Constitutively active RAS in *S. pombe* causes persistent Cdc42 signalling but only transient MAPK activation

Emma J. Kelsall¹,⁸, Ábel Vértesy²,⁶,⁸, Kees Straatman³, Mishal Tariq¹, Raquel Gadea¹,⁴, Chandni Parmar¹, Gabriele Schreiber², Shubhchintan Randhawa¹,⁷, Cyril Dominguez¹,⁵, Edda Klipp²* and Kayoko Tanaka¹,⁹*

1 Department of Molecular and Cell Biology, University of Leicester
2 Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin
3 Centre for Core Biotechnology Services, University of Leicester
4 Marco Formacion Profesional, Calle del Conde de Aranda 7-9, 50004 Zaragoza, Spain
5 Leicester Institute of Structural and Chemical Biology, University of Leicester
6 Present address: Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, 3584 CT Utrecht, The Netherlands
7 Present address: Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Molecular Medicine & Biotechnology, Lucknow, India 226014
8 These authors contributed equally
9 Lead Contact

*Correspondence: kt96@le.ac.uk (K.T.), edda.klipp@rz.hu-berlin.de (E.K.)
Highlights

(1) Constitutive Ras1.GV causes over-activation of Cdc42 in S. pombe pheromone signaling
(2) Ras1.GV induces an acute but only transient MAPKSpk1 activation
(3) The RAS effector pathways MAPKSpk1 and Cdc42 compete with each other for active Ras1
(4) Predictive modelling explains MAPKSpk1 activation dynamics in 24 signaling-mutants

eTOC Blurb

S. pombe Ras1 activates the MAPKSpk1 and Cdc42 pathways. Kelsall et al. report that the constitutively active Ras1.G17V mutation, which causes morphological anomalies, induces prolonged Cdc42 activation and MAPKSpk1 activation followed by attenuation. Mathematical modelling shows competition between the MAPKSpk1 and Cdc42 pathways for active Ras1.

Summary

The small GTPase RAS is a signalling hub. Oncogenic RAS mutations are assumed to over-activate all of the downstream pathways. We tested this assumption in fission yeast, where, RAS-mediated pheromone signalling (PS) activates the MAPKSpk1 and Cdc42 pathways. Unexpectedly, we found that constitutively active Ras1.G17V induced acute transient MAPKSpk1 activation, whilst Cdc42 activation persisted. Acute transient MAPKSpk1 activation was also seen in the deletion mutant of Cdc42-GEFScd1, a Cdc42 activator. We have built a mathematical model using PS negative-feedback circuits and competition between the two Ras1 effectors, MAPKKKByr2 and Cdc42-GEFScd1. The model robustly predicted the MAPKSpk1 activation dynamics of an additional 21 PS mutants. Supporting the model, we show that a recombinant Cdc42-GEFScd1 fragment competes with MAPKKKByr2 for Ras1 binding. Our study has established a concept that constitutive RAS yields biased Cdc42/Rac over-activation, providing a strong rationale to interfere with this process to target oncogenic RAS in humans.

Key words

Ras, MAPK, Cdc42/Rac, yeast pheromone signalling
Introduction

Proto-oncogene Ras GTPase family members are widely conserved and play pivotal roles in cell growth, differentiation and apoptosis (Cox and Der, 2010). The physiological impact of Ras mutations is highlighted in the resultant tumorigenesis and developmental disorders (Prior et al., 2012; Schubbert et al., 2007). More than 99% of identified oncogenic RAS mutations occur at codons 12, 13 and 61 of human Ras isoforms (Prior et al., 2012) and impair efficient GTP hydrolysis (Trahey and McCormick, 1987). This results in accumulation of GTP-bound Ras, which is generally considered to cause constitutive activation of the downstream effector pathways, such as ERK and PI3K signalling pathways (Lin et al., 1998; Zhu et al., 1998). Interestingly, mouse embryonic fibroblasts (MEFs) derived from the K-rasG12D mouse model show neither an increased basal level of active ERK and Akt nor constitutive activation of ERK and Akt upon growth factor stimulation even though the K-rasG12D MEFs showed enhanced proliferation and partial transformation (Tuveson et al., 2004). This observation indicates that not all effector pathways become constitutively activated by oncogenic Ras, presumably because of an efficient negative feedback loop. Meanwhile, it is reasonable to expect that oncogenic RAS over-activates some of its effector pathways to initiate tumorigenesis. Small GTPases, including Cdc42 and Rac, may be such effector pathways, as they are required in oncogenic-RAS-driven tumorigenesis (Malliri et al., 2002; Qiu et al., 1997; Stengel and Zheng, 2012).

We wished to understand how multiple Ras effector pathways respond to the Ras-triggered signals in a physiological setting. We employed the model organism fission yeast. In this organism, a unique Ras homologue, Ras1, plays a key role in pheromone signalling to cause mating of haploid cells and sporulation in diploid cells (Yamamoto, 1996)(Fig. 1A, B). Upon nutritional starvation, cells of opposite mating types (h+ and h-) exchange mating pheromones. Gpa1, the α-subunit of the pheromone receptor-coupled G-protein, relays the pheromone signal into the cell (Obara et al., 1991). Activated Gpa1 together with Ras1 then activate MAPK cascade consisting of Byr2 (MAPKKK), Byr1 (MAPKK) and Spk1 (MAPK) (Fukui et al., 1986; Masuda et al., 1995; Nadin-Davis and Nasim, 1988; Nadin-Davis et al., 1986a; Nadin-Davis et al., 1986b; Wang et al., 1991; Xu et al., 1994). An intriguing observation is that the ras1.G17V mutant, an equivalent of mammalian ras.G12V mutant prevalent in cancer, produces an excessively elongatedshmoo, or a conjugation tube, upon exposure to the mating pheromone (Nadin-Davis et al., 1986a). This “elongated” ras1.G17V phenotype has been interpreted that
Ras1 might be directly responsible for amplifying the pheromone signal at an intracellular level (Yamamoto, 1996).

Ras1 also regulates cell morphology during vegetative growth; whilst deletion of either *gpa1*, *MAPKK\text{Byr}2*, *MAPKK\text{Byr}1* or *MAPK\text{Spk}1* does not result in any obvious phenotypes during vegetative cell growth (Obara et al., 1991; Sipiczki, 1988; Toda et al., 1991), *ras1*Δ cells lose the typical rod-shape morphology of fission yeast to become rounded (Fukui et al., 1989; Nadin-Davis et al., 1986a). Studies based on recombinant protein assays and yeast-2-hybrid analysis demonstrated that Ras1 interacts with both MAPKKK\text{Byr}2 and Scd1, a GDP-GTP exchange factor (GEF) for Cdc42, which regulates the actin cytoskeleton and cell morphology (Chang et al., 1994; Gronwald et al., 2001; Tu et al., 1997). These observations suggest that Ras1 simultaneously regulates both the pheromone MAPK\text{Spk}1 and the Cdc42 pathways at the cell membrane (Weston et al., 2013).

Indeed, a dynamic “Cdc42 zone” at the cell cortex prior to mating has been observed (Merlini et al., 2013) and Ras1 and MAPK\text{Spk}1 cascade components are found there and are involved in the process (Dudin et al., 2016; Merlini et al., 2013; Merlini et al., 2016; Merlini et al., 2018; Weston et al., 2013). However, it is not yet understood how Ras1 interplay between the two pathways.

By establishing conditions to induce highly synchronous mating of fission yeast cells, for the first time we were able to follow MAPK\text{Spk}1 activation during the physiological mating process in wildtype and in mutants showing various mating phenotypes. This comprehensive set of quantitative measurements allowed us to build a mathematical model of the Ras-mediated pheromone signalling. Our model can serve as a prototype of a branched Ras-mediated signalling pathway, demonstrating a competition of downstream pathways for a common upstream activator, Ras1. The model also highlights the physiological importance of the bipartite activation of MAPKKK\text{Byr}2: a Ras1-dependent and a Ras1-independent mechanism, the latter of which employs the adaptor protein Ste4 (Barr et al., 1996; Okazaki et al., 1991). The adaptor\text{Ste4} can be targeted to downregulate MAPK\text{Spk}1 even in the presence of *ras1.G17V* mutation. Finally, our study reveals the crucial role played by Cdc42 in the *ras1.G17V* mutant causing the *ras1.G17V* phenotype.
Results

(1) A highly synchronous mating assay allows the precise measurement of MAPK\(^{Spk1}\) activity

To directly measure fission yeast pheromone signalling, we quantitated MAPK\(^{Spk1}\) phosphorylation throughout the mating process (Fig. S1, Fig. 1A and B). We established a protocol to induce highly synchronous mating and employed cells where the endogenous MAPK\(^{Spk1}\) is tagged with GFP-2xFLAG. Under these conditions, homothallic \(h^{90}\) cells started to mate 7-hours after induction of mating (Fig. 1C, grey line). Phosphorylated (active) MAPK\(^{Spk1}\) \((ppMAPK^{Spk1})\) levels were quantitated as described in Materials and Methods.

The \(ppMAPK^{Spk1}\) signal was first detected three hours after induction of mating and reached its peak at about seven hours, when cell fusion was also initially observed (Fig. 1C, blue line). The \(ppMAPK^{Spk1}\) then gradually decreased to a non-zero level as meiosis continued towards sporulation. The observation established that the MAPK\(^{Spk1}\)-GFP activation occurs as the mating process progresses and declines before sporulation, around 15 hours post induction. It was also noted that the total MAPK\(^{Spk1}\)-GFP was essentially not expressed during the vegetative cycle, but it was promptly induced by nitrogen starvation (Supplementary Fig. S2A and S2B). The \(mapk^{Spk1}\) gene is a known target of the transcription factor Ste11 (Mata and Bahler, 2006), which itself is activated (phosphorylated) by MAPK\(^{Spk1}\) (Kjaerulff et al., 2005). This positive feedback loop likely facilitates a swift increase of MAPK\(^{Spk1}\) expression upon nitrogen starvation. We found that MAPK\(^{Spk1}\)-GFP localised to both the cytosol and the nucleus, with some nuclear accumulation, before it gradually disappeared as the mating process came to the end (Fig. 1D). Interestingly, transient foci of GFP signals were also found at the cell cortex, as has been reported for MAPKK\(^{Byr1}\), the activator of MAPK\(^{Spk1}\) (Dudin et al., 2016) (Fig. 1D, yellow arrows).

(2) Constitutively active MAPKK\(^{Byr1,DD}\) mutant causes constitutive activation of MAPK\(^{Spk1}\)

Activation of MAPKK family kinases is mediated by dual phosphorylation of conserved Ser/Thr residues (Zheng and Guan, 1994). These correspond to serine 214 and threonine 218 of the MAPKK\(^{Byr1}\). A MAPKK\(^{Byr1}\) mutant termed MAPKK\(^{Byr1,DD}\), which carries aspartic acid substitution at these sites, was expected to act as a constitutively active MAPKK (Ozoe et al., 2002). We introduced the MAPKK\(^{Byr1,DD}\) mutation at its chromosome locus and measured the activation profile of its target, MAPK\(^{Spk1}\) during the mating process. The increase of the \(ppMAPK^{Spk1}\) signal in the MAPKK\(^{Byr1,DD}\) mutant strain was delayed compared to the wildtype strain and the
ppMAPKSpk1 accumulated at a slower rate (Fig. 1E, light green line). However, the level of ppMAPKSpk1 remained high after reaching its highest intensity at around 16 hours after induction, resulting in a constitutive phosphorylation of MAPKSpk1 (Fig. 1E and Supplementary Fig. S2C and S2D). This result highlights that the suggested de-phosphorylation of ppMAPKSpk1 by phosphatases Pmp1 and Pyp1 (Didmon et al., 2002) is not efficient in downregulating the pheromone signalling in the presence of MAPKKByr1.DD. The MAPKKByr1.DD strain is also less competent in finding the partner mating cell than cells with wildtype MAPKKByr1. We also confirmed the intriguing “fus” (fusion deficient) phenotype of cells expressing MAPKKByr1.DD from its native promoter (Fig.1F) (Dudin et al., 2016; Ozoe et al., 2002). These cells find their partners and pair up successfully but fail to fuse with each other, resulting in fus phenotype. Consistent with the observed slower increase in ppMAPKSpk1 (Fig.1E) the nuclear localisation of MAPKSpk1 was also delayed compared to Wildtype cells (Fig 1F). A strong MAPKSpk1-GFP signal was then observed in the nuclei of the paired fus cells and the nuclear MAPKSpk1-GFP signal persists even 24 hours after the induction of mating (Fig. 1F). Interestingly, the projection tips of the paring cells often show increased MAPKSpk1-GFP signal (Fig. 1F, yellow arrows). These results conclude that MAPKSpk1 activation is highly influenced by the MAPKKByr1 status and phosphatases directly regulating MAPKSpk1 cannot counteract MAPKKByr1.DD.

(3) The \textit{ras1.G17V} mutation causes acute transient MAPKSpk1 activation

The fission yeast equivalent of human oncogenic \textit{ras.G12V} is \textit{ras1.G17V}, which induces an excessively elongated shmoo, and the cells fail to recognize a partner and become sterile (Fukui et al., 1986; Nadin-Davis et al., 1986a). The “elongated shmoo” phenotype was interpreted as an excess activation of the downstream pathway(s) of Ras1, leading to a prediction that the \textit{ras1.G17V} causes over-activation of MAPKSpk1 (Weston et al., 2013; Yamamoto, 1996). However, no direct evidence has been provided. Quantitation of the ppMAPKSpk1-GFP in the \textit{ras1.G17V} mutant showed an acute increase of the ppMAPKSpk1-GFP upon induction of mating (Fig. 1G, Green line). However, the signal intensity declined gradually and by 16 hours after induction the level was comparable to wildtype cells, indicating that down-regulation of ppMAPKSpk1-GFP is effective, unlike in MAPKKByr1.DD mutant. Correspondingly, the cellular MAPKSpk1-GFP signal also declined 24 hours after induction of mating (Fig. 1H). Collectively, these observations indicate that the down-regulation mechanism for ppMAPKSpk1 is robust and resistant to Ras1.G17V. It was also noted that the peak intensity of
the ppMAPK_{spk1} was somewhat lower and the rate of signal reduction was slightly decreased compared to wildtype cells (Fig. 1G).

(4) The elongated ras1.G17V shmoos develop with a minimum level of MAPK_{spk1}: neither amplitude nor duration of ppMAPK_{spk1} signal influences the ras1.G17V phenotype

Having observed that MAPKK_{byr1-DD} and ras1.G17V show different MAPK_{spk1} activation profiles (sustained vs transient) and different morphological phenotypes (“fus” vs elongated), we examined a link between the MAPK_{spk1} activation profiles and the cell morphology. The MAPK_{spk1} phosphorylation profile of the cells harbouring both ras1.G17V and MAPKK_{byr1-DD} mutations (ras1.G17V MAPKK_{byr1-DD} double mutant) was comparable to the cells harbouring MAPKK_{byr1-DD} mutation only; it showed a slow increase of the ppMAPK_{spk1}-GFP level, which reached the plateau at about 16 hours after induction of mating (Fig. 2A, red line). The nuclear ppMAPK_{spk1}-GFP signal in the ras1.G17V MAPKK_{byr1-DD} double mutant was also present 24 hours after induction of mating, unlike the ras1.G17V single mutant cells, confirming that the ras1.G17V MAPKK_{byr1-DD} double mutant cells retained a high ppMAPK_{spk1} level. Thus, in terms of the activation status of MAPK_{spk1}, MAPKK_{byr1-DD} is epistatic to ras1.G17V.

In terms of cell morphology, the ras1.G17V MAPKK_{byr1-DD} double mutant cells showed the “elongated” ras1.G17V phenotype (Fig. 2B), but not the “paired” MAPKK_{byr1-DD} phenotype. Therefore, ras1.G17V was epistatic to MAPKK_{byr1-DD} in terms of the elongated shmoo morphology.

Interestingly, obvious shmoo formation in the ras1.G17V MAPKK_{byr1-DD} double mutant was first noticed 16 hours after induction of mating, much later than the ras1.G17V single mutant, but as a similar timing as the MAPKK_{byr1-DD} single mutant (Fig. 2B). Given the slow increase of the ppMAPK_{spk1} signal in mutants harbouring the MAPKK_{byr1-DD} mutation, we predicted that the delayed appearance of the ras1.G17V shmoo meant that the ras1.G17V shmoo formation still requires a certain level of MAPK_{spk1} activity. Indeed, when MAPKK_{byr1} was deleted in the ras1.G17V mutant, not only was the MAPK_{spk1} activation and nuclear MAPK_{spk1}-GFP signal abolished (Fig. S1F), but also shmoo formation was abrogated as in the MAPKK_{byr1-D} single mutant (Fig. 2C). Based on these observations, we concluded that the cell morphology is determined by the molecular status of Ras1, and not by the MAPK_{spk1} activation profile. Yet, the ras1.G17V phenotype still requires MAPK_{spk1} activity, which determines the timing of shmoo formation.
(5) Cdc42 is required for the shmoo formation but not for the MAPKSpk1 activation

During the vegetative cycle, \textit{ras1Δ} cells show spherical cell morphology (Fukui et al., 1986; Nadin-Davis et al., 1986a) and polarised localisation of active Cdc42 is compromised (Kelly and Nurse, 2011), (Fig. 4C, D), indicating that Ras1 is involved in Cdc42 activation. The GTP-loaded Cdc42 is then predicted to activate the downstream Ste20-like kinase, Pak1/Shk1 (Endo et al., 2003; Marcus et al., 1995; Ottlilie et al., 1995; Verde et al., 1995), resulting in actin reorganisation and shmoo formation under mating conditions (Bendezu and Martin, 2013; Merlini et al., 2016).

To confirm that Cdc42 acts downstream of Ras1, we generated a double mutant strain harbouring \textit{ras1.G17V} and deletion of \textit{scd1}, encoding a GDP-GTP exchanging factor for Cdc42 (Cdc42-GEFScd1). The \textit{ras1.G17V} elongated shmoo phenotype was lost in the double mutant and instead, the cells showed a mating-deficient phenotype similar to the \textit{cdc42-GEFScd1}Δ single mutant (Fig 3A). The result supports the model that Cdc42 acts downstream of Ras1 to cause morphological changes.

Intriguingly, in the strains harbouring the \textit{cdc42-GEFScd1}Δ mutation, a nuclear MAPKSpk1-GFP signal appeared (Fig. 3A), indicating that activation of MAPKSpk1 may not be impaired by lack of active Cdc42. This was unexpected because in a previous study, it was predicted that activation of Cdc42 contributes to activation of MAPKKKByr2 (Tu et al., 1997). To clarify this issue, we measured \textit{pp}MAPKSpk1 in the \textit{cdc42-GEFScd1}Δ mutant. Strikingly, in these cells MAPKSpk1 activation occurred with a reproducible advancement of the initial activation timing compared to the wildtype cells (Fig. 3B). The result shows that MAPKSpk1 activation does not require Cdc42 activity. Additionally, the faster activation of MAPKSpk1 raises the interesting possibility that two Ras1 effectors, MAPKKKByr2 and Cdc42-GEFScd1, are competing with each other for activated Ras1, thus, lack of Cdc42-GEFScd1 results in an advanced MAPKSpk1 activation (modelled in Fig. 7A).

Substantial MAPKSpk1 activation in the \textit{cdc42-GEFScd1}Δ mutant means that the mating deficiency of this mutant is unlikely to be the result of the lack of MAPKSpk1 activation. Indeed, introduction of \textit{MAPKKByr1,DD} to the \textit{cdc42-GEFScd1}Δ mutant did not restore the mating deficient phenotype, even though nuclear MAPKSpk1-GFP highly accumulated (Fig. 3C). The result shows that active Cdc42 function is absolutely required for the mating process regardless of the MAPKSpk1
activation status. Taken together with the essential role of MAPK\textsubscript{Spk1}, we concluded that the mating pheromone signalling feeds into at least two pathways, MAPK\textsubscript{Spk1} and Cdc42.

(6) Ras1 activates two effector pathways, MAPK\textsubscript{Spk1} and Cdc42.

In order to further clarify the role of Ras1 we examined the MAPK\textsubscript{Spk1} activation status and cell morphology in the following four strains: \textit{ras1}\textbeta mutant, \textit{ras1}\textbeta \textit{MAPKK}\textsubscript{byr1,DD} double mutant, \textit{MAPKKK}\textsubscript{byr2}\textbeta mutant and \textit{MAPKKK}\textsubscript{byr2}\textbeta \textit{MAPKK}\textsubscript{byr1,DD} double mutant. As mentioned earlier, deletion of \textit{ras1} causes cells to show a round morphology (Fig. 3F), with reduced cortical signal of CRIB-GFP, an indicator of the active GTP-bound form of Cdc42, showing that Cdc42 activation is compromised (Fig. 4C, D). \textit{ras1} deletion also causes substantial reduction, but not complete elimination, of the ppMAPK\textsubscript{Spk1} (Fig. 3D, red line, and Supplementary Fig. S3A); thus, Ras1 plays an important role in activating both Cdc42 and MAPK\textsubscript{Spk1} pathways. Introduction of the \textit{MAPKK}\textsubscript{byr1,DD} mutation into the \textit{ras1}\textbeta mutant cells induces the constitutive ppMAPK\textsubscript{Spk1} (Fig. 3D, green line and Supplementary Fig. S3A) but does not affect the round cell morphology and cells remain sterile (Fig. 3F, the 2nd left panel. Note the accumulating MAPK\textsubscript{Spk1}-GFP at 16 hours after induction of mating), as was the case for the Cdc42-GEF\textsubscript{Scd1}\textbeta \textit{MAPKK}\textsubscript{byr1,DD} double mutant (Fig. 3C).

In a striking contrast, the sterile phenotype of the \textit{MAPKKK}\textsubscript{byr2}\textbeta, associated with complete lack of shmoo formation (Fig. 3F, the 2nd right panel), was converted to the “\textit{fus}” phenotype, when combined with the \textit{MAPKK}\textsubscript{byr1,DD} mutation (Fig. 3F, the far right panel). As expected, the \textit{MAPKKK}\textsubscript{byr2}\textbeta \textit{MAPKK}\textsubscript{byr1,DD} double mutant shows MAPK\textsubscript{Spk1} constitutive activation (Fig. 3E and Supplementary Fig. S3B). Thus, unlike the cases of \textit{scd1}\textbeta or \textit{ras1}\textbeta, lack of \textit{MAPKKK}\textsubscript{byr2} can be bypassed by constitutive activation of MAPK\textsubscript{Spk1}, indicating that the sole role of MAPKK\textsubscript{byr2} is to activate the MAPK\textsubscript{Spk1} unlike its upstream activator, Ras1, which also activates Cdc42 pathway (a model presented in Fig. 7A).

(7) Ras1.G17V causes accumulation of Cdc42-GTP at the cell cortex.

Having observed a relatively mild influence of Ras1.G17V towards the MAPK\textsubscript{Spk1} activation, we next examined whether the Cdc42 pathway was affected by the \textit{ras1.G17V} mutation. We visualized the active GTP-bound form of Cdc42 (Cdc42\textsubscript{GTP}) using CRIB-GFP that specifically binds to Cdc42\textsubscript{GTP} (Tatebe et al., 2008). As previously observed, dynamic foci of CRIB-GFP appeared on the cell cortex upon induction of mating (Bendezu and Martin, 2013)(Fig. 4A and B). In our
experimental condition, more than 80% of wildtype cells showed the cortical CRIB-GFP signal at 4.5 hours after induction of mating (Fig. 4B). The cortical CRIB-GFP foci became concentrated at the site of mating and quickly disappeared once cells fused successfully to form zygotes (Fig. 4A and B). In striking contrast, in the ras1.G17V mutant cells, the cortical CRIB-GFP signal persisted, often at the elongated tip end of the cells, even 12.5 hours after induction of mating (Fig. 4A and B). The signal could still be seen in about 40% of the cells 22.5 hours after induction of mating (Fig. 4A and B). The result shows that the Cdc42 pathway is excessively activated in the ras1.G17V mutant and the localisation pattern of Cdc42GTP indicates that the signature “elongated” ras1.G17V morphological phenotype is caused by deregulation of the Cdc42 pathway.

Ras1-mediated Cdc42 pathway activation has been also indicated during the vegetative growth where the ras1Δ mutant shows a round cell morphology (Chang et al., 1994; Kelly and Nurse, 2011). However, unlike during the mating process, the ras1.G17V mutation does not cause an obvious morphological phenotype during the vegetative growth. We predicted that, during the vegetative growth, rigorous negative regulation occurs for Cdc42 by GTPase activation protein(s) (GAPs), such as Rga4 (Das et al., 2007; Kelly and Nurse, 2011; Tatebe et al., 2008) to counteract the effect of ras1.G17V. To examine this possibility, we compared Cdc42 activation status of vegetatively growing wildtype, ras1Δ, ras1.G17V, rga4Δ, and rga4Δ ras1.G17V double mutant cells (Fig. 4C and D). As previously described, CRIB-GFP showed a clearly polarized signal at the growing cell tips in the wildtype strain (Tatebe et al., 2008)(Fig. 4C and D). In the ras1Δ mutant, the cells were round and CRIB-GFP signal on the cell cortex had largely disappeared as was seen in the cdc42-GEFscd1Δ mutant (Kelly and Nurse, 2011). In contrast, the cortical CRIB-GFP signal was clearly increased in the ras1.G17V single mutant although the cell morphology appeared largely similar to the wildtype cells (Fig. 4C, D). These results indicate a direct involvement of Ras1 in activating Cdc42. Meanwhile, the rga4Δ mutant cells showed slight alterations to the cell morphology, accompanied with less polarized distribution of cortical CRIB-GFP signal, as has been reported (Fig. 4C and D) (Das et al., 2007; Kelly and Nurse, 2011; Tatebe et al., 2008). Strikingly, the rga4Δ ras1.G17V double mutant showed a clear morphological alteration (big round cells) and the strongest cortical CRIB-GFP signal among all the mutants examined (Fig. 4C and D). The result fits well with our hypothesis that Ras1.G17V is activating Cdc42 even during vegetative growth, but the overall effect of Ras1.G17V is counteracted by the Cdc42-GAP, Rga4.
Ras1 and an adaptor protein Ste4 are both necessary to fully activate MAPKKK^Byr2

Although Ras1 clearly plays the major role to activate MAPK^Spk1, a marginal, but detectable level of ppMAPK^Spk1 was still induced in the ras1Δ mutant (Fig. 3D and Supplementary Fig. S3A), indicating that there is a Ras1-independent mechanism to activate MAPK^Spk1. Previous studies proposed an adaptor protein, Ste4, to be involved in the activation of MAPKKK^Byr2 (Barr et al., 1996; Okazaki et al., 1991; Ramachander et al., 2002; Tu et al., 1997). We therefore examined whether Ste4 is required for MAPK^Spk1 activation.

In contrast to the ras1Δ mutant, we detected virtually no MAPK^Spk1 phosphorylation in the ste4Δ mutant (Fig. 5A and Supplementary Figure S3C), indicating that the adaptor Ste4 is a prerequisite for the MAPK^Spk1 activation and the ppMAPK^Spk1 signal observed in the ras1Δ mutant is dependent on Ste4 function. Introduction of ras1.G17V mutation neither restored the MAPK^Spk1 activation nor mating (Fig. 5A, B), thus, activation of Ras1 cannot take over Ste4 function. In a striking contrast, the ste4Δ MAPKK^Byr1.DD double mutant showed the “fus” phenotype as the MAPKK^Byr1.DD single mutant cells and induced constitutive MAPK^Spk1 activation, indicating that Ste4 is solely required for MAPK^Spk1 activation (Fig. 5A, B).

Taken together, MAPKKK^Byr2 is activated through a mechanism involving both Ras1 and Ste4, but Ste4 only conveys the signal towards the MAPK^Spk1, while Ras1 also activates Cdc42.

Ste6, a Ras1 GTP-GDP exchange factor, contributes to both the MAPK^Spk1 and the Cdc42 pathway activation

There are two GDP-GTP exchange factors (GEFs) identified for Ras1: Ste6 and Efc25 (Hughes et al., 1990; Tratner et al., 1997). As to the functional differences, Ste6 is essential for mating but is dispensable during the vegetative cycle whilst Efc25 is dispensable for mating but is required to maintain the cell morphology during the vegetative growth (Hughes et al., 1990; Tratner et al., 1997). There has been an interesting proposition that Ste6 may specifically help Ras1 to activate the MAPK^Spk1 pathway, but not the Cdc42 pathway, whilst Efc25 specifically facilitates Ras1 to activate the Cdc42 pathway (Papadaki et al., 2002). We examined this hypothesis by monitoring the MAPK^Spk1 activation status and conducting genetic epistasis analysis of ras1.G17V and MAPKK^Byr1.DD in the ste6Δ mutant.

In ste6Δ cells, MAPK^Spk1 phosphorylation was found somewhat reduced but occurred at a clearly detectable level. The signal increased when the ras1.G17V mutation was introduced (Fig. 5C and...
Supplementary Figure S3D). When ste6Δ and MAPKK^{byr1-DD} were combined, MAPK^{Spk1} signalling recapitulated the MAPKK^{byr1-DD} activation profile (Fig. 5C and Supplementary Figure S3D).

Nonetheless, the “pheromone-insensitive sterile” morphology of ste6Δ was only rescued by <i>ras1.G17V</i>, as previously reported, exhibiting the “elongated” phenotype (Hughes et al., 1990), but not by MAPKK^{byr1-DD} (Fig. 5D). The result indicates that, unlike ste4Δ mutant, the mating deficiency of ste6Δ is not caused by mere lack of MAPK^{Spk1} activation but by lack of Ras1 activation. We concluded that Ste6 functions to activate Ras1, which then activates both the MAPK and Cdc42 pathways in response to pheromone signalling.

Activation mutant of Gpa1 mimics the full pheromone signalling

In order to generate an integrated prototype Ras signalling model, we further investigated the upstream signal input machinery. Previous studies showed that Gpa1 plays the primary role in pheromone signalling (Obara et al., 1991). In agreement, in the <i>gpa1Δ</i> mutant we detected no MAPK^{Spk1} activation nor nuclear accumulation of MAPK^{Spk1-GFP} (Fig. 6A, B and Supplementary Fig. S4A). Introducing the <i>ras1.G17V</i> to the <i>gpa1Δ</i> strain did not rescue the complete lack of MAPK^{Spk1} activation nor did it induce a shmoo-like morphological change (Fig. 6A, B and Supplementary Fig. S4A), supporting our earlier observation that a Ras1-independent mechanism, involving Ste4 is essential for MAPK^{Spk1} activation. Meanwhile, introducing the <i>MAPKK^{byr1-DD}</i> mutation caused the constitutive activation of MAPK^{Spk1} (Fig. 6A and Supplementary Fig. S4A), but cells showed no morphological change (Fig. 6B). When both <i>ras1.G17V</i> and <i>MAPKK^{byr1-DD}</i> mutations were introduced into the <i>gpa1Δ</i> strain, MAPK^{Spk1} was activated and a shmoo-like morphological change occurred (Fig. 6A, B and Supplementary Fig. S4A). Therefore, activation of both of these two molecules is required and sufficient to mimic the pheromone signalling.

To further confirm that the Gpa1 is a central component of pheromone signalling, we looked into the MAPK^{Spk1} activation status in the constitutively active <i>gpa1.QL</i> mutant, which exhibits a “shmoo-like” morphological change in the heterothallic h- strain without the mating partner (Obara et al., 1991).

Upon nitrogen starvation, the h- <i>gpa1.QL</i> mutant strain showed morphological changes and a strong MAPK^{Spk1} activation (Fig. 6C red line, Fig. 6D and Supplementary Fig. S4B). This response was largely dependent on the Ras1 function as the h- <i>gpa1.QL ras1Δ</i> double mutant exhibited a significantly reduced level of ppMAPK^{Spk1} and a round cell morphology, two typical features of
raster1Δ cells (Fig. 6C, D and Supplementary Fig. S4B). On the other hand, the h− ras1.G17V single
mutant showed a very low level of MAPKspk1 activation, comparable to the one observed in the
h− wildtype strain, with no apparent morphological alternation, confirming that sole activation
of Ras1 does not substitute the pheromone signalling.

The h− MAPKKbryl.DD mutant induced a strong constitutive MAPKspk1 activation, confirming that
the MAPKKbryl.DD molecule can activate MAPKspk1 regardless of the pheromone signal input (Fig.
6C, light-blue line and Supplementary Fig. S4B). However, cell morphology was unchanged (Fig.
6D). Collectively, these results support the model where Gpa1 acts as the central transducer of
the pheromone signalling, which can be mimicked only if both MAPKspk1 and Ras1 are activated.

(11) A holistic modelling framework of MAPKspk1 activation

Based on quantitative ppMAPKspk1 measurements in wildtype and various mutant strains (Fig.
1C, E, G, and Fig. 3B), we constructed a mathematical model of the MAPKspk1 signalling
dynamics. The aim of the model is to test whether a simple competition of the MAPK and the
Cdc42 pathways for a shared pool of active RasGTP, can explain why the scd1Δ strain shows the
similar ppMAPKspk1 activation profile as the ras1.G17V strain.

We designed a reductionist model of 6 ordinary differential equations to represent key steps of
pheromone signalling (Fig. 7A, Supplementary Fig. S5 and materials and methods). Model
simulations and parameter estimations were performed in COPASI (Hoops et al., 2006) and
details of the modelling process are described in Materials and Methods. Each biochemical
process is referred as [L1]-[L10] as depicted in Fig. 7A. The signalling components were set to
interact without delay based on the observations that signalling components are localized in
close proximity (Fig. 1 and Fig. 4)(Dudin et al., 2016; Merlini et al., 2016; Merlini et al., 2018).

The framework of the modelling process is as follows: Genes encoding pheromones, receptors,
Gpa1, Ste4 and Ste6 are all known to be under regulation of Ste11, the master transcriptional
regulator for meiotic genes (Hughes et al., 1994; Mata and Bahler, 2006; Mata et al., 2002; Mata
et al., 2007; Sugimoto et al., 1991) and these components are grouped into the Pheromone
Sensing (PS) unit. During the vegetative growth, the PS unit is set to zero. Nitrogen starvation
activates Ste11 (Kjaerulff et al., 2007; Sugimoto et al., 1991), which induces the PS unit [L1]. The
PS unit activates MAPKKKbryl2 in a twofold manner: Directly by Ste4 [L3] and through Ras1
[L4](Fig. 7A). Activated MAPKKKbryl2 then triggers activation of MAPKKbryl1 [L5] that activates
MAPK$^{\text{spk1}}$ [L6]. Since activated MAPK$^{\text{spk1}}$ further activates Ste11 (Kjaerulff et al., 2005), MAPK$^{\text{spk1}}$
has a positive feedback loop on its own expression via Ste11 [L2,L7] (Fig. 7A).

As the pheromone signalling was found to induce a transient ppMAPK$^{\text{spk1}}$ peak (Fig. 1C),
ppMAPK$^{\text{spk1}}$ activity is ought to be regulated by a delayed downregulation. Because the
MAPKKbyr1.DD mutant completely lacks downregulation (Fig. 1E), downregulation occurring
downstream of MAPKK$^{\text{byr1}}$ (e.g.: Pyp1 and Pmp1) were considered physiologically insignificant.
Meanwhile, Sxa2 (a serine carboxypeptidase against a mating pheromone P-factor) and Rgs1 (a
regulator of Gpa1), both of which are induced upon successful pheromone signalling (Imai and
Yamamoto, 1992; Mata and Bahler, 2006; Pereira and Jones, 2001; Watson et al., 1999),
receptor internalization (Hirota et al., 2001) and regulation of the mapk$^{\text{spk1}}$ transcript or other
components by antisense RNA (Bitton et al., 2011) fit well to the criteria for the negative
feedback. We represented all these potential negative feedbacks collectively as a single circuit,
[L8]. Importantly, this downregulation [L8] works unperturbed in the presence of Ras1.G17V, by
acting through the Ste4-dependent MAPKKK$^{\text{byr2}}$ activation process (Fig. 1G, Fig. 7A).
Ras1-GTP activates both the MAPKKK$^{\text{byr2}}$ and the Cdc42 pathways [L9] (Chang et al., 1994). As
opposed to previous expectations that active Cdc42 GTP is required to activate MAPKKK$^{\text{byr2}}$ (Tu et
al., 1997), deletion of Cdc42-GEFScd1 does not compromise MAPK$^{\text{spk1}}$ activation (Fig. 3B) and
rather, it makes ppMAPK$^{\text{spk1}}$ dynamics remarkably similar to that of the Ras1.G17V strain (Fig.
3B and Fig. 1G, plotted together in Fig. 7B): in both cases, ppMAPK$^{\text{spk1}}$ peaks earlier than the
wildtype case. At a molecular level, reactions depleting the Ras1GTP pool are compromised in
both strains. Therefore, to explain these observations, we hypothesized that MAPK$^{\text{spk1}}$ and
Cdc42 pathways are competing for the common Ras1GTP pool. In this manner, one of the
pathways can modulate the other by changing the amount of unbound (available) Ras1GTP.
In support of this prediction, we showed that binding of recombinant Ras1.G17V$^{\text{GTP}}$ to a
MAPKKK$^{\text{byr2}}$ fragment was reduced by the presence of a Cdc42-GEFScd1 fragment in vitro (Fig. 7C,
D). In this assay, bacterially expressed GST tagged fragments of both MAPKKK$^{\text{byr2}}$ (65-180) and
Cdc42-GEFScd1 (760-872) showed a specific binding towards the GTP-loaded Ras1.G17V (1-172)
(Fig. 7C). However, the binding of Ras1.G17V$^{\text{GTP}}$ to MAPKKK$^{\text{byr2}}$ was substantially decreased
when the Cdc42-GEFScd1 fragment was added (Fig. 7D). The result likely reflects the intrinsic
biochemical competitive nature of MAPKKK$^{\text{byr2}}$ and Cdc42-GEFScd1 for Ras1 binding. As we show
below, this simple hypothesis successfully describes pheromone signalling mutants tested in this
study, suggesting that no unproven cross links are necessary to reproduce the *in vivo* observations.

An intriguing common feature observed in both Cdc42-GEF*scd1*Δ and ras1.G17V mutants is that ppMAPK*Spk1* peaks not only at an earlier time point, but also with a *lower amplitude* as compared to the wildtype. If increased Ras1GTP levels simply accelerate MAPK*Spk1* activation, as has been conventionally assumed, ppMAPK*Spk1* production should peak earlier and higher (Supplementary Fig S6B, best fit out of 1000 global fits), and the addition of Ras1GTP only should increase the amplitude, but not affect timing (Supplementary Fig S6C). We confirmed these results in the best models from 1000 global fits (Materials and Methods). The comparison between our experimental results and the *in silico* predictions suggests that the role of Ras1GTP is more complex than previously thought.

Strikingly, if we hypothesize that Ras1GTP also contributes to the negative feedback [L10] (Fig. 7A), we recapitulate the “earlier and lower” peak of ppMAPK*Spk1* in both the ras1.G17V and the Cdc42-GEF*scd1*Δ mutants (Fig. 7B). We currently do not have a direct experimental evidence to support [L10]. However, considering the fact that Ras1GTP likely acts as a physical signalling hub at the cell cortex, mediating MAPKKK*Byr2* recruitment and activation, which leads to recruitment of MAPKK*Byr1* and MAPK*Spk1*, Ras1GTP may work as a two-way amplifier, both assisting localized MAPK*Spk1* activation at the shmoo site, as well as helping the negative feedback by concentrating the affected molecules.

The model successfully recapitulated the experimental results for wildtype, ras1.G17V, MAPKK*Byr1.*DD and *cdc42-GEF*scd1.*Δ mutants (Fig. 7B). To test the predictive capacity of the model, we next performed an *in silico* experiment where we titrated increasing amounts of Ras1GTP in the wildtype condition before nitorgen removal. In agreement with our hypothesis, we obtained a ras1.G17V-like ppMAPK*Spk1* activation profile with increasing amount of Ras1GTP, i.e., the ppMAPK*Spk1* peaks earlier with a lower peak intensity (Fig. 7E). The result further supported that Ras1GTP availability alone is sufficient to explain both the ras1.G17V and *Cdc42-GEF*scd1.*Δ phenotypes.

To further test the predictive value of the model, we asked whether it could predict ppMAPK*Spk1* dynamics in the 21 other strains, which were measured (Fig. 2-6), but not used for fitting the model. We implemented each mutation in the wildtype model (Supplementary Table S2) and the model accurately predicted relative ppMAPK*Spk1* dynamics in 17 cases, or showed predictions in close proximity to the observed ppMAPK*Spk1* dynamics in the 4 remaining cases.
(Fig. 7F). Concluding from these results, our model likely represents the physiological framework of fission yeast RAS-MAPK signalling.

Discussion

By quantitating the MAPKSpk1 and Cdc42 activation status during the mating process and conducting epistasis analysis between numerous signalling mutants, we showed that Ras1 coordinates activation of both the MAPKSpk1 cascade and the Cdc42 pathway. Furthermore, we revealed that the \textit{ras1.G17V} mutant phenotype is caused by deregulation of Cdc42, rather than altered activation of MAPKSpk1 in physiological setting. Based on the experimental data, we built a mathematical model, which hypothesize that the MAPKSpk1 cascade is subject to robust feedback regulation and two Ras1 effectors, Cdc42-GEFScd1 and MAPKKKByr2, are competing for active Ras1. This model faithfully recapitulates MAPKSpk1 activation profiles in the wildtype and all mutant strains examined in this study. The model implies that targeting one of the RAS effector pathways can potentially result in a complex outcome, rather than simply shutting down the targeted effector pathway. We concluded that fission yeast pheromone Ras signalling is not only defined by compartmentalisation (Onken et al., 2006) but rather a coordination of events involving both the MAPKSpk1 and Cdc42 pathways.

In this study, we confirmed that Gpa1 is the central player of the pheromone signalling. It is likely that Gpa1 is the most downstream molecule conveying the complete pheromone signal. Considering that all the pheromone signalling components examined so far have been found at the shmoo site (Dudin et al., 2016; Merlini et al., 2016; Merlini et al., 2018)(this study), an attractive hypothesis is as follows: firstly, the activated pheromone receptor Map3/Mam2 locally activates Gpa1, which activates Ras1 and MAPKSpk1. This then leads to a localised activation of the Cdc42, causing shmoo formation in the direction of a mating partner (Fig. 7G).

The \textit{ras1.G17V} mutation led to a acute activation of MAPKSpk1 compared with the wildtype cells. The G17V mutation of Ras1 is equivalent of G12V mutation of mammalian RAS, which results in a substantial reduction of both intrinsic and GAP-mediated GTPase activities (Trahey and McCormick, 1987). Therefore a larger fraction of Ras1 is expected to be in the GTP-bound form in the \textit{ras1.G17V} mutant cells. By mathematical modelling, we showed that the increased Ras1\textsubscript{GTP} pool can explain a faster acute activation of MAPKSpk1.
To our surprise, the constitutive Ras1.G17V mutation did not induce over-activation of MAPK^{Spk1}. The attenuated MAPK^{Spk1} activation in the presence of Ras1.G17V indicated that an efficient feedback mechanism is in place to counteract the effect of Ras1.G17V. Strikingly, the same trend has been reported in the mouse model of the K-ras^{G12D} mutation integrated at the endogenous chromosome locus (Tuveson et al., 2004). Therefore it is highly likely that the MAPK cascade is generally robust against upstream oncogenic constitutive stimulation.

Based on our observation that the MAPK^{Spk1} is constitutively activated in the MAPKK^{byr1.DD} mutant, we predict that the negative regulation occurs upstream of, or at the same level as, MAPKK^{Byr1}, rather than phosphatases that directly regulate MAPK^{Spk1}. In humans, ERK is shown to phosphorylate RAF proteins, the prototype MAPKKKs, to contribute to ERK signal attenuation (Brummer et al., 2003; Dougherty et al., 2005; Ritt et al., 2010). In future studies it will be important to determine whether MAPK^{Spk1} can directly downregulate MAPKKK^{Byr2} in a physiological setting.

Our results also show that an adaptor^{Ste4} plays a crucial role in activating MAPKKK^{Byr2}, abolishing ppMAPK^{Spk1} production even in the presence of ras1.G17V mutation. This suggests that the adaptor^{Ste4} fits well to be one of the major targets by the negative feedback loop against ppMAPK^{Spk1}. This mechanism is shared by budding yeast, where an adaptor protein, Ste50, modulates MAPKKK^{Ste11} (Ramezani-Rad, 2003). In humans, although such an adaptor protein for RAF proteins has yet to be identified, multiple RAF-interacting proteins, including 14-3-3 proteins, as well as formation of heterodimers between BRAF and CRAF, have been studied for their Ras-independent mechanism to activate RAF proteins (Lavoie and Therrien, 2015). Collectively, MAPK cascades seem to retain a general resistance to oncogenic RAS mutations in physiological settings.

Whilst lack of Cdc42 activation does not impair MAPK^{Spk1} activation, we found that MAPK^{Spk1} activity is required for shmoo formation even in the presence of Ras1.G17V (Fig. 2C). Therefore, the two Ras1 effectors, Cdc42 and MAPK^{Spk1} pathways, are not completely separable. The situation is reminiscent of the K-ras^{G12D} MEFs (Tuveson et al., 2004). In this system, the K-ras^{G12D} MEFs showed morphological anomalies. As both ERK and AKT phosphorylation levels in the K-ras^{G12D} MEFs resembled wildtype, these pathways unlikely caused the morphological phenotype. Nonetheless, inhibitors against MAPK and PI3K pathways reverted the K-ras^{G12D}-induced abnormal morphology back to the one similar to wildtype. The observation suggests that MAPK and PI3K pathways somehow contribute to the K-ras^{G12D} morphological phenotype;
for example, a basal level of MAPK and PI3K pathway activation may be a prerequisite for the K-rasG12D–induced morphological anomalies.

The molecular mechanism of how MAPKSpk1 contributes to Cdc42 activation will require further studies. Key components in pheromone signalling are transcriptionally up-regulated upon pheromone signalling (Xue-Franzen et al., 2006). This is driven by MAPKSpk1, which activates the master transcriptional regulator Ste11 (Kjaerulff et al., 2005; Mata and Bahler, 2006; Xue-Franzen et al., 2006). Therefore, the contribution of MAPKSpk1 to Cdc42 activation is expected to occur, at least partly, through transcriptional activation.

In addition, localisation of signalling components may be regulated by MAPKSpk1. In budding yeast, Cdc24, the GEF for Cdc42, is sequestered into the nucleus by an adaptor protein Far1 (Nern and Arkowitz, 2000; Shimada et al., 2000). Upon the pheromone signalling, budding yeast MAPK Fus3 phosphorylates Far1, which then brings Cdc24 out to the shmoo site, leading to Cdc42 activation on the cell cortex (Hegemann et al., 2015).

MAPKSpk1 may also directly phosphorylate to activate Cdc42 and/or its regulatory proteins such as Cdc42-GEFScd1, Scd2 or GAP-Cdc42Rga4, all of which function at the shmoo site during the mating (Bendezu and Martin, 2013; Dudin et al., 2016)(Fig.4 A and B). In agreement with this hypothesis, a transient MAPKSpk1 and MAPKKByr1 signal on the cell cortex was observed during the mating process (Fig. 1)(Dudin et al., 2016). Localisation of MAPK at the growing cell tips was also observed in other fungi including S. cerevisiae and N. crassa (Chen et al., 2010; Fleissner et al., 2009; Maeder et al., 2007; van Drogen et al., 2001). In budding yeast, MAPK Fus3 can directly phosphorylates Bni1, a formin that organises actin filaments, to facilitate shmoo formation (Matheos et al., 2004).

Interestingly, during the vegetative growth when expression of MAPKSpk1 is repressed, Ras1.G17V is still capable of activating Cdc42 (Fig. 4C and D). Whether other MAPKs, such as Sty1 or Pmk1, contribute to Cdc42 activation during the vegetative cell cycle will be an important question to answer. Intriguingly, recent studies show that Sty1 inhibits, rather than assists, establishment of the Cdc42 polarity module (Mutavchiev et al., 2016). Collectively, it is likely that the Cdc42 polarity module is regulated in a context dependent manner by multiple MAPKs in a range of ways.

In this study we revealed the vital contribution of Cdc42 to induce the ras1.G17V phenotype in fission yeast pheromone signalling. In mouse models, small GTPases, Cdc42 and Rac, are required for H-rasG12V induced transformation (Malliri et al., 2002; Stengel and Zheng, 2012).
Therefore, oncogenic RAS-induced Cdc42/Rac misregulation may be a common basis of oncogenicity of mutated-RAS-induced signalling. Specifically targeting this process may therefore be an effective strategy against oncogenic RAS-driven tumourigenesis.

Acknowledgment

The authors thank Tatsuya Maeda, Thibault Mayor, Janni Petersen, Louise Fairall, John Schwabe, David Critchley, Andrey Reviyakin, Gary Willars and Mohan Harihar for helpful suggestions, stimulating discussions and critical reading of the manuscript. We thank PROTEX and PNACL at University of Leicester for their technical assistance. We are grateful to Kazu Shiozaki, Keith Gull and Yeast Genetic Resource Center for providing strains and antibodies. This work was funded by the Wellcome Trust Institutional Strategic Support Fund WT097828/Z/11/Z, WT097828/Z/11/B and the Deutsche Forschungsgemeinschaft (DFG) EXC 81. A.V. was supported by German Academic Exchange Service (DAAD) A0981674.

Author Contributions

Declaration of Interests

The authors declare no competing interests.

References

Figure legends

Figure 1. Distinct modes of MAPK^{Spk1} temporal phosphorylation profile and morphological changes during sexual differentiation in wildtype, MAPK^{byr1.DD} and <i>ras1.G17V</i> mutants.

(A) A pictorial representation of wildtype fission yeast sexual differentiation. (B) A list of key signalling components of the fission yeast pheromone signalling pathway. The diagram reflects the prediction that Gpa1 and Ras1 separately contribute to activation of MAPKKK^{byr2} although the precise mechanism is unknown (Xu et al., 1994). At the same time, Ras1 activation is expected to be at least partly under influence of active Gpa1 because the <i>ste6</i> gene, encoding a Ras1 activator, is strongly induced upon successful pheromone signaling (Hughes et al., 1994).

(C)-(H) Cells were induced for sexual differentiation by the plate mating assay system as described in the materials and methods. (C), (E) and (G) Quantified ppMAPK^{Spk1} signal from western blots of wildtype (KT3082) (C), MAPK^{byr1.DD} (KT3435) (E) and <i>ras1.G17V</i> (KT3084) (G) cells. Three biological replicates were used for quantitation (error bars are ±SEM). α-tubulin was used as a loading control and quantitation was carried out using the Image Studio ver2.1 software (Licor Odyssey CLx Scanner). For the wildtype samples in (C), the % of cells mating is also indicated. The wildtype ppMAPK^{Spk1} result (C) is also presented in (E) and (G) as a reference. (D), (F) and (H) Cellular morphology (brightfield) and localization of MAPK^{Spk1}-GFP over a 24 hour time-course in wildtype (D), MAPK^{byr1.DD} (F) and <i>ras1.G17V</i> (H) cells. Time after induction of mating in hours is indicated on the left. At each time point, a bright-field image and a GFP signal image were taken and processed as described in materials and methods. Green asterisks in the time 24 h in the <i>ras1.G17V</i> cell image (H) indicate auto-fluorescence signal from inviable cell debris, which were presumably produced through cytokinesis failure or cell lysis. Yellow arrows in panels (D) and (F) indicate transient accumulation of MAPK^{Spk1}-GFP at the shmoo tips. Scale bars represent 10µm.

Figure 2. In the <i>ras1.G17V MAPK^{byr1.DD}</i> double mutant, the MAPK^{Spk1} phosphorylation profile follows MAPK^{byr1.DD} single mutant phenotype whilst cell morphology mimics the <i>ras1.G17V</i> single mutant phenotype.

(A) MAPK^{Spk1} phosphorylation status in the <i>ras1.G17V MAPK^{byr1.DD}</i> double mutant cells (KT3439). Cells were induced for mating by the plate mating assay system as described in the materials and methods. Quantitated ppMAPK^{Spk1} signal (arbitrary unit) from western blots is
presented. Results of two biological replicates (each derived from three technical replicates, error bars are ±SEM) are presented in red. (B) The terminal mating phenotype of ras1.G17V MAPKK^{byr1.DD} double mutant is a phenocopy of ras1.G17V single mutant which shows the “elongated” morphology. Images were taken of ras1.G17V MAPKK^{byr1.DD} double mutant (KT3439) in the same way as in Fig. 1. Time after induction of mating in hours is indicated on the left. (C) There is no morphological change in the absence of MAPK^{Sk1} signalling. Cell images of MAPKK^{byr1Δ} (KT4700) and ras1.G17V MAPKK^{byr1Δ} (KT5030) strains are shown. Images were taken in the same way as in Fig. 1. Time after induction of mating in hours is indicated on the left of each series. Scale bars represent 10µm.

Figure 3. Ras1 activates both MAPK^{Sk1} and Cdc42 pathways during pheromone signalling.

(A) s^cd1Δ morphology and MAPK^{Sk1,-GFP} signal. Images of WT (KT3082), s^cd1Δ (KT4061) and s^cd1Δ ras1.G17V double mutant (KT4056) were taken in the same way as in Fig.1. Numbers on the left represents hours after induction of mating. (B) MAPK^{Sk1} phosphorylation state in s^cd1Δ (KT4061) cells after mating induction. Results of three biological replicates (error bars are ±SEM) are presented. The wildtype ppMAPK^{Sk1} result presented in Fig.1 (C) is also shown in blue as a reference. (C) Cell images of s^cd1Δ MAPKK^{byr1.DD} double mutant (KT4047) were taken in the same way as in Fig.1. Numbers on the left represents hours after induction of mating. (D) MAPK^{Sk1} phosphorylation state in ras1Δ (KT4323), MAPKK^{byr1.DD} (KT3435) and ras1Δ MAPKK^{byr1.DD} (KT4359) cell extracts. Original Western blotting data is presented in Fig. S3A. (E) MAPK^{Sk1} phosphorylation state in mapkk^{kbyr2Δ} (KT3763), MAPKK^{byr1.DD} (KT3435) and mapkk<sup>kbyr2Δ MAPKK^{byr1.DD} (KT4010) cell extracts. Original Western blotting data is presented in Fig. S3B. For (D) and (E), quantification was carried out using the Image Studio ver2.1 (Li-cor). (F) Cell images of the strains mentioned in (D) and (E) were taken in the same way as in Fig.1. Numbers on the left represents hours after induction of mating. For all the images presented in (A), (C) and (F), scale bars represent 10µm.

Figure 4. Ras1.G17V induces cortical Cdc42^{GTP} accumulation

(A) Cell morphology and localisation of Cdc42^{GTP}, indicated by CRIB-GFP signal, during the sexual differentiation process. Wildtype (KT5077) and ras1.G17V (KT5082) mutant cells were induced for mating/sexual differentiation by the plate mating assay condition (Materials and Methods)
and live cell images were taken at the indicated time after induction of mating/sexual differentiation. Representative CRIB-GFP signal images are presented. Cells with cortical CRIB-GFP foci are indicated by orange stars. Rapidly-disappearing CRIB-GFP signals at the fusion site of wildtype mating cells are indicated by green arrows at time 8.5h image. Scale bar: 10 µm. (B) Quantitation of the results presented in (A). At each time point (4.5h, 6.5h, 10.5h, 12.5h and 22.5h after induction of mating/sexual differentiation), 150 cells were examined whether they have cortical CRIB-GFP foci. % cells with cortical CRIB-GFP foci is presented. The experiment was repeated for three times and the mean values and SDs are plotted in the graph. (C) Cell morphology and localisation of Cdc42GTP, indicated by CRIB-GFP signal, during vegetative growth. Representative CRIB-GFP signal images of cells of wildtype (KT5077), ras1Δ (5107), ras1.G17V (KT5082), rga4Δ (5551) and rga4Δ ras1.G17V (KT5554) are presented. Scale bar: 10 µm. (D) Quantitated CRIB-GFP signals on the cell cortex of cells presented in (C). Intensity of GFP signal on the cell cortex was measured along one of the cell tips as indicated as a magenta dotted line in the example image on the right (Scale bar: 10 µm) as stated in the Materials and Methods. 40 cells without septum were measured for each strain and the average curve from all aligned traces per strain was calculated, and displayed with respective standard error of the mean curves (dashed lines) as described in Materials and Methods.

Fig. 5. Distinct contributions of Ste4 and Ste6 to MAPKSpk1 phosphorylation.

(A) Ste4 is essential for MAPKSpk1 activation. MAPKSpk1 phosphorylation status in ste4Δ (KT4376), ste4Δ ras1.G17V (KT5143) and ste4Δ MAPKkbyr1.DD (KT5136) at times-points 0, 8, 16 and 24 hours post mating induction are presented. Original Western blotting membranes are presented in Fig. S3C. (B) Incapability of ste4Δ to cause pheromone-induced morphological change is suppressed by MAPKkbyr1.DD but not by ras1.G17V. Cell images of ste4Δ (KT4376), ste4Δ ras1.G17V (KT5143) and ste4Δ MAPKkbyr1.DD (KT5136) strains were taken 24 hours after induction of mating. Scale bar: 10 µm. (C) Lack of Ste6 does not result in the complete loss of MAPKSpk1 phosphorylation. MAPKSpk1 phosphorylation status in ste6Δ (KT4333), ste6Δ ras1.G17V (KT4998) and ste6Δ MAPKkbyr1.DD (KT5139) at times-points 0, 8, 16 and 24 hours post mating induction are presented. Original Western blotting membranes are presented in Fig. S3D. (D) Incapability of ste6Δ to cause pheromone-induced morphological change is suppressed by ras1.G17V mutation but not by MAPKkbyr1.DD mutation. Cell images of ste6Δ (KT4333), ste6Δ
ras1.G17V (KT4998) and ste6Δ MAPKK^byr1.DD (KT5139) strains were taken 24 hours after induction of mating. Scale bar: 10 µm.

Fig. 6. Gpa1 transduces the pheromone signalling by activating MAPK^S^pk1 and Ras1 pathways

(A) MAPK^S^pk1 phosphorylation status in homothallic *gpa1Δ* (KT4335), *gpa1Δ ras1.G17V* (KT5023), *gpa1Δ MAPKK^byr1.DD* (KT4353) and *gpa1Δ val17 MAPKK^byr1.DD* (KT5035) at times-points 0, 8, 12, 16 and 24 hours after mating induction. Original Western membrane is presented in Fig. S4A. (B) Cell images of the above mentioned strains at 16 hours after mating induction. All the cell images were taken and processed as in Figure 1. Scale bar is 10 µm. (C) MAPK^S^pk1 phosphorylation status in *h^- WT* (KT4190), *h^- gpa1.QL* (KT5059), *h^- ras1.G17V* (KT4233), *h^- gpa1.QL ras1Δ* (KT5070) and *h^- MAPKK^byr1.DD* (KT4194) at times-points 0, 8, 12 and 24 after mating induction. Note that while the activation induced in the *gpa1.QL* mutant was down-regulated, MAPKK^byr1.DD^ induced a constitutive activation. Original Western membrane is presented in Fig. S4B. (D) Cell images of the above strains at 12 h after induction of mating. All the cell images were taken and processed as in Figure 1. Scale bar is 10 µm.

Fig. 7. Mathematical modelling of the fission yeast pheromone pathway dynamics.

(A) Components and frameworks of the mathematical model in wildtype and signalling mutants: *ras1.G17V*, *Cdc42GEF^scd1^Δ*, and MAPKK^byr1.DD^. Changes corresponding to each mutant are indicated as follows: Grey: removed components or interactions, orange: increased level of activity. For the exact implementation of the mutants, see Materials and Method. The measured component, ppMAPK^S^pk1, is highlighted in green. (B) Measured and simulated ppMAPK^S^pk1 activation profiles in wildtype, *ras1.G17V*, *Cdc42GEF^scd1^Δ* and MAPKK^byr1.DD^ mutants. Dashed lines: model simulations. Diamonds: experimental data presented in Fig. 1C, E, G, and Fig. 3B; error bars: SEM. (C) GTP-loaded Ras1.G17V (1-172) directly binds to Byr2 (65-180) and Scd1 (760-872). *In vitro* GST pull-down assays of bacterially expressed Ras1.G17V (1-172), GST-Byr2 (65-180) and GST-Scd1 (760-872) were conducted as described in materials and methods. GTP-loaded Ras1.G17V (1-172) was found to bind to both GST-Byr2 (65-180) and GST-Scd1 (760-872). (D) Two Ras1 effectors, Byr2 and Scd1, compete for GTP-loaded Ras1.G17V (1-172). In *in vitro* GST pull-down assays of bacterially expressed Ras1.G17V (1-172) and GST-Byr2 (65-180) were conducted as in (A). Addition of Scd1 (760-872) fragment interfered with Ras1-Byr2
binding (the 4th lane). Quantitated signal intensities of the Ras1.G17V (1-172) band in the gel are shown in the right panel. (E) Simulated ppMAPK^{Spk1} dynamics in the wildtype model at increasing concentrations of Ras1^{GTP} added in silico to the system. Increased Ras1^{GTP} concentration causes advanced and reduced ppMAPK^{Spk1} peak intensities. (F) The model fitted to the 4 strains (as above, in red) correctly predicts ppMAPK^{Spk1} dynamics in the additional 21 signalling mutant strains measured in this study.(G) Schematic diagram of the fission yeast pheromone signalling pathway, highlighting the branched pheromone sensing, and that ultimately both branches are necessary for mating.
Figure 1. Distinct modes of MAPK^{Spk1} temporal phosphorylation profile and morphological changes during sexual differentiation in wildtype, MAPKK^{byr1.DD} and ras^{1.G17V} mutants.

(A) A pictorial representation of wildtype fission yeast sexual differentiation. (B) A list of key signalling components of the fission yeast pheromone signalling pathway. The diagram reflects the prediction that Gpa1 and Ras1 separately contribute to activation of MAPKKK^{Byr2} activation although the precise mechanism is unknown (Xu et al., 1994). At the same time, Ras1 activation is expected to be at least partly under influence of active Gpa1 because the ste6 gene, encoding a Ras1 activator, is strongly induced upon successful pheromone signaling (Hughes et al., 1994). (C)-(H) Cells were induced for sexual differentiation by the plate mating assay system as described in the materials and methods. (C), (E) and (G) Quantified ppMAPK^{Spk1} signal from western blots of wildtype (KT3082) (C), MAPKK^{byr1.DD} (KT3435) (E) and ras^{1.G17V} (KT3084) (G) cells. Three biological replicates were used for quantitation (error bars are ±SEM). α-tubulin was used as a loading control and quantitation was carried out using the Image Studio ver2.1 software (Licor Odyssey CLx Scanner). For the wildtype samples in (C), the % of cells mating is also indicated. The wildtype ppMAPK^{Spk1} result (C) is also presented in (E) and (G) as a reference. (D), (F) and (H) Cellular morphology (brightfield) and localization of MAPK^{Spk1}-GFP over a 24 hour time-course in wildtype (D), MAPKK^{byr1.DD} (F) and ras^{1.G17V} (H) cells. Time after induction of mating in hours is indicated on the left. At each time point, a bright-field image and a GFP signal image were taken and processed as described in materials and methods. Green asterisks in the time 24 h in the ras^{1.G17V} cell image (H) indicate auto-fluorescence signal from inviable cell debris, which were presumably produced through cytokinesis failure or cell lysis. Yellow arrows in panels (D) and (F) indicate transient accumulation of MAPK^{Spk1}-GFP at the shmoo tips. Scale bars represent 10µm.
Figure 2. In the ras1.G17V MAPKK^byr1.DD double mutant, the MAPK^Spk1 phosphorylation profile follows MAPKK^byr1.DD single mutant phenotype whilst cell morphology mimics the ras1.G17V single mutant phenotype.

(A) MAPK^Spk1 phosphorylation status in the ras1.G17V MAPKK^byr1.DD double mutant cells (KT3439). Cells were induced for mating by the plate mating assay system as described in the materials and methods. Quantitated ppMAPK^Spk1 signal (arbitrary unit) from western blots is presented. Results of two biological replicates (each derived from three technical replicates, error bars are ±SEM) are presented in red. (B) The terminal mating phenotype of ras1.G17V MAPKK^byr1.DD double mutant is a phenocopy of ras1.G17V single mutant which shows the "elongated" morphology. Images were taken of ras1.G17V MAPKK^byr1.DD double mutant (KT3439) in the same way as in Fig. 1. Time after induction of mating in hours is indicated on the left. (C) There is no morphological change in the absence of MAPK^Spk1 signalling. Cell images of MAPKK^byr1.DD (KT4700) and ras1.G17V MAPKK^byr1.DD (KT5030) strains are shown. Images were taken in the same way as in Fig. 1. Time after induction of mating in hours is indicated on the left of each series. Scale bars represent 10 µm.
Figure 3. Ras1 activates both MAPK^{Spk1} and Cdc42 pathways during pheromone signalling.

(A) scd1Δ morphology and MAPK^{Spk1}-GFP signal. Images of WT (KT3082), scd1Δ (KT4061) and scd1Δ ras1.G17V double mutant (KT4056) were taken in the same way as in Fig.1. Numbers on the left represents hours after induction of mating. Results of three biological replicates (error bars are ±SEM) are presented. The wildtype result presented in Fig.1 (C) is also shown in blue as a reference. (C) Cell images of scd1Δ MAPKK^{byr1.DD} double mutant (KT4047) were taken in the same way as in Fig.1. Numbers on the left represents hours after induction of mating. (D) MAPK^{Spk1} phosphorylation state in ras1Δ (KT4323), MAPKK^{byr1.DD} (KT3435) and scd1Δ MAPKK^{byr1.DD} (KT4359) cell extracts. Original Western blotting data is presented in Fig. S3A. (E) MAPK^{Spk1} phosphorylation state in mapkk^{byr2Δ} (KT3763), MAPKK^{byr1.DD} (KT3435) and mapkk^{byr2Δ} MAPKK^{byr1.DD} (KT4010) cell extracts. Original Western blotting data is presented in Fig. S3B. For (D) and (E), quantification was carried out using the Image Studio ver2.1 (Li-cor). (F) Cell images of the strains mentioned in (D) and (E) were taken in the same way as in Fig.1. Numbers on the left represents hours after induction of mating. For all the images presented in (A), (C) and (F), scale bars represent 10µm.
Figure 4. Ras1.G17V induces cortical Cdc42GTP accumulation

(A) Cell morphology and localisation of Cdc42GTP, indicated by CRIB-GFP signal, during the sexual differentiation process. Wildtype (KT5077) and ras1.G17V (KT5082) mutant cells were induced for sexual differentiation by the plate mating assay condition (Materials and Methods) and live cell images were taken at the indicated time after induction of mating/sexual differentiation. Representative CRIB-GFP signal images are presented. Cells with cortical CRIB-GFP foci are indicated by orange stars. Rapidly-disappearing CRIB-GFP signals at the fusion site of wildtype mating cells are indicated by green arrows at time 8.5h image. Scale bar: 10 µm. (B) Quantitation of the results presented in (A). At each time point (4.5h, 6.5h, 10.5h, 12.5h and 22.5h after induction of mating/sexual differentiation), 150 cells were examined whether they have cortical CRIB-GFP foci. % cells with cortical CRIB-GFP foci is presented. The experiment was repeated for three times and the mean values and SDs are plotted in the graph. (C) Cell morphology and localisation of Cdc42GTP, indicated by CRIB-GFP signal, during vegetative growth. Representative CRIB-GFP signal images of cells of wildtype (KT5077), ras1Δ (5107), ras1.G17V (KT5082), rga4Δ (5551) and rga4Δ ras1.G17V (KT5554) are presented. Scale bar: 10 µm. (D) Quantitated CRIB-GFP signals on the cell cortex of cells presented in (C). Intensity of GFP signal on the cell cortex was measured along one of the cell tips as indicated as a magenta dotted line in the example image on the right (Scale bar: 10 µm) as stated in the Materials and Methods. 40 cells without septum were measured for each strain and the average curve from all aligned traces per strain was calculated, and displayed with respective standard error of the mean curves (dashed lines) as described in Materials and Methods.
Fig. 5. Distinct contributions of Ste4 and Ste6 to MAPK^{Spk1} phosphorylation.

(A) Ste4 is essential for MAPK^{Spk1} activation. MAPK^{Spk1} phosphorylation status in ste4Δ (KT4376), ste4Δ ras1.G17V (KT5143) and ste4Δ MAPKK^{byr1.DD} (KT5136) at times-points 0, 8, 16 and 24 hours post mating induction are presented. Original Western blotting membranes are presented in Fig. S3C. (B) Incapability of ste4Δ to cause pheromone-induced morphological change is suppressed by MAPKK^{byr1.DD} but not by ras1.G17V. Cell images of ste4Δ (KT4376), ste4Δ ras1.G17V (KT5143) and ste4Δ MAPKK^{byr1.DD} (KT5136) strains were taken 24 hours after induction of mating. Scale bar: 10 µm. (C) Lack of Ste6 does not result in the complete loss of MAPK^{Spk1} phosphorylation. MAPK^{Spk1} phosphorylation status in ste6Δ (KT4333), ste6Δ ras1.G17V (KT4998) and ste6Δ MAPKK^{byr1.DD} (KT5139) at times-points 0, 8, 16 and 24 hours post mating induction are presented. Original Western blotting membranes are presented in Fig. S3D. (D) Incapability of ste6Δ to cause pheromone-induced morphological change is suppressed by ras1.G17V mutation but not by MAPKK^{byr1.DD} mutation. Cell images of ste6Δ (KT4333), ste6Δ ras1.G17V (KT4998) and ste6Δ MAPKK^{byr1.DD} (KT5139) strains were taken 24 hours after induction of mating. Scale bar: 10 µm.
Fig. 6. Gpa1 transduces the pheromone signalling by activating MAPKSpk1 and Ras1 pathways. (A) MAPKSpk1 phosphorylation status in homothallic \textit{gpa1}Δ (KT4335), \textit{gpa1}Δ \textit{ras1.G17V} (KT5023), \textit{gpa1}Δ MAPKKbyr1.DD (KT4353) and \textit{gpa1}Δ ras1.val17 MAPKKbyr1.DD (KT5035) at times-points 0, 8, 12, 16 and 24 hours after mating induction. Original Western membrane is presented in Fig. S4A. (B) Cell images of the above mentioned strains at 16 hours after mating induction. All the cell images were taken and processed as in Figure 1. Scale bar is 10 µm. (C) MAPKSpk1 phosphorylation status in \textit{h}− \textit{WT} (KT4190), \textit{h}− \textit{gpa1.QL} (KT5059), \textit{h}− \textit{ras1.G17V} (KT4233), \textit{h}− \textit{MAPKK}byr1.DD (KT4194) and \textit{h}− \textit{gpa1.QL ras1Δ} (KT5070) at times-points 0, 8, 12 and 24 after mating induction. Note that while the activation induced in the \textit{gpa1.QL} mutant was down-regulated, \textit{MAPKK}byr1.DD induced a constitutive activation. Original Western membrane is presented in Fig. S4B. (D) Cell images of the above strains at 12 h after induction of mating. All the cell images were taken and processed as in Figure 1. Scale bar is 10 µm.
Fig. 7. Mathematical modelling of the fission yeast pheromone pathway dynamics.
(A) Components and frameworks of the mathematical model in wildtype and signalling mutants: ras1.G17V, Cdc42GEF^{scd1Δ}, and MAPKK^{byr1 DD}. Changes corresponding to each mutant are indicated as follows: Grey, removed components or interactions; orange, increased level of activity. For the exact implementation of the mutants, see Materials and Method. The measured component, ppMAPK^{Spk1}, is highlighted in green. (B) Measured and simulated ppMAPK^{Spk1} activation profiles in wildtype, ras1.G17V, Cdc42GEF^{scd1Δ} and MAPKK^{byr1 DD} mutants. Dashed lines: model simulations. Diamonds: experimental data presented in Fig. 1C, E, G, and Fig. 3B; error bars: SEM. (C) GTP-loaded Ras1.G17V (1-172) directly binds to Byr2 (65-180) and Scd1 (760-872). In vitro GST pull-down assays of bacterially expressed Ras1.G17V (1-172), GST-Byr2 (65-180) and GST-Scd1 (760-872) were conducted as described in materials and methods. GTP-loaded Ras1.G17V (1-172) was found to bind to both GST-Byr2 (65-180) and GST-Scd1 (760-872). (D) Two Ras1 effectors, Byr2 and Scd1, compete for GTP-loaded Ras1.G17V (1-172). In vitro GST pull-down assays of bacterially expressed Ras1.G17V (1-172) and GTP-Byr2 (65-180) were conducted as in (A). Addition of Scd1 (760-872) fragment interfered with Ras1-Byr2 binding (the 4th lane). Quantitated signal
intensities of the Ras1.G17V (1-172) band in the gel are shown in the right panel. (E) Simulated ppMAPKpS\&pT dynamics in the wildtype model at increasing concentrations of RasGTP added \textit{in silico} to the system. Increased RasGTP concentration causes advanced and reduced ppMAPKpS\&pT peak intensities. (F) The model fitted to the 4 strains (as above, in red) correctly predicts ppMAPKpS\&pT dynamics in the additional 21 signalling mutant strains measured in this study. (G) Schematic diagram of the fission yeast pheromone signalling pathway, highlighting the branched pheromone sensing, and that ultimately both branches are necessary for mating.