_i) (Fig. 11), which was associated with increased stomatal number per unit area (Fig. 12) and unchanged stomatal aperture. The g_m values in all leaves at all positions were also enhanced by delayed sowing; consequently, higher chloroplast CO₂ concentration (C_c) was obtained (Fig. 11). The main reasons for this boosted g_m include decreased cell wall thickness (Figs. 13, 14), increased chloroplast number per unit leaf area (Fig. 13), and unchanged chloroplast size in response to delayed sowing.

Discussion

Manipulating PNUE at the leaf or whole-plant level will only be beneficial if it confers an improvement at the crop canopy level. As shown by Townsend et al. (2017), there is an opportunity to improve PNUE in the wheat canopy with no detriment to carbon gain or grain protein content by reducing the level of canopy N. In the present study, reduced canopy AGN at anthesis and at harvest were observed in response to delayed sowing. Later-sown wheat plants produced more biomass and grain yield on a unit area basis from anthesis to harvest with less N consumption than did those sown at a normal date, resulting in improved PNUE at the whole-plant level and UTE taking a reduced number of plants per unit area into consideration. As reduced total crop leaf area resulting from fewer plants per unit area was compensated for by enhanced photosynthetic capacity at the leaf and whole-plant levels, an improvement in PNUE at the crop canopy level was obtained while high grain yield was maintained.

It has long been recognised that the upper leaves serve as a major contributor to photoassimilates in the wheat grain (Waters et al., 1980; Simpson et al., 1983; Lopes et al., 2006), while lower leaves contribute relatively little to grain yield during the grain-filling stage. Individual leaves require progressively less N from the top to the bottom of a canopy to maximise carbon assimilation (Gastal and Lemaire, 2002). Thus, an optimal correlation between the distribution of photosynthetic capacity, light, and SLN in flag leaves and second leaves is the main target for gains in yield potential, whereas leaves 3 and 4 are the main targets for gains in PNUE (Townsend et al., 2018). In the present study, AGN at anthesis increased in individual plants due to a reduced number of plants per unit area. Leaf position-specific changes in N
allocation were observed. N allocation to the upper leaves, such as the flag leaf and second leaf, increased, while N allocation to lower leaves, such as leaves 3 and 4, remained unchanged or decreased.

Canopy-level PNUE is a complex trait involving many plant characteristics and processes from leaf anatomy and composition to leaf physiology. Earlier studies concluded that increasing PNUE without considering grain yield required de-coupling of photosynthetic capacity and SLN. Strategies to improve PNUE while maintaining or increasing yield are lacking. This could potentially be achieved when P_{max} is improved more than SLN.

Leaf conductance of CO$_2$ and Rubisco kinetic parameters play key roles in carbon assimilation that are necessary for a proper understanding of photosynthetic performance under field conditions. High photosynthetic efficiency intrinsically demands tight coordination between traits related to CO$_2$ diffusion capacity and leaf biochemistry. V_{max} is the measure of the process by which Rubisco catalyses ribulose-1,5-bisphosphate (RuBP) with CO$_2$ to produce the carbon compounds that eventually become triose phosphates (e.g. glyceraldehyde-3P), the building block for sugars and starches. According to Wilson et al. (2000), variations in V_{max} can be explained by changes in LMA, N_m, and the N allocated proportion to Rubisco (R_F). In the present study, N_m remained unchanged in all leaves. The LMA and R_F values in the flag and second leaves increased in response to delayed sowing, resulting in improved V_{max}. However, V_{max} decreased in leaves 3 and 4, while R_F remained unchanged in leaves 3 and 4, leading to unchanged V_{max} in leaf 3 and a decrease in V_{max} in leaf 4. The parallel increase between LMA and R_F disagrees with a previous observation in which smaller N partitioning into Rubisco was observed against larger N partitioning into cell walls with increasing LMA (Poorter and Evans, 1998; Onoda et al., 2004; Takashima et al., 2004; Wright et al., 2005; Harrison et al., 2009; Hidaka et al., 2009). The main reason for this difference may be related to whether interspecific (previous study) or intraspecific comparisons were made (present study).

As V_{max} represents the maximum carboxylation rate under both light-saturated and CO$_2$-saturated conditions, P_{max} was measured under light saturation but at a normal ambient CO$_2$ concentration; therefore, the difference between the two parameters reflected a limitation on photosynthetic capacity exerted by the CO$_2$ supply.

The g_m value, a limiting factor for CO$_2$ diffusion to carboxylation sites in the stroma, is usually tightly coregulated with g_s (Flexas et al., 2013). The g_m value depends on the surface area of mesophyll cells exposed to the intercellular air space and the thickness of the mesophyll cell walls (Evans et al., 1994, 2009; Tholen and Zhu, 2011; Tosens et al., 2012). The finding that g_m is constrained by large LMA has been reviewed previously (Flexas et al., 2008), and the underlying reason is mostly related to the thicker cell walls observed in species with high LMA, which significantly limits CO$_2$ diffusion inside leaves.
(Parkhurst, 1994; Hanba et al., 1999; Wright et al., 2005; Hidaka et al., 2009; Peguero-Pina et al., 2012; Tosens et al., 2012; Tomás et al., 2013). In contrast to previous reports, thinner cell walls in leaves at all positions were observed with larger LMA due to reduced biomass allocation to the cell wall under the delayed sowing condition. Moreover, an increase in the number of chloroplasts per unit leaf area allowed for a larger surface area of mesophyll cells exposed to intercellular air space. Higher g_s values were obtained in leaves at all positions on plants sowed later due to an increased number of stomata per unit area and an unchanged stomatal aperture, which is also helpful for increasing chloroplastic CO$_2$ concentration (C_i). Combining these observations, we propose that the dominant mechanism for improved P_{max} in lower leaves in the canopy is enhanced CO$_2$ diffusion capacity, and that in the upper leaves is dependent on the combination of Rubisco catalytic properties and CO$_2$ diffusion capacity.

Conclusion

Optimal N allocation was achieved at several integration levels in response to delayed sowing. A limited amount of N was spread over a reduced plant population at the crop-canopy level, which in turn resulted in increased N content in individual plants. An increased fraction of N was allocated to upper leaves, including the flag and second leaves, which are main contributors of photoassimilates to grain filling. A decreased fraction of N was allocated to lower leaves, including leaves 3 and 4, which contribute relatively little to grain yield during grain filling. At the leaf level, N_m was constant between the two sowing dates. The LMA of upper leaves increased as a result of investing more biomass in a given area. As N_m remained constant, the SLN of these leaves increased, whereas LMA and SLN of the lower leaves remained unchanged or decreased. At the cellular level, larger proportions of N were allocated to Rubisco (both total and activated), which alone or along with increased LMA increased V_{cmax} in the upper leaves, while it remained unchanged or decreased in the lower leaves. Higher g_s values were obtained in leaves at all positions with later sowing due to the increased number of stomata per unit area and unchanged stomatal aperture, which is helpful for increasing C_i. Thinner cell walls and an increased number of chloroplasts per unit leaf area allowed for increases in g_m and C_c. Tight coordination between Rubisco catalytic properties and CO$_2$ diffusion capacity led to improved P_{max} in the upper leaves, whereas improvement in P_{max} in lower leaves is dependent on enhanced CO$_2$ diffusion capacity. Outperformance by P_{max} over SLN led to improved PNUE in upper leaves. Enhanced P_{max} coupled with unchanged or decreased SLN resulted in improved PNUE in lower leaves. In summary, optimal N allocation accounted for the improvement in PNUE at the crop-canopy level while maintaining a high grain yield.
Acknowledgment

This work was supported by the Chinese National Basic Research Program (2015CB150404) and Funds of Shandong "Double Top" Program (SYL2017YSTD05).
References

Fig. 1. Aboveground N uptake (AGN) at anthesis (blank column) and maturity (blank column plus dark grey column), aboveground biomass at anthesis (blank column) and maturity (blank column plus dark grey column), N productivity from sowing to anthesis and from anthesis to maturity of winter wheat over two growing seasons. Vertical bars indicate standard error. Columns as follows: blank, aboveground AGN and biomass at anthesis; black, aboveground AGN and biomass from anthesis to maturity; light grey, N productivity.
Fig. 2. Biomass and aboveground nitrogen uptake (AGN) per individual plant at anthesis in winter wheat over two growing seasons. Vertical bars indicate standard errors. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 3. Biomass and N allocation proportion to flag leaf, second leaf, leaf 3, and leaf 4 in per individual winter wheat plant at anthesis over two growing seasons. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 4. Area per individual leaf at different positions during anthesis in winter wheat over two growing seasons. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 5. Leaf mass per area (LMA) and specific leaf nitrogen content (SLN) of different leaf layers at anthesis in winter wheat over two growing seasons. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 6. Light-saturated net photosynthetic rate (P_{max}) and photosynthetic nitrogen use efficiency ($PNUE$) of different leaf layers at anthesis in winter wheat over two growing seasons. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 7. Transcript levels of mRNAs coding Rubisco per unit leaf area of different leaf positions at anthesis in winter wheat during the 2016-2017 season. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 8. Rubisco biomass and N content, cell wall biomass and N content, activated Rubisco biomass and N content, and inactivated Rubisco biomass and N content per unit leaf area at different leaf positions during anthesis of winter wheat in the 2016-2017 season. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 9. Biomass allocation to total Rubisco, N allocation to total Rubisco, biomass allocation to cell wall, N allocation to cell wall, biomass allocation to activated Rubisco, N allocation to activated Rubisco, biomass allocation to inactivated Rubisco, and N allocation to inactivated Rubisco per unit leaf area of different leaf positions at anthesis of winter wheat during the 2016-2017 season. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 10. Maximum carboxylation rate limited by Rubisco (V_{cmax}) per unit leaf area at different leaf positions during anthesis of winter wheat in the 2016-2017 season. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 11. Stomatal conductance (g_s), intercellular CO$_2$ concentration (C_i), mesophyll conductance (g_m), and choroelastic CO$_2$ concentration (C_c) per unit leaf area at different leaf positions during anthesis in winter wheat over two growing seasons. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 12. Stomatal number per unit leaf area at different leaf positions during anthesis in winter wheat over two growing seasons. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 13. Cell wall thickness and chloroplast number per unit leaf area at different leaf positions during anthesis of winter wheat in the 2016-2017 season. Vertical bars indicate standard error. Columns as follows: black, 8 October; dark grey, 22 October.
Fig. 14. Estimates of cell wall thickness in winter wheat leaf (L1-1, flag leaf on 8 October; L1-2, flag leaf on 22 October; L2-1, second leaf on 8 October; L2-2, second leaf on 22 October; L3-1, leaf 3 on 8 October; L3-2, leaf 3 on 22 October; L4-1, leaf 4 on 8 October; L4-2, leaf 4 on 22 October) with normal and late sowing at anthesis by electron microscopy in the 2016-2017 season. All pictures are magnified 100,000×.
Table 1. Grain yield, yield components, and nitrogen utilization efficiency (UTE) at harvest for two sowing dates over two wheat growing seasons. Values are means±standard errors of three replicates per treatment.

<table>
<thead>
<tr>
<th>Season</th>
<th>Sowing date</th>
<th>Grain yield (kg ha(^{-1}))</th>
<th>Spike number (10(^3) ha(^{-1}))</th>
<th>Grain number per spike</th>
<th>Thousand grain weight (g)</th>
<th>UTE (kg kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-2016</td>
<td>8-Oct</td>
<td>9316.7±232.9a</td>
<td>662.4±16.6a</td>
<td>37.2±0.93b</td>
<td>39.5±0.94a</td>
<td>31.4±0.85b</td>
</tr>
<tr>
<td></td>
<td>22-Oct</td>
<td>9243.7±225.1a</td>
<td>590.1±14.7b</td>
<td>41.8±1.1a</td>
<td>39.4±1.0a</td>
<td>34.7±0.92a</td>
</tr>
<tr>
<td>2016-2017</td>
<td>8-Oct</td>
<td>9432.8±243.8a</td>
<td>670.5±16.8a</td>
<td>37.6±1.0b</td>
<td>39.2±1.0a</td>
<td>32.3±0.81b</td>
</tr>
<tr>
<td></td>
<td>22-Oct</td>
<td>9378.6±238.6a</td>
<td>605.7±15.3b</td>
<td>41.6±1.2a</td>
<td>39.6±1.1a</td>
<td>36.0±0.86a</td>
</tr>
</tbody>
</table>

Values followed by the same letter within a column and the same season are not significantly different at P < 0.05 as determined by the LSD test.