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Abstract		
Motivation: Analysing multiple tumour samples from an individual cancer patient allows 
insight into the way the disease evolves. Monitoring the expansion and contraction of 
distinct clones helps to reveal the mutations that initiate the disease and those that drive 
progression; therefore, the ability to identify and track clones using genomics data is of 
great interest. Existing approaches for clonal tracking typically require the user to 
combine multiple tools that are not purpose-made. Furthermore, most methods require a 
matched normal (non-tumour) sample, which limits the scope of application. 
 
Results: We have built superFreq, a cancer exome sequencing analysis tool that calls and 
annotates somatic SNVs and CNAs and attributes them to clones. SuperFreq makes use 
of unrelated control samples and does not require matched normal samples. We 
demonstrate the ability of superFreq to track clones by combining real samples in known 
proportions to simulating a multi-sample analysis. In addition, we compared superFreq to 
other somatic SNV callers and CNA callers on exome sequencing data from cancer-
normal pairs, including 304 participants gathered from 33 cancer types in The Cancer 
Genome Atlas (TCGA). 
 
SuperFreq offers a reliable platform to identify somatic mutations and to track clones. 
SuperFreq recalled 91% of somatic SNVs identified by a consensus of four other 
methods, with a median of 1 additional somatic SNV per sample that was not found by 
any other method. CNA calls from superFreq showed good agreement with those 
generated by Sequenza, or those from ASCAT generated using matched SNP arrays. 
Using our simulated data set for testing multi-sample clonal tracking, we found that 
superFreq identified 93% of clones with a cellular fraction of at least 50%, and mutations 
were assigned to clones with high recall and close to 100% precision. In addition, 
SuperFreq maintained a similar level of performance for most aspects of the analysis 
without a matched normal control. SuperFreq is a highly adaptable method and has 
already been used in multiple different projects. 
 
Availability: SuperFreq is implemented in R and available on github at 
https://github.com/ChristofferFlensburg/superFreq. 
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Introduction		
Tracking	clonal	evolution	within	a	cancer	can	reveal	a	wealth	of	information.	It	can	
help	detect	the	cause	of	relapse	or	drug	resistance,	identify	early	driver	mutations,	
or	track	the	course	of	metastasis.	Tracking	mutations	across	multiple	samples	can	
also	be	highly	informative,	either	from	patients	or	from	model	systems,	including	
animal	models	of	cancer,	xenografts	or	cell	lines,	which	may	include	many	technical	
replicates	or	varied	experimental	conditions.	A	typical	analysis	of	multiple	cancer	
samples	from	the	same	individual	involves	calling	somatic	single	nucleotide	variants	
(SNVs)	(using	methods	such	as	multiSNV1,	VarScan	22	MuTect3,	SomaticSniper4	and	
Strelka5)	and	copy	number	alterations	(CNAs)	(using	methods	such	as	Sequenza6,	
PureCN7	and	ABSOLUTE8),	then	combining	the	calls	within	a	dedicated		clonal	
tracker	(using	methods	such	as	PhyloWGS9,	SciClone10	and	PyClone11).	The	analysis	
will	cluster	mutations	and	produce	a	phylogeny,	which	reflects	the	relationship	
between	different	clones	in	the	cancer.	This	multi-step	process	works	well	in	
capable	hands,	but	is	sensitive	to	data	quality	issues	and	to	parameter	choices.	In	
addition,	somatic	SNV	and	CNA	callers	are	not	optimized	for	downstream	use	in	
clonal	tracking,	which	makes	the	process	of	combining	the	calls	challenging.	
	
We	have	developed	superFreq,	a	pipeline	for	integrating	mutation	detection	and	
clonal	tracking	that	is	suitable	for	use	with	cancer	exome	data.	To	achieve	reliable	
clonal	tracking,	the	SNV	and	CNA	calls	need	to	be	robust	to	varying	sample	quality.	
We	use	first	order	perturbation	calculations	to	propagate	uncertainty	throughout	
the	analysis,	which	allows	us	to	take	a	wide	range	of	error	sources	into	account.	
SuperFreq	also	uses	a	set	of	reference	normal	samples	(at	least	2	samples,	5-10	
suggested,	preferably	sharing	technical	biases)	to	improve	variance	estimates	and	
detect	recurring	sequencing	artefacts.	The	use	of	reference	normals	permits	the	
analysis	of	cancer	samples	that	lack	a	suitable	matched	normal.	This	is	an	important	
consideration,	as	many	cancer	samples	are	collected	without	a	high	quality	matched	
normal.	While	there	are	many	methods	that	do	a	subset	of	these	analyses,	superFreq	
provides	an	integrated	platform	purpose	built	for	clonal	tracking.	Table	1	shows	the	
attributes	of	superFreq,	compared	to	some	commonly	used	tools	for	cancer	exome	
analysis.	
	
Below	we	describe	the	algorithms	underlying	superFreq,	with	additional	detail	
provided	in	the	Supplementary	Methods.	We	demonstrate	the	performance	of	
superFreq	with	data	from	304	TCGA	participants	with	comparison	to	other	state	of	
the	art	software.	We	provide	a	case	study	in	which	superFreq	was	used	for	multi-
sample	clonal	tracking	using	exome	data	from	a	patient	with	acute	myeloid	
leukaemia	(AML).	
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Table	1:	Properties	of	some	of	the	most	used	mutation	callers	and	clonal	trackers	in	
comparison	to	superFreq.	call	SSNV:	does	the	method	identify	somatic	SNVs.	SSNV	w/o	
normal:	does	the	method	identify	somatic	SNVs	without	a	matched	normal.	call	het	SNPs:	does	
the	method	identify	heterozygous	germline	SNPs	for	CNA	calling.	call	SCNA:	does	the	method	
call	somatic	CNAs.	CNA	w/o	normal:	does	the	method	call	CNAs	without	a	matched	normal.	
subclonal	SCNA:	can	the	method	identify	CNAs	of	multiple	different	clonalities.	call	clones:	does	
the	method	identify	clones.	multisample:	does	the	method	track	clones	across	multiple	
samples.	track	SCNA:	does	the	method	track	CNAs	across	samples.	

Methods		
The	overall	workflow	of	superFreq	is	outlined	in	Figure	1	and	described	below	with	
greater	details	proved	in	the	supplementary	methods.		
	
Initial	data	inputs	to	superFreq:	The	input	to	superFreq	is	a	set	of	indexed	BAM	
files	for	the	samples	and	reference	normals,	together	with	metadata	of	the	samples,	
reference	data	(reference	genome,	optional	capture	regions)	and	liberal	variant	calls	
in	VCF	format	for	the	samples.	
 
SNV	and	small	indel	quality	control:	SuperFreq	filters	variants	from	the	supplied	
VCF	file	using	base	quality,	mapping	quality,	and	strandedness.	Variants	present	in	
the	reference	normals	are	removed	from	the	analysis	of	somatic	SNVs,	but	common	
population	polymorphisms	are	retained	for	CNA	calling.	
 
Somatic	SNV	calling	and	annotation:	Variants	are	identified	as	somatic	if	they	
have	a	significantly	higher	variant	allele	frequency	(VAF)	in	the	cancer	compared	to	
the	normals.	If	there	is	a	matched	normal	sample	we	perform	a	Fisher	exact	test	on	
the	number	of	variant	and	reference	reads	between	the	cancer	and	the	matched	
normal.	In	the	absence	of	a	matched	normal,	a	filter	is	applied	to	exclude	variants	
with	a	population	frequency	>	0.1%	(dbSNP12	and	ExAC13).	Candidate	somatic	
variants	that	cluster	with	the	germline	in	the	clonal	tracking	are	marked	with	the	
germlineLike	flag.	The	somatic	SNV	assessment	is	summarised	in	a	quality	score	
somaticP	between	0	and	1	reflecting	the	confidence	that	the	variant	is	somatic.	For	
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downstream	analysis	of	somatic	variants,	we	typically	use	somaticP	>	0.5	as	cut-off,	
but	it	can	be	adjusted	to	favor	precision	or	recall.	Somatic	SNVs	are	annotated	using	
Ensembl	Variant	Effect	Predictor14,	and	candidate	driver	mutations	are	highlighted	
through	comparison	to	the	Catalogue	Of	Somatic	Mutations	In	Cancer15.	
 
	

 
Figure	1:	The	workflow	of	superFreq.	The	input	is	aligned	BAM	files	from	the	samples	under	
study,	and	at	least	2	reference	normals	(5-10	recommended),	as	well	as	liberal	variant	calls.	
SuperFreq	filters	the	preliminary	SNVs	for	artefacts	using	quality	scores	in	the	BAM	file,	and	
through	comparison	to	the	reference	normals.	Somatic	SNVs	are	called	from	the	remaining	
variants,	while	heterozygous	germline	SNPs	are	used	for	CNA	calling.	CNAs	are	identified	
based	on	differences	in	coverage	and	detecting	shifts	in	allele	frequency	at	heterozygous	
germline	SNPs.	Finally,	somatic	SNVs	and	CNAs	are	analysed	across	samples	to	designate	and	
track	clones.	
	
CNA	calling:	SuperFreq	uses	read	coverage	and	B-allele	frequencies	(BAFs)	at	
heterozygous	germline	variants	to	call	CNAs.	FeatureCounts16	is	used	to	determine	
the	read	count	over	each	capture	region	(exon)	for	each	sample.	The	read	counts	are	
corrected	for	GC-bias	and	MA-bias	against	the	reference	normals.	SuperFreq	runs	
limma17-voom18		with	sample	weights19	on	the	corrected	counts,	comparing	each	
sample	one-against-many	to	the	reference	normals,	resulting	in	a	log	fold	change	
(LFC)	and	t-statistic	for	each	region	which	can	be	converted	to	an	uncertainty	
measure.	SuperFreq	exploits	the	expected	property	that	most	adjacent	capture	
regions	will	share	the	same	true	LFC,	i.e.	that	the	number	of	true	copy	number	
breakpoints	is	much	smaller	than	the	number	of	capture	regions.	With	that	
assumption,	a	median	difference	between	adjacent	capture	regions	larger	than	
expected	from	the	limma-voom	variance	estimates	is	a	sign	of	underestimated	
variance,	which	is	corrected	by	adding	a	constant	to	the	variance	estimate.	 
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Heterozygous	germline	SNPs	are	identified	for	use	in	CNA	calling.	If	a	matched	
normal	is	present,	common	population	variants	that	are	close	to	50%	VAF	in	the	
matched	normal	are	used.	If	no	matched	normal	is	present,	then	variants	with	>	1%	
population	allele	frequency	with	a	sample	VAF	between	5%	and	95%	are	used.	
	
The	genome	is	segmented	into	regions	based	on	the	coverage	LFC	and	BAF.	The	
capture	regions	for	each	gene	are	merged	and	hierarchical	clustering	is	performed.	
The	most	similar	adjacent	segments	are	merged	recursively,	with	a	distance	
measure	comparing	LFC	and	BAF.	The	ploidy	of	the	sample	is	then	determined	from	
the	relative	normalisation	of	the	sample	with	respect	to	the	reference	normals.	
Different	segments	are	allowed	different	purities	for	the	copy	number	call.	This	
process	is	illustrated	in	the	maypole	plot	in	Supplementary	Figure	1,	where	ploidy	
corresponds	to	a	constant	shift	along	the	x-axis.	
 
Clonal	tracking:	The	clonality	of	each	somatic	SNV	is	calculated	based	on	the	VAF,	
accounting	for	local	copy	number.	The	clonality	of	each	CNA	is	tracked	over	samples,	
and	alterations	affecting	different	alleles	are	split	into	separate	mutations	(e.g.	AAB	
and	ABB	genotypes).	The	SNVs	and	CNAs	undergo	hierarchical	clustering	based	on	
the	clonality	and	uncertainty	across	all	samples.	The	resulting	clusters	are	required	
to	be	consistent	with	a	phylogenetic	tree.	Specifically	we	require	clonal	unitarity:	
that	the	immediate	subclones	are	not	allowed	to	have	a	significantly	higher	summed	
clonality	than	that	of	the	parental	clone.	Inconsistencies	are	resolved	by	removing	
the	clone	scoring	highest	in	a	set	of	properties	typical	of	false	clones,	such	as	
constant	clonality,	high	proportion	of	indels	compared	to	SNVs,	or	few	supporting	
mutations.	The	clustering	is	initially	performed	with	only	high	confidence	somatic	
mutations.	Mutations	with	lower	confidence	are	then	added	to	the	most	similar	
cluster,	or	discarded	if	no	sufficiently	similar	cluster	is	found.	

Results		
SuperFreq’s	ability	to	track	clones	from	exome	data	relies	on	using	SNV	and	CNA	
calls	that	are	generated	as	part	of	the	analysis	pipeline.	We	therefore	assessed	these	
elements	of	superFreq’s	performance	by	comparing	to	a	number	of	established	SNV	
and	CNA	callers.	To	provide	a	comprehensive	sample	set,	we	randomly	selected	10	
cancer-normal	pairs	from	each	of	the	33	cancer	types	included	in	The	Cancer	
Genome	Atlas	(TCGA).	Of	330	samples	that	were	selected	a	total	of	304	(92%)	were	
successfully	downloaded	and	processed.	We	also	assessed	the	performance	of	
superFreq	without	matched	normals.	Test	datasets	were	established	to	gauge	
sensitivity	for	low	purity	samples	and	subclones.	To	do	this	we	performed	in	silico	
dilution	and	slicing,	where	we	substitute	reads	from	the	cancer	with	those	from	the	
normal,	either	genome-wide	or	in	specific	genomic	intervals.	
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Figure	2	Precision	and	recall	of	somatic	SNV	calling	across	304	TCGA	participants	and	33	
cancer	types.	a)	Recall	of	somatic	SNVs	called	by	the	other	four	callers.	b)	Number	of	unique	
somatic	calls	generated	by	each	caller.	c)	Recall	of	coding	somatic	SNVs	from	superFreq	
without	a	matched	normal,	using	superFreq	cancer-normal	analysis	as	truth.	Violins	from	left:	
cancer	sample	alone	without	filtering	on	the	germlineLike	flag,	cancer	sample	alone	with	
filtering,	cancer	sample	paired	with	an	in-silico	dilution	of	the	cancer	and	matched	normal	
between	10%	and	90%,	filtered	on	the	germlineLike	flag.	d)	Number	of	false	coding	SNV	calls	
in	the	same	sample	configurations.	

Somatic	SNVs		
We	compared	the	somatic	SNVs	called	by	superFreq	on	cancer-normal	pairs	to	calls	
available	through	the	Genomics	Data	Commons	generated	with	MuSE20,	
SomaticSniper4,	Mutect23	and	Varscan22.	We	use	consensus	calls	as	a	proxy	for	true	
somatic	variants.	We	reasoned	that,	somatic	variant	calls	made	by	only	one	out	of	
the	five	methods	are	more	likely	to	be	false	positives.	The	calls	from	each	variant	
caller	were	compared	to	the	consensus	calls	from	the	other	four	methods.	
SuperFreq	detected	a	median	of	91%	of	variants	that	were	called	by	the	other	four	
callers	across	the	304	test	samples	from	TCGA	(Figure	2a).	Mutect2	had	a	similar	
median	(92%),	while	the	other	callers	were	more	sensitive,	with	95%	for	
SomaticSniper,	98%	for	MuSE	and	100%	for	Varscan2.	However,	superFreq	only	
called	a	median	of	1	somatic	SNV	that	was	not	called	by	any	other	method,	which	
was	considerably	lower	than	all	other	methods	(Figure	2b).	MuSE	called	a	median	
of	3.5	unique	variants,	Mutect2	called	a	median	of	21,	while	Varscan2	and	

a) Recall of consensus b) Unique calls
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SomaticSniper	called	230	and	7100	unique	variants	respectively.	Further	
distributions	for	the	number	of	somatic	variants	called	by	permutations	of	two	or	
three	callers	are	shown	in	Supplementary	Figure	2	using	UpSetR21.	These	results	
highlight	the	design	of	superFreq	to	prioritise	accurate	variant	calls,	which	is	an	
important	consideration	for	clonal	tracking.		

Somatic	SNV	without	a	matched	normal		
When	a	matched	normal	is	not	available,	superFreq	uses	population	frequencies	and	
clonal	tracking	to	improve	the	detection	of	somatic	SNVs.	We	estimated	the	recall	
and	false	positive	rate	for	calls	generated	without	a	matched	normal	by	comparing	
to	a	truth	set	generated	with	matched	normal	controls.	When	run	with	no	matched	
normal	superFreq	identified	a	median	of	97%	of	protein	changing	somatic	SNVs	
detected	in	the	truth	set	(Figure	2c).	However,	a	median	of	185	additional	protein	
changing	somatic	SNVs	were	also	called	(Figure	2d),	which	were	largely	composed	
of	rare	germline	variants.	We	next	filtered	the	calls	without	matched	normal	using	
the	superFreq	germlineLike	flag,	which	identifies	variants	that	are	present	clonally	
in	all	samples.	The	germline	filter	reduced	the	median	number	of	false	calls	to	62,	
but	also	lowered	the	median	sensitivity	to	82%.	This	drop	in	sensitivity	is	due	to	
clonal	somatic	mutations	being	mistaken	for	germline	variants	in	high	purity	cancer	
samples.	
	
If	multiple	cancer	samples	are	available	that	differ	in	tumour	purity,	they	can	be	
used	to	distinguish	germline	variants	from	somatic	variants.	To	simulate	this	
process,	we	diluted	the	cancer	sample	in-silico	with	sequence	data	from	the	
matched	normal	to	produce	samples	with	lower	tumour	purity	(10%-90%	of	the	
original	cancer	sample).	We	analysed	the	original	cancer	sample	together	with	the	
diluted	sample	and	the	availability	of	a	sample	with	lower	tumour	content	helped	to	
separate	somatic	variants	from	germline	variants.	Adding	a	matched	sample	with	
70%	of	the	original	purity	and	filtering	on	the	germlineLike	flag	brought	the	median	
recall	rate	up	to	91%	with	a	median	of	58	false	calls.	

CNA	calling		
SuperFreq	monitors	B-allele	frequency	and	shifts	in	coverage	compared	to	the	
reference	normals	to	generate	allele	specific	CNA	calls.	Clonalities	of	the	CNA	calls	
are	determined	for	each	segment	independently.	At	the	clonal	tracking	stage,	the	
CNAs	are	clustered	together	with	the	somatic	SNVs.	We	generated	copy	number	
calls	on	the	304	TCGA	samples	and	assessed	the	performance	of	superFreq	in	
comparison	to	calls	from	Sequenza6,	another	exome	analysis	tool,	and	ASCAT22.	The	
ASCAT	calls	were	generated	from	matched	SNP	array	data	and	lifted	over	from	hg19	
with segment_liftover23.	Sequenza	and	ASCAT	compare	the	cancer	to	a	
matched	normal	sample,	while	superFreq	instead	uses	reference	normals.		Despite	
these	different	approaches,	superFreq,	Sequenza	and	ASCAT	produced	calls	that	
were	generally	similar,	in	terms	of	relative	DNA	abundance.	There	was	slightly	
higher	agreement	between	Sequenza	and	ASCAT	(median	93%	of	the	genome),	than	
between	superFreq	and	ASCAT	(median	90%)	(blue	in	Figure	3a).	We	repeated	the	
comparison	with	stricter	criteria,	requiring	similar	segments	with	the	same	allelic	
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copy	number	call	(red	in	Figure	3a),	which	depends	on	segmentation,	ploidy	and	B-
allele	frequency.	In	this	comparison	we	saw	large	discrepancies	between	methods,	
with	a	median	of	13%	of	the	genome	in	agreement	between	Sequenza	and	ASCAT.	
SuperFreq	and	ASCAT	had	a	closer	agreement	with	a	median	of	30%,	but	with	a	
wide	spread	across	participants.	
	
As	superFreq	compares	the	read	depth	to	the	reference	normals,	the	algorithm	is	
largely	unchanged	when	running	without	a	matched	normal,	except	that	
heterozygous	germline	SNPs	are	identified	directly	from	the	cancer	sample	instead	
of	from	the	matched	normal.	To	demonstrate	this	we	compared	the	superFreq	copy	
number	calls	on	the	cancer	sample	alone	to	the	calls	in	the	matched	cancer-normal	
analysis.	The	copy	number	calls	by	superFreq	without	a	matched	normal	are	very	
similar	to	those	with	a	matched	normal,	with	close	to	100%	agreement	for	the	
relative	DNA	abundance	and	a	median	90%	agreement	for	the	stricter	comparison	
(Supplementary	Figure	3).	Similarly,	the	comparison	to	ASCAT	shows	virtually	
indistinguishable	results	to	those	generated	with	a	matched	normal.	
	
Next	we	compared	the	ploidy	calls	between	superFreq	and	ASCAT	(Figure	3b).	The	
majority	of	the	participants	had	a	ploidy	call	close	to	2	using	either	method.	
Participants	with	a	high	ploidy	call	in	superFreq	also	had	a	high	ploidy	call	in	ASCAT,	
but	there	was	a	subset	of	patients	with	moderate	or	low	ploidy	calls	in	superFreq	
that	had	high	ploidy	calls	in	ASCAT.	Comparing	superFreq	to	Sequenza	revealed	a	
similar	pattern	(Supplementary	Figure	4).	A	critical	difference	between	the	
methods	is	that	ASCAT	and	Sequenza	assume	that	all	CNAs	have	the	same	clonality,	
whereas	superFreq	accommodates	subclonal	CNAs.	The	single	clone	models	used	by	
ASCAT	and	Sequenza	fail	to	accommodate	subclonal	CNAs	at	the	true	ploidy,	but	
sometimes	find	a	good	fit	at	a	higher	ploidy.	Indeed	we	observe	that	participants	
with	large	difference	in	ploidy	between	superFreq	and	ASCAT	typically	have	
subclones	identified	by	superFreq.	An	example	of	a	sample	with	low	ploidy	and	
subclones	identified	by	superFreq,	but	with	a	high	ploidy	in	Sequenza	is	
demonstrated	in	Supplementary	Figures	5-6.		
 
In	order	to	assess	superFreq’s	sensitivity	to	CNAs	covering	small	genomic	regions	
and	those	present	at	low	purity,	we	diluted	the	cancer	sample	with	the	matched	
normal	to	simulate	lower	purity	CNAs.	We	also	generated	sliced	samples	in	which	
reads	from	set	regions	of	the	cancer	sample	replaced	those	in	the	normal	sample.	In	
this	way	we	created	samples	with	CNAs	spanning	specific	genomic	regions,	where	
we	could	control	the	size,	and	could	also	approximate	lower	tumour	purity.	Using	
the	superFreq	cancer-normal	calls	as	truth,	we	measured	the	rate	of	recall	from	
superFreq	run	on	sliced	and	diluted	samples	as	function	of	the	size	and	clonality	of	
the	CNA.	We	see	that	above	10Mbp	and	30%	clonality,	almost	all	CNAs	are	called,	
and	there	is	then	decreasing	sensitivity	for	smaller	events	and	lower	purity.	(Figure	
3d).	
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Figure	3:	Comparison	of	somatic	CNA	calls	for	304	TCGA	participants	across	33	cancer	types.	
a)	Fraction	of	the	genome	where	two	methods	agree	on	the	relative	DNA	abundance	(blue)	
and	allele	sensitive	absolute	CNA	call	and	segmentation	(red).	SuperFreqNMN	denotes	
superFreq	run	with	no	matched	normal.	b)	The	ploidy	calls	from	ASCAT	(SNP	array)	and	
superFreq	(exomes),	with	the	number	of	cancer	clones	called	by	superFreq	shown	by	colour.	c)	
Difference	between	ASCAT	ploidy	call	and	superFreq	ploidy	call	as	function	of	number	of	
clones	called	by	superFreq.	d)	Recall	of	superFreq	for	somatic	CNAs	in	diluted	and	sliced	
samples,	with	the	original	cancer-normal	used	as	truth.	Each	bin	is	based	on	at	least	100	copy	
number	calls.	

Clonal	tracking		
SuperFreq	identifies	clones	by	hierarchical	clustering	of	the	somatic	SNVs	and	CNAs,	
using	a	distance	measure	based	on	estimated	clonality	and	uncertainty	across	all	
samples.	This	allows	designation	of	any	number	of	clones,	as	long	as	each	clone	has	
support	from	at	least	one	mutation.	
	
To	assess	clonal	tracking	performance,	we	generated	a	test	dataset	that	simulates	a	
multi-sample	analysis.	To	generate	the	test	dataset,	we	diluted	and	sliced	the	cancer	
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and	normal	samples	to	produce	a	set	of	three	matched	cancer	samples	with	four	
clones	as	shown	in	Figure	4a.	Each	of	the	four	clones	carries	mutations	from	the	
cancer	sample,	but	only	in	a	subset	of	chromosomes.	Only	participants	that	had	a	
cancer	clone	detected	in	the	cancer-normal	analysis	were	included.	We	then	ran	
superFreq	on	the	matched	samples	and	measured	the	rate	of	recall	of	clones,	as	a	
function	of	the	maximum	clonality	(Figure	4b	and	c).	We	also	assessed	how	many	
mutations	were	correctly	attributed	to	each	clone.	An	example	participant	is	shown	
in	Supplementary	Figures	7-9.	
	
To	put	the	results	in	context,	we	compared	the	performance	of	superFreq	to	
SciClone.	For	this	comparison	we	used	the	superFreq	somatic	SNV	and	CNA	calls	as	
input	for	SciClone.	SciClone	has	relatively	strict	requirements	for	somatic	SNVs,	with	
a	default	requirement	for	at	least	10	high	quality	SNVs	in	regions	with	normal	
diploid	copy	number.	As	some	of	the	cases	did	not	meet	this	requirement,	the	
default	filters	were	gradually	relaxed	until	the	algorithm	could	be	executed.	
	
Across	289	test	datasets	generated	from	TCGA	samples,	we	found	that	superFreq	
detected	93%	of	the	simulated	clones	with	a	maximum	clonality	above	50%,	
compared	to	67%	of	clones	detected	by	SciClone	(Figure	4b).	When	considering	
participants	with	tumour	purity	above	75%,	superFreq	detected	four	clones	in	52%	
of	cases,	and	three	or	more	clones	in	79%	of	cases,	compared	to	35%	and	64%	for	
SciClone	(Figure	4c),	but	SciClone	achieved	higher	sensitivity	when	considering	
cases	with	tumour	purity	below	30%.	SuperFreq	had	a	lower	false	positive	rate,	
calling	a	false	clone	in	less	than	10%	of	cases,	whereas	this	was	slightly	higher	for	
SciClone	at	19%	(Figure	4d).	
	
When	considering	clones	that	were	correctly	identified,	we	can	measure	precision	
and	recall	of	the	mutations	contributing	to	the	clone.	For	clones	above	50%	
clonality,	superFreq	recalled	a	median	of	59%	of	the	mutations	with	100%	
precision,	while	SciClone	recalled	14%	of	mutations,	also	with	100%	precision	
(Figure	4e-f).	This	showcases	the	power	of	superFreq’s	two-step	clustering,	where	
high	quality	anchor	mutations	are	used	to	define	the	clone	before	gathering	lower	
quality	mutations.	In	contrast,	low	quality	mutations	are	discarded	by	SciClone,	
explaining	the	lower	level	of	recall.	
	
We	next	assessed	clonality	calling	in	the	absence	of	a	matched	normal	control.	In	
this	analysis	superFreq	had	slightly	lower	recall	for	clones	above	50%	clonality,	
dropping	from	93%	to	80%.	When	considering	cases	with	high	tumour	purity,	
superFreq	still	recalled	three	or	more	clones	in	67%	of	cases.	There	was	a	marked	
increase	in	the	fraction	of	cases	in	which	a	false	clone	was	called,	increasing	from	
10%	to	80%.	The	median	recall	rate	of	mutations	remained	similar,	but	with	a	small	
drop	in	median	precision	from	100%	to	89%.	
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Figure	4:	Precision	and	recall	of	superFreq	clonal	tracking.	a)	Overview	of	simulations.	As	
illustrated	on	the	left,	the	genome	is	divided	into	four	regions	(chr	1-3,	4-8,	9-14	and	15-Y),	and	
the	cancer	and	normal	samples	are	blended	to	create	three	samples	that	contain	four	clones	
supported	by	mutations	that	reside	in	different	regions	of	the	genome.	The	expected	clonalities	
across	the	three	samples	are	shown	to	the	right.	b)	Sensitivity	to	find	clones	with	a	matched	
normal	(WMN)	or	no	matched	normal	(NMN)	in	superFreq	and	SciClone,	as	function	of	
maximum	clonality.	c)	Recall	of	the	four	simulated	clones,	binned	on	the	purity	of	the	original	
cancer	sample.	d)	Number	of	false	clones	called.	e)	Fraction	of	mutations	associated	with	a	
clone	originating	from	the	expected	chromosomes	in	panel	a.	f)	Fraction	of	mutations	called	in	
the	cancer-normal	recalled	by	the	called	clones.	
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Application	
To	demonstrate	how	superFreq	can	be	applied,	we	present	an	analysis	of	a	patient	
with	AML	with	relapsed	disease24.	For	this	patient,	samples	were	available	at	
diagnosis,	at	relapse,	and	from	purified	lymphocytes	(as	a	matched	normal	control).	
We	ran	superFreq	using	default	parameters	with	10	normal	samples	from	the	same	
study	as	reference	normals.	
	
A	single,	dominant	cancer	clone	(blue)	was	detected	at	diagnosis,	which	was	not	
evident	in	the	matched	normal	control	(Figure	5).	Candidate	somatic	variants	are	
prioritised,	based	on	variant	effect	and	comparison	to	the	COSMIC	database.	In	this	
case	four	mutations	were	detected	in	COSMIC	census	genes,	namely	RUNX1,	SF3B1,	
FOXP1	and	LONP1.	We	also	detected	a	copy	number	neutral	loss	of	heterozygosity	
event	on	chr21	(designated	chr21	AA),	which	extends	over	31Mbp	and	includes	
RUNX1.	The	RUNX1	mutation	has	a	VAF	significantly	larger	than	50%,	which	
indicates	that	this	mutation	preceded	the	copy	number	event	and	suggests	both	
alleles	of	RUNX1	have	been	inactivated.	At	relapse	a	new	subclone	(red)	emerges	
from	the	diagnostic	clone,	which	indicates	that	these	cells	possess	a	selective	
advantage.	The	relapse-specific	subclone	was	present	at	around	40%	clonality,	it	
carries	five	protein	altering	SNVs,	none	of	which	are	featured	in	the	COSMIC	census,	
together	with	loss	of	a	10Mbp	segment	on	chr11	(designated	“10Mbp	A	(11)”).	
Closer	examination	of	the	CNA	on	chr11	revealed	loss	of	50	genes,	which	included	
the	key	tumour	suppressor	gene	WT1,	frequently	mutated	in	AML,	which	may	
contribute	to	the	outgrowth	of	these	cells.	
 

	

Figure	5:	Example	data	from	AML.08424.	A	river	plot	(left	panel)	shows	the	phylogeny	and	
clonality	of	called	clones	and	their	evolution	over	time.	The	mutations	from	each	clone	are	
listed	in	matching	colour,	sorted	by	severity	with	the	chromosome	indicated	in	brackets.	The	
right	panel	shows	the	clonalities	of	the	somatic	mutations	classified	into	the	main	cancer	clone	
(blue)	with	the	CNA	in	chr21	highlighted,	and	the	relapse	specific	clone	(red)	with	the	CNA	in	
chr11	highlighted.		
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Discussion	
Recapitulating	the	evolutionary	history	of	a	cancer	from	sequencing	data	can	be	
tremendously	insightful,	but	is	technically	challenging.	Selecting	high	quality	
somatic	variants	appropriate	for	clonal	tracking	is	a	significant	barrier.	This	can	be	
further	compounded	by	technical	imperfections	in	the	sample	data	or	the	absence	of	
a	high	quality	matched	normal.		SuperFreq	addresses	these	challenges;	it	provides	a	
single	workflow	that	performs	somatic	SNV	filtering,	CNA	calling	and	clonal	
tracking,	without	requiring	a	matched	normal.	Variants	are	annotated	for	their	
impact	on	the	gene/protein	as	well	as	against	population	and	cancer	databases	to	
aid	interpretation	and	to	highlight	potential	driver	mutations.	
  
We	opted	to	test	superFreq	on	data	sourced	from	all	TCGA	projects	to	cover	a	wide	
range	of	cancer	types	and	sample	quality	issues,	which	are	difficult	to	simulate	in	
silico.	Working	with	real	samples	meant	we	did	not	have	a	simulation	truth,	and	
instead	assessed	how	similar	results	were	between	different	analysis	methods.	We	
found	good	overlap	between	the	somatic	SNV	calls	from	superFreq	with	four	other	
established	methods.	As	expected,	superFreq	was	the	most	conservative	method	in	
the	comparison,	closely	followed	by	Mutect2	and	MuSE.	SuperFreq	also	generated	
CNA	calls	that	were	in	general	agreement	with	those	from	Sequenza	and	ASCAT.	
SuperFreq	was	more	conservative	in	calling	high	ploidy,	often	calling	multiple	
clones	instead.	The	conservative	approach	to	calling	is	essential	to	determine	the	
clonal	architecture	accurately.	
  
To	assess	the	ability	of	superFreq	to	reconstruct	a	clonal	history,	we	developed	an	
approach	where	we	sliced	and	blended	data	from	TCGA	samples	to	produce	sets	of	
samples	with	an	expected	clonal	structure,	with	mutations	partitioned	to	specific	
genomic	intervals.	This	was	expected	to	be	a	challenging	data	set	to	analyse,	but	
superFreq	managed	to	identify	93%	of	clones	above	50%	clonality,	with	fewer	than	
10%	of	cases	having	false	clones.	This	shows	that	superFreq	can	reliably	perform	
somatic	mutation	calling	and	subsequent	clonal	tracking	with	high	sensitivity	and	
low	false	positive	rate,	without	filtering	or	tuning	from	the	user.	
  
SuperFreq	employs	a	two-step	process	for	clustering	mutations	into	clones:	The	
most	confident	calls,	the	anchor	mutations	are	first	clustered,	and	lower	confidence	
calls	are	then	matched	and	associated	with	clusters.	This	allows	for	accurate	clone	
identification	with	a	relatively	high	recall	of	mutations.	Indeed,	superFreq	recalled	
just	above	half	of	the	available	mutations,	which	was	significantly	higher	than	
SciClone,	which	has	relatively	strict	inclusion	criteria,	and	had	a	median	recall	of	
14%.	
  
A	key	aspect	to	maximise	sensitivity	while	limiting	false	calls	throughout	the	
analysis	was	to	maintain	accurate	error	estimates.	Using	a	single	value	as	the	error	
estimate	allowed	us	to	propagate	the	error	throughout	the	analysis	and	allowed	us	
to	account	for	more	potential	error	sources.	The	error	estimates	inform	multiple	
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steps	in	the	analysis,	such	as	copy	number	segmentation	and	calling,	mutation	
clustering	into	clones,	and	classification	of	anchor	mutations.	
		
Matched	normal	samples	are	commonly	used	to	filter	out	recurring	technical	noise	
and	germline	variants.	SuperFreq	accounts	for	samples	that	lack	a	matched	normal	
by	adopting	a	set	of	reference	normals	that	allows	us	to	identify	and	filter	recurring	
technical	noise.	In	fact,	the	reference	normals	provide	improved	noise	filtering	even	
in	the	presence	of	a	matched	normal,	which	likely	contributes	to	the	low	rate	of	
unique	somatic	SNV	calls	(Figure	2b).	SuperFreq	also	uses	clonal	tracking	to	
remove	germline	variants.	Germline	variants	are	expected	to	be	present	at	100%	
clonality	in	all	samples,	while	somatic	variants	follow	the	cancer	purity.	In	this	way,	
impurity	in	the	cancer	sample	helps	superFreq	separate	germline	from	somatic	
variants.	We	found	that	the	availability	of	a	second,	matched	cancer	sample	with	a	
modest	reduction	in	tumour	purity	(~70%	of	the	original)	improved	our	ability	to	
recall	somatic	SNVs,	increasing	the	median	recall	from	82%	to	91%	and	provided	a	
small	reduction	in	the	false	positive	rate.	
  
SuperFreq	was	designed	to	detect	and	track	somatic	mutations	in	exomes,	and	it	has	
been	applied	to	study	breast	cancer	metastasis25,	lung	cancer	xenografts26	and	
myeloid	leukaemia27.	We	have	extended	the	functionality	beyond	exomes,	and	have	
shown	that	superFreq	can	be	applied	to	study	small	capture	sets28	and	low	pass	
whole	genomes29.	We	aim	to	reduce	runtime	to	allow	analysis	of	full	depth	whole	
genomes	at	scale,	and	have	also	produced	promising	results	when	applying	
superFreq	to	transcriptome	sequencing	data.	
	

Availability	
SuperFreq	is	available	as	an	R	package	on	github:	
https://github.com/ChristofferFlensburg/superFreq/	
Results	from	the	TCGA	analysis	and	code	to	reproduce	the	figures	are	available	at:	
https://gitlab.wehi.edu.au/flensburg.c/superFreqPaper	
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