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Abstract
The connectivity and information pathways of visual 
cortex are well studied, as are observed physiological 
phenomena, yet a cohesive model for explaining visual 
cortex processes remains an open problem. For a 
comprehensive understanding, we need to build models 
of the visual cortex that are capable of robust real-world 
performance, while also being able to explain 
psychophysical and physiological observations. To this 
end, we demonstrate how the Recursive Cortical 
Network (George et al., 2017) can be used as a 
computational model to reproduce and explain 
subjective contours, neon color spreading, occlusion 
vs. deletion, and the border-ownership competition 
phenomena observed in the visual cortex. 

Keywords: Visual cortex; Psychophysics; RCN; Bayesian 
inference 
 

Introduction 
For a comprehensive understanding of visual cortex, 
we need to build models that are capable of robust 
real-world performance, while also being able to 
explain psychophysical and physiological 
observations. One avenue of research considers the 
tasks of recognition, segmentation, reasoning etc. as 
queries on a generative model (Lee & Mumford, 
2003). Many visual illusions can also be understood as 
optimal Bayesian inference in a generative model, and 
they often provide insights into to the mechanisms 
underlying visual perception. In a recent publication 
(George et al., 2017), we introduced the Recursive 
Cortical Network (RCN), a generative model for vision, 
and demonstrated its real-world performance. Here we 
show that RCN can reproduce and explain well-known 
psychophysics experiments and physiological 
observations: (1) subjective contour effects (Kanizsa, 
1976), (2) and neon color spreading, (3) border-
ownership response, and (4) occlusion versus deletion 
effect. All these phenomena are explained as the 
byproduct of doing inference in the model that was 

constructed and learned for parsing a visual scene1. 
We argue that these visual phenomena are necessary 
side effects of the factorizations employed by the 
model to achieve strong generalization.  
 

Recursive Cortical Network (RCN) 

RCN is a structured probabilistic graphical model 
(PGM) for vision consisting of a contour hierarchy of 
features that interacts with an appearance canvas (Fig 
1A). The contour hierarchy is learned as alternating 
layers of feature detectors, pools and lateral 
connections (Fig 1B). In Figure 1B, each filled circular 
node is a binary random variable, the open circular 
nodes are categorical random variables, and the 
rectangles are factors that encode compatibility. 
Pooling provides invariance to local deformations, 
similar to the pooling in convolutional neural nets. The 
lateral connections, grey square ‘factor nodes’ in Fig 1 
B and C, between the pools are learned to enforce 
contour consistency between the choices in adjacent 
pools. Figure 1C shows the hierarchical decomposition 
of a rectangle in terms of simple line segments at the 
bottom to more complex features in the higher levels, 
and Figure 1D shows the details of the interactions 
between contours and surfaces. See George et al., 
(2017) for details. 
 
Parsing a scene is achieved by doing approximate 
MAP inference (inference to best explanation) using 
scheduled max-prop belief propagation (Pearl, 1988). 
The message passing schedule, which was inspired 
by biology, is as follows. A fast forward pass, which 
includes short-range lateral propagations, identifies 
nodes that are highly likely given the evidence. The 
backward pass focuses on highly active top-level 
nodes and includes longer range lateral propagations. 

                                                
1 This paper is accepted to CCN 2018. A companion summary 
paper in the same conference describes the neurobiological 
mapping of RCN. *Corresponding author. 
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The propagations are used to assemble an 
approximate MAP solution that produces a complete 
segmentation of the input scene. 

 

 
 

Figure 1: RCN generative model. See text for details. 
 

Results 
The visual phenomena that we explain share some 
commonalities. They require the interoperation of feed-
forward, feedback and lateral connections. Three of 
them involve the representation of contours and 
surfaces. All of them can be understood as the result 
of approximate optimal inference in RCN. 

Subjective Contours 

In the subjective contours illusion, people perceive an 
illusory line that is not supported by local evidence. In 
Figure 2 top left, people perceive a faint contour of a 
triangle in the blank space between the circles even 
though there is no local evidence for a border. 
Physiological results report evidence for neurons in V1 
responding to the illusory contour, albeit with a delay 
compared to the neurons responding to real contours 
(Lee & Mumford, 2003). Figure 2 columns 1 & 3 show 
a diverse of set of images where illusory contours are 
perceived. In columns 2 & 4, we show how an RCN 
that is trained to recognize regular shapes 
‘hallucinates’ illusory contours in these visual stimuli. 
What is shown in these images is the ‘inference to 
best explanation’ (MAP inference) solution at the 
lowest level of the network, obtained as a result of 
message passing as described earlier. The yellow 
portions in these images denote the bottom-up 
evidence, and the blue stars are the ‘backtraces’ that 
is part of the global MAP solution found by the 
network. The backtrace indicates that the network 
expects to see contours in the blank space to be ON 
as part of the global solution.  
 

 

 
Why does RCN produce these hallucinations as a 
result of inference, despite the lack of local evidence? 
The reason is that the local evidence in the rest of the 
image is sufficient to support the global percept of the 
object, according to the model. Since MAP inference 
finds the configuration that best explains the evidence 
in the image, it will turn ON all the features that are 
part of the global percept.  

The temporal dynamics of neuronal responses to 
subjective contours (Lee & Mumford, 2003) can be 
readily understood from the schedule of message 
propagation. During the forward pass, the features 
have only local evidence, and hence the neurons in 
blank spaces do not respond. Once forward pass 
identifies a potential global percept, that information 
flows down in the top-down messages to affect the 
beliefs in lower level nodes to turn ON some features 
that were previously OFF.  

Border Ownership Responses 
Boundaries of occluding objects are perceived as 
belonging to them, a property known as border 
ownership (von der Heydt, 2011). Several neurons in 
V1 and V2 are known to be sensitive to their border 
ownership. These cells prefer a given figure to be on 
one side of a border or the other, yet it is not possible 
to determine from local cues within a cell's classical 
receptive field whether a given contour belongs to a 
surface or not (Tyler 2011). In particular, in the earlier 
phases of the response to a stimulus, both these 
copies fire equally, and in the later phase of the 
response only the neuron with the correct surface 
selectivity maintain the response (von der Heydt, 
2011).  

Figure 2: Subjective contours. See text for details. 
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Consistent with findings presented in (von der Heydt, 
2011), RCN model has two copies of every contour 
neuron, one representing each side of the border 
ownership. However, it is the precise nature of their 
interaction in the PGM that determines how it arrives 
at the solution. Figure 3A shows the PGM fragment of 
RCN corresponding to this interaction. The feature 
copies with identical contours, but different side-of-
surface preferences interact with the contour-node 
with no preference (‘unselective’) in a noisy-OR ‘V’ 
structure. The unselective node is directly connected 
to the rendered image. On the first forward pass 
through the V-structure, bottom up evidence flows 
equally to both parents due to lack of prior preference 
for either of them. Feed forward propagations result in 
a global percept at the top level that is consistent with 
only one of the parents. The backward messages then 
convey these preferences. Since the goal of MAP 
inference is to ‘explain’ the evidence, one of the 
parents turning ON ‘explains-away’ the need for the 
other parent to turn ON. Figure 3B shows the log-
likelihoods of the border ownership nodes as a 
function of the number of message passing iterations. 
This reproduces and explains the experimentally 
observed effect.  

Neon-color Spreading 
Certain stimuli, like that in Figure 4 (left), elicit 
perception of an illusory surface with an illusory color 
in humans, an effect known as neon-color spreading 
(Bressan et al., 1997). The suggested mechanism 
behind these effects is the interplay between boundary 
completion and surface filling-in in visual cortex 
(Grossberg & Yazdanbakhsh, 2005). Notably, the 
filling in of the illusory surface respects the boundaries 
of the illusory contours.  

 
 

 

The neon color spreading effect is a natural byproduct 
of the dynamics of MAP inference in RCN. To 
understand this, consider the PGM fragments shown 
in Figures 1A and 1D. The surface modeled as a 
conditional random field (CRF) encourages continuity 
between adjacent surface nodes unless the 
intervening contour node is turned ON. As described in 
George et al., (2017), a forward pass through this 
model produces approximate edge and surface 
responses. The backward pass, which is based on 
selecting the most active hypothesis at the top level of 
the contour hierarchy, will then enforce the 
corresponding contour discontinuities on the surface 
CRF.  The stimulus shown in Fig 4 (left) has sufficient 
local edge evidence to support a circle as the top level 
hypothesis in the contour hierarchy of RCN – this part 
of the inference is identical to the case of subjective 
contours described earlier. The top-down partial MAP 
configuration for contours, the circle, then influences 
the propagation in the CRF. The discontinuity imposed 
by the top-down contours will then propagate in the 
CRF with further message passing to create the fill-in 
effect.  

Occlusion vs. Deletion 
Psychophysics experiments show that humans are 
much better at detecting objects under occlusion than 
the same objects with occluded regions deleted 
(keeping the same visible portion) (Johnson & 
Olshausen, 2005). In George et al., (2017), we 
demonstrated that reasoning about occlusions leads to 
significantly higher recognition rates in RCN.   
 

Figure 3: Border ownership experiment with RCN. 
(A) PGM schematic, (B) Evolution of activation of 
two contour selective cell copies with identical RFs 
but opposing border ownership preferences. 

Figure 4: Neon-color spreading experiment with 
RCN demonstrating the neural filling-in mechanism. 
Given the input stimulus (Bressan et al., 1997) (left), 
surface-information is sequentially propagated in the 
model’s V1 (right, clockwise from top-left). 
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Figure 3: Detection under occlusion versus deletion in 
RCN. Similar to human psychophysics findings, RCN 
detection score (top-right corners), reflecting the 
confidence, is highest when the object is fully visible 
(left), followed by when it is occluded (middle), 
 
The reason behind occlusion-vs-deletion is easy to 
understand in the RCN generative model.  Deletion of 
the parts of an object is absence of evidence for those 
parts. When those same parts are missing due to 
occlusion, the model can explain away the absence of 
evidence as occlusion. Mechanistically, the portions 
that are deleted will contribute negative evidence to 
the overall hypothesis if there is no occlusion to 
explain their absence. Explaining away during 
occlusion reasoning will convert those negative 
evidences to ‘uncertain evidence’ (log-likelihood = 0). 
Figure 5 shows the log likelihood scores obtained for 
the ‘square’ hypothesis when the missing evidence is 
treated as occlusion (middle column) vs deletion (right 
column), in comparison to an intact square (left 
column).  

Discussion 
We described how the dynamics of approximate 
Bayesian inference using loopy belief propagation in 
RCN could explain several well-known psychophysical 
and physiological results.  In contrast to models that 
are constructed specifically to explain isolated 
phenomena, all these observations were explained as 
the natural byproduct of doing ‘inference to best 
explanation’ in a model that was learned for parsing a 
visual scene.  Neuro and cognitive science research 
guided the representational choices and inference 
algorithms in RCN and those were crucial for it to 
achieve state of the art performance on several real 
world benchmarks with very little training data. Our 
hope is that RCN can be also be used as tool in 
neuroscience and cognitive science experiments to 
further understand the computations in visual cortical 
circuits.  
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