1	Cross-species alcohol dependence-associated gene networks: Co-analysis of
2	mouse brain gene expression and human genome-wide association data
3	
4	Short Title: Cross-species analysis reveals alcohol dependence-associated gene networks
5	
6	Kristin M. Mignogna ^{2,3,4} , Silviu A. Bacanu ^{2,3} , Brien P. Riley ^{2,3} , Aaron R. Wolen ⁵ , Michael F.
7	Miles ^{1,3*}
8	
9	¹ Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond,
10	Virginia, United States of America
11	² Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University,
12	Richmond, Virginia, United States of America
13	³ VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia,
14	United States of America
15	⁴ VCU Center for Clinical & Translational Research, Virginia Commonwealth University,
16	Richmond, Virginia, United States of America
17	⁵ Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond,
18	Virginia, United States of America
19	
20	* Corresponding author
21	E-mail: michael.miles@vcuhealth.org

2

22 Abstract

23 Genome-wide association studies on alcohol dependence, by themselves, have yet to account for 24 the estimated heritability of the disorder and provide incomplete mechanistic understanding of 25 this complex trait. Integrating brain ethanol-responsive gene expression networks from model 26 organisms with human genetic data on alcohol dependence could aid in identifying dependence-27 associated genes and functional networks in which they are involved. This study used a 28 modification of the Edge-Weighted Dense Module Searching for genome-wide association 29 studies (EW-dmGWAS) approach to co-analyze whole-genome gene expression data from 30 ethanol-exposed mouse brain tissue, human protein-protein interaction databases and alcohol 31 dependence-related genome-wide association studies. Results revealed novel ethanol-regulated 32 and alcohol dependence-associated gene networks in prefrontal cortex, nucleus accumbens, and 33 ventral tegmental area. Three of these networks were overrepresented with genome-wide 34 association signals from an independent dataset. These networks were significantly 35 overrepresented for gene ontology categories involving several mechanisms, including actin 36 filament-based activity, transcript regulation, Wnt and Syndecan-mediated signaling, and 37 ubiquitination. Together, these studies provide novel insight for brain mechanisms contributing 38 to alcohol dependence.

3

39 Introduction

40	Alcohol Use Disorder [1], which spans the spectrum from abusive drinking to full alcohol
41	dependence (AD), has a lifetime prevalence of 29.1% among adults in the United States [2].
42	Alcohol misuse ranks third in preventable causes of death in the U.S. [3] and fifth in risk factors
43	for premature death and disability, globally [4]. Although pharmacological therapy for AUD
44	exists [5], the effectiveness is limited and the relapse rate is high. Improvement in AUD
45	treatment requires research on the underlying genetic and biological mechanisms of the
46	progression from initial exposure to misuse, and finally to dependence.
47	Twin studies estimate that AUD is roughly 50% heritable [6, 7]. Multiple rodent model
48	studies have used selective breeding to enrich for ethanol behavioral phenotypes or have
49	identified ethanol-related behavioral quantitative trait loci [8-10], further confirming the large
50	genetic contribution to alcohol behaviors. Recent studies have also documented genetic factors
51	influencing the effectiveness of existing pharmacological treatments for AD, further
52	substantiating genetic contributions to the mechanisms and treatment of AUD [11]. Genome-
53	wide association studies (GWAS) in humans have identified several genetic variants associated
54	with alcohol use and dependence [12-15]. However, they have yet to account for a large portion
55	of the heritability estimated by twin studies. Lack of power, due to a large number of variants
56	with small effects, is believed to the source of this "missing heritability" [16]. Although recent
57	large-scale studies have shown promise in identifying novel genetic contributions to alcohol
58	consumption, these studies do not contain the deep phenotypic information necessary for
59	identifying variants associated with dependence. Further, such GWAS results still generally lack
60	information about how detected single gene variants are mechanistically related to the disease
61	phenotype.

4

62 Genome-wide gene expression studies are capable of improving the power of GWAS by 63 providing information about the gene networks in which GWAS variants function [17-20]. 64 Although gene expression in brain tissue has been studied in AD humans [17, 18], these studies 65 are often difficult to conduct and interpret, due to lack of control over experimental variables and 66 small sample sizes. However, extensive studies in rodent models have successfully identified 67 ethanol-associated gene expression differences and gene networks in brain tissue [21-24]. 68 Multiple ethanol-behavioral rodent models exist to measure different aspects of the 69 developmental trajectory from initial exposure to compulsive consumption [25]. Acute 70 administration to naïve mice models the response of initial alcohol exposure in humans, which is 71 an important predictor of risk for AD [26, 27]. Wolen et al. used microarray analysis across a 72 mouse genetic panel to identify expression correlation-based networks of acute ethanol-73 regulated genes, along with significantly associated expression quantitative trait loci in the 74 prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) [24]. 75 Furthermore, specific networks also correlated with other ethanol behavioral data derived from 76 the same mouse genetic panel (BXD recombinant inbred lines) [10]. These results suggested that studying acute ethanol-exposed rodent brain gene expression could provide insight into relevant 77 78 mechanistic frameworks and pathways underlying ethanol behaviors. 79 Several studies have integrated GWAS and gene expression or gene network data to cross-

validate behavioral genetic finding [17]. For instance, the Psychiatric Genomics Consortium [28]
tested for enrichment of nominally significant genes from human GWAS in previously identified
functional pathways, and found shared functional enrichment of signals for schizophrenia, major
depression disorder, and bipolar disorder in several categories. These pathways included histone
methylation, neural signaling, and immune pathways [28]. Mamdani et al. reversed this type of

85	analysis by testing for significant enrichment of previously identified GWAS signals in gene
86	networks from their study. They found that expression quantitative trait loci for AD-associated
87	gene expression networks in human prefrontal cortex tissue had significant enrichment with AD
88	diagnosis and symptom count GWAS signals from the Collaborative Study on the Genetics of
89	Alcoholism dataset [17]. Additional approaches have taken human GWAS significant (or
90	suggestive) results for AD and provided additional confirmation by showing that expression
91	levels for such genes showed correlations with ethanol behaviors in rodent models [29]. Such
92	methods are informative with respect to analyzing the function of genes that have already
93	reached some association significance threshold. However, they do not provide information
94	about genes not reaching such statistical thresholds, but possibly still having important
95	contributions to the genetic risk and mechanisms of AUD
96	Dense module searching for GWAS (dmGWAS) is an algorithm for directly integrating
97	GWAS data and other biological network information so as to identify gene networks
98	contributing to a genetic disorder, even if few of the individual network genes exceed genome-
99	wide statistical association thresholds [30]. The initial description of this approach utilized
100	Protein-Protein Interaction (PPI) network data to identify networks associated with a GWAS
101	phenotype. Modules derived from protein-protein interactions were scored from node-weights
102	based on gene-level GWAS <i>p</i> -values. This approach was used to identify AD-associated PPI
103	networks that replicated across ethnicities and showed significant aggregate AD-association in
104	independent GWAS datasets [31], thus demonstrating the potential utility of the method. A more
105	recent iteration of the dmGWAS algorithm, termed Edge-Weighted dense module searching for
106	GWAS (EW-dmGWAS), allows integration of gene expression data to provide a direct co-
107	analysis of gene expression, PPI, and GWAS data [32].

6

108 Utilization of the EW-dmGWAS algorithm would allow for identification of gene networks 109 coordinately weighted for GWAS significance for AD in humans and ethanol-responsiveness in 110 model organism brain gene expression data. We hypothesized that such an approach could 111 provide novel information about gene networks contributing to the risk for AUD, while also 112 adding mechanistic information about the role of such networks in ethanol behaviors. We show 113 here the first use of such an approach for the integration of human PPI connectivity with mouse 114 brain expression responses to acute ethanol and human GWAS results on AD. Our design 115 incorporated the genome-wide microarray expression dataset derived from the acute ethanol-116 exposed mouse brain tissue used in Wolen et al. [10, 24], human protein-protein interaction data 117 from the Protein Interaction Network database, and AD GWAS summary statistics from the Irish 118 Affected Sib-Pair Study of Alcohol Dependence [29]. Importantly, we validated the identified 119 ethanol-regulated and AD-associated networks by co-analysis with an additional, independent 120 AD GWAS study on the Avon Longitudinal Study of Parents and Children dataset. Our results 121 could provide important methodological and biological function insight for further studies on the 122 mechanisms and treatment of AUD.

123

124 Materials and methods

125 Samples

126 Mouse gene expression data

127 All mouse brain microarray data (Affymetrix GeneChip Mouse Genome 430 2.0) are from

128 Wolen et al., 2012 [24] and can be downloaded from the GeneNetwork resource

129 (<u>www.genenetwork.org</u>), via accession numbers GN135-137, GN154-156 and GN228-230,

7

130	respectively for PFC, NAc and VTA data. Additionally, PFC microarray data is available from
131	the Gene Expression Omnibus (GEO) via accession number GSE28515. Treatment and control
132	groups each contained one mouse from each strain and were given IP injections of saline or 1.8
133	g/kg of ethanol, respectively. Euthanasia and brain tissue collection took place 4 hours later.
134	Data used for edge weighting in EW-dmGWAS analysis included Robust Multi-array Average
135	(RMA) values, background-corrected and normalized measures of probe-wise expression, from
136	the PFC, VTA, and NAc of male mice in 27-35 BXD recombinant inbred strains and two
137	progenitor strains (DBA/2J and C57BL/6J). For filtering of the same microarray datasets prior to
138	EW-dmGWAS analysis (see below), we used probe-level expression differences between control
139	and treatment groups determined in Wolen study using the S-score algorithm [33] (Table S1).
140	Fisher's Combined Test determined S-score significance values for ethanol regulation of each
141	probeset across the entire BXD panel, and empirical p-values were calculated by 1,000 random
142	permuations. Finally, q-values were calculated from empirical p-values to correct for multiple
143	testing.
144	Ethanol-responsive genes are predicted to be involved in pathways of neural adaptations
145	that lead to dependence [24]. We predicted they would also be involved in mechanistic pathways
146	from which GWAS signals are being detected. We therefore performed a low-stringency filter
147	for ethanol-responsiveness prior to EW-dmGWAS so as to ensure edge weighting focused on
148	ethanol responsivity. To identify genes with suggestive ethanol responsiveness, we used a S-
149	score probeset-level threshold of $q_{FDR} < 0.1$ for differential expression, in any one of the three
150	brain regions. Genes associated with these probesets were carried forward in our analysis.
151	Multiple probesets from single genes were reduced to single gene-wise expression levels within

a particular brain region by selecting the maximum brain region-specific RMA value for each

8

- gene. After removing genes that were absent from the human datasets, 6,050 genes remainedwith expression values across all three brain regions (Fig 1).
- 155

Fig 1. Data Pipeline for Determining Ethanol-Regulation and Merging Datasets. Pipeline
used to prepare the data for the present analysis. The first cell contains the starting number of
genes in the BXD mouse PFC, NAc, and VTA gene expression dataset.

159

161

160 Human GWAS data

dataset was used for the EW-dmGWAS analysis. It contains information from 1,748 unscreened
controls (43.2% male) and 706 probands and affected siblings (65.7% male) from a native Irish
population, after quality control [29]. Samples were genotyped on Affymetrix v6.0 SNP arrays.
Diagnostic criteria for AD were based on the DSM-IV, and probands were ascertained from inand out-patient alcoholism treatment facilities. Association of each Single Nucleotide

The Irish Affected Sib-Pair Study of Alcohol Dependence (IASPSAD) AD GWAS

167 Polymorphisms (SNP) with AD diagnosis status was tested by the Modified Quasi-Likelihood

168 Score method [34], which accounts for participant relatedness. SNPs were imputed using

169 IMPUTE2 [35] to hg19/1000 Genomes, and gene-wise p-values were calculated using

170 Knowledge-Based mining system for Genome-wide Genetic studies (KGG2.5) [36].

171 The Avon Longitudinal Study of Parents and Children (ALSPAC) GWAS gene-wise p-

172 values were used to examine the ability of EW-dmGWAS to validate the EW-dmGWAS

173 networks. This GWAS tested SNP association with a factor score calculated from 10 Alcohol

- 174 Use Disorder Identification Test items for 4,304 (42.9% male) participants from Avon, UK.
- 175 Samples were genotyped by the Illumina HumanHap550 quad genome-wide SNP platform [37].

9

176	Although the analyzed phenotype was not identical to that in the IASPSAD GWAS, this
177	dataset was similar to IASPSAD in that: 100% of the sample was European; the male to female
178	ratio was roughly 1:1; SNPs were imputed to hg19/1000 Genomes; and gene-wise p-values were
179	calculated by KGG2.5.
180	
181	Protein network data
182	The Protein-Protein Interaction (PPI) network was obtained from the Protein Interaction
183	Network Analysis (PINA 2.0) Platform (http://omics.bjcancer.org/pina/interactome.pina4ms.do).
184	This platform includes PPI data from several different databases, including: Intact, MINT,
185	BioGRID, DIP, HPRD, and MIPS/Mpact. The Homo sapiens dataset was used for this analysis
186	[38, 39]. Uniprot IDs were used to match protein symbols to their corresponding gene symbols
187	[40].
188	
189	Statistical methods

190 EW-dmGWAS

191 The edge-weighted dense module searching for GWAS (dmGWAS 3.0) R package was 192 used to identify treatment-dependent modules (small, constituent networks) nested within a 193 background PPI network (https://bioinfo.uth.edu/dmGWAS/). We used the PPI framework for 194 the background network, IASPSAD GWAS gene-wise p-values for the node-weights, and RMA 195 values from in acute ethanol- and saline-exposed mouse PFC, VTA, and NAc for edge-weights. 196 By the EW-dmGWAS algorithm, higher node-weights represent lower (i.e. more significant) 197 GWAS p-values, whereas higher edge-weights represent a greater response difference of two 198 genes between ethanol and control groups. This is calculated by taking the difference of

10

199	correlations in RMA expression values of the two genes in control vs. ethanol treated BXD lines.
200	The module score algorithm incorporated edge- and node-weights, which were each weighted to
201	prevent bias towards representation of nodes or edges in module score calculations. Higher
202	module scores represent higher edge- and node-weights. Genes were kept in a module if they
203	increased the standardized module score (S_n) by 0.5%. S_n corresponding to a permutation-based,
204	empirical q_{FDR} <0.05 were considered significant. A significant S _n (i.e. more significant q_{FDR}
205	values) indicates that a module's constituent genes are more highly associated with AD in
206	humans, and their interactions with each other are more strongly perturbed by acute ethanol
207	exposure in mice than randomly constructed modules of the same size.
208	Due to the redundancy of genes between modules, we modified the EW-dmGWAS output
209	by iteratively merging significant modules that overlapped >80% until no modules had >80%
210	overlap, for each brain region. Percent overlap represented the number of genes contained in
211	both modules (for every possible pair) divided by the number of genes in the smaller module.
212	We call the final resulting modules "mega-modules". Standardized mega-module scores (MM-
213	S_n) were calculated using the algorithms employed by EW-dmGWAS. MM- S_n corresponding to
214	$q_{FDR} < 0.05$ were considered significant (Fig S1). Finally, connectivity (k) and Eigen-centrality
215	(EC) were calculated using the igraph R package for each gene in each module to identify hub
216	genes. Nodes with EC>0.2 and in the top quartile for connectivity for a module were considered
217	to be hub genes.

218 **Overlap with ALSPAC**

Genes with an ALSPAC GWAS gene-wise *p*<0.001 were considered nominally
significant, and will be referred to as "ALSPAC-nominal genes" from here on out. We used
linear regression to test MM-S_n's prediction of mean ALSPAC GWAS gene-wise p-value of

11

222	each mega-module. Given our hypothesis that EW-dmGWAS would identify alcohol-associated
223	gene networks and prioritize them by association, we predicted that higher MM-S _n 's would
224	predict lower (i.e. more significant) mean GWAS p-values. Empirical p-values<0.017, reflecting
225	Bonferroni correction for 3 independent tests (one per brain region): α =0.05/3, were considered
226	to represent significant association.
227	Overrepresentation of ALSPAC-nominal genes within each mega-module was analyzed for
228	those modules containing >1 such gene. For each of these mega-modules, 10,000 modules
229	containing the same number of genes were permuted to determine significance. Empirical p-
230	values $< 0.05/n$ (where n = total number of mega-modules tested) were considered significant.
231	
232	Functional enrichment analysis
233	To determine if mega-modules with significant overrepresentation of ALSPAC-nominal
234	genes represented an aggregation of functionally related genes, ToppGene
235	(https://toppgene.cchmc.org/) was used to analyze functional enrichment. Categories of
236	biological function, molecular function, cellular component, mouse phenotype, human
237	phenotype, pathways, and drug interaction were tested for over-representation. Significant over-
238	representation results were defined as p<0.01 (uncorrected), n \ge 3 genes overlap and n \le 1000
239	genes per functional group. Given the number of categories and gene sets tested, our discussion
240	below was narrowed to the most relevant categories, defined as Bonferroni-corrected $p < 0.1$.
241	
242	Results

243 Of the initial 45,037 probesets for the mouse gene expression arrays, 16,131 were 244 associated with human-mouse homologues and had q_{FDR} <0.1 for ethanol responsiveness (S-

12

245	score) in at least one of the three brain regions (Fig 1). These probesets corresponded to a total of
246	7,730 genes and were trimmed to a single probeset per gene by filtering for the most abundant
247	probeset as described in Methods. After removing genes that were absent from either the PPI
248	network or the IASPSAD dataset, the final background PPI network for EW-dmGWAS analysis
249	contained 6,050 genes (nodes) and 30,497 interactions (edges). The nodes contained 25 of the 78
250	IASPSAD-nominal genes and 24 of the 100 ALSPAC-nominal genes. There was no overlap
251	between the IASPSAD and ALSPAC nominal gene sets.
252	
253	Prefrontal Cortex

254 For analysis using PFC expression data for edge-weights, results revealed 3,545 255 significant modules (q_{FDR} <0.05) containing a total of 4,300 genes, with 14 ALSPAC-nominal 256 genes and 18 IASPSAD-nominal genes. These modules were merged to form 314 mega-257 modules, all with significant MM-S_n. Twelve mega-modules contained at least one ALSPAC-258 nominal gene, and 160 contained at least one IASPSAD-nominal gene. However, MM-Sn did not 259 significantly predict mean ALSPAC GWAS gene-wise p-value (β =-0.003, p=0.327, Fig 2). 260 261 Fig 2. Mega Module Score v. Module Average ALSPAC GWAS p-Value. Correlation 262 between each Mega Module's score and average ALSPAC gene-wise GWAS p-value, for the 263 Prefrontal Cortex (PFC) (β =-0.003, p=0.327), Nucleus Accumbens (Nac) (β =0.003, p=0.390), 264 and Ventral Tegmental Area (VTA) (β =-0.02, p=0.003). Blue lines represent the line of best fit, 265 estimated by linear regression, surrounded by their 95% confidence intervals (shaded gray).

267	Two mega-modules, Aliceblue and Cadetblue, contained multiple ALSPAC-nominal genes
268	(Table 1). Because overrepresentation was tested for 2 mega-modules, $p < 0.025$ ($\alpha = 0.05/2$) was
269	considered significant. Cadetblue, was significantly overrepresented with ALSPAC-nominal
270	genes (Table 1). Each of Cadetblue's ALSPAC- and IASPSAD-nominal genes was connected to
271	one of its most highly connected hub genes, ESR1 (estrogen receptor 1; connectivity (k)=31,
272	Eigen-centrality (EC)=1) and ARRB2 (beta-arrestin-2; k=13, EC=0.25) (Fig 3). Although the
273	ALSPAC-nominal gene overrepresentation was not significant for Aliceblue, it approached
274	significance (Table 1). Further, Aliceblue had the second-highest MM-S $_n$ in the PFC and
275	contained 3 ALSPAC-nominal genes and 3 IASPSAD-nominal genes (Table 1). For these
276	reasons, Aliceblue was carried through to functional enrichment analysis. Aliceblue's two hub
277	genes were <i>ELAVL1</i> ((embryonic lethal, abnormal vision)-like 1; k=165, EC=1) and <i>CUL3</i>
278	(cullin 3; k=75, EC=0.21), which were connected to two of the three ALSPAC-nominal genes.
279	Of these, CPM's (carboxypeptidase M's) only edge was with ELAVL1, and EIF5A2's
280	(eukaryotic translation initiation factor 5A2's) only edge was with CUL3 (Fig 3).

14

282 Table 1. ALSPAC Nominal Gene Overrepresentation.

Brain Region	Mega-modules	k_{g}	MM-S _n	MM-S _n q_{FDR}	Overrep. p	Gene	IASPSAD GWAS p	ALSPAC GWAS p
PFC	aliceblue	392	11.19	<1E-16*	0.063	CPM	0.493	6.48E-05*
						CACNB2	0.978	4.97E-04*
						EIF5A2	0.163	8.06E-04*
						RSL1D1	3.48E-04*	0.217
						SMARCA2	4.91E-04*	0.877
						KIAA1217	8.84E-04*	0.904
	cadetblue	125	6.30	1.08E-06*	0.013*	BCAS2	0.029	4.65E-04*
						PIK3C2A	0.432	9.52E-04*
						RSL1D1	3.48E-04*	0.217
						AKT2	3.90E-05*	0.980
NAc	cadetblue2	195	8.04	8.06E-16*	0.042	CPM	0.493	6.48E-05*
						MGST3	0.358	4.62E-04*
	gray26	12	6.39	9.95E-11*	< 0.001*	PCDH7	0.007	2.10E-04*
						BCAS2	0.029	4.65E-04*
VTA	coral	399	4.78	1.00E-06*	0.068	CPM	0.493	6.48E-05*
						DENND2C	0.018	4.33E-04*
						BIRC7	0.930	4.37E-04*
						MGST3	0.358	4.62E-04*
						PIK3CA	7.06E-05*	0.007
						TNN	3.00E-04*	0.018
						ANO6	6.32E-04*	0.780
						SMARCA2	4.91E-04*	0.877
						SIMC1	2.04E-04*	0.977
	limegreen	220	5.22	1.19E-07*	0.054	DENND2C	0.018	4.33E-04*
						EIF5A2	0.163	8.06E-04*
						RSL1D1	3.48E-04*	0.217
						CCND2	1.94E-04*	0.603
						AKT2	3.90E-05*	0.980
	bisque	89	6.22	7.57E-10*	0.006*	ACLY	0.701	2.21E-04*
						PRKG1	0.647	8.26E-04*
						AKT2	3.90E-05*	0.980

283

284 The following characteristics are displayed for each mega-module that contained >1 ALSPAC-

nominal gene: affiliated brain region; total number of constituent genes (k_g) ; constituent

286 ALSPAC- and IASPSAD-nominal genes; empirical p-values for ALSPAC-nominal

287 overrepresentation (Overrep. p); MM-S_n, and the associated False Discovery Rate (MM-S_n

288 qFDR).

- 290 per brain region
- 291

 $[\]label{eq:second} \ensuremath{\texttt{289}} \qquad \ensuremath{\texttt{*}} \ensuremath{\texttt{p}}\xspace{\texttt{-0.05/n}} \ensuremath{\text{ for ALSPAC}} \ensuremath{\texttt{overrepresentation}}, \ensuremath{\texttt{where n=number of tests}} \ensuremath{\texttt{and p}}\xspace{\texttt{-0.05/n}} \ensuremath{\texttt{for ALSPAC}} \ensuremath{\texttt{overrepresentation}}, \ensuremath{\texttt{where n=number of tests}} \ensuremath{\texttt{and p}}\xspace{\texttt{-0.05/n}} \ensuremath{\texttt{for ALSPAC}} \ensuremath{\texttt{overrepresentation}}, \ensuremath{\texttt{where n=number of tests}} \ensuremath{\texttt{and p}}\xspace{\texttt{-0.05/n}} \ensuremath{\texttt{for and p}}\xspace{\texttt{-0.05/n}} \ensuremath{\texttt{and p}}\xspace{\texttt{-0.05$

292	Fig 3. Prefrontal Cortex Mega Modules Aliceblue and Cadetblue. Prefrontal Cortex Mega
293	Modules Cadetblue (a) and Aliceblue (b). Solid black arrows point to ALSPAC GWAS nominal
294	genes, and dotted black arrows represent IASPSAD nominal genes. Edge-width represents
295	strength of correlation of expression changes between treatment and control mice, and node color
296	represents IASPSAD GWAS p-values.
297	
298	Both Cadetblue and Aliceblue showed significant enrichment in several functional categories
299	(Table S3). In sum, top functional enrichment categories for Aliceblue were related to actin-
300	based movement, cardiac muscle signaling and action, increased triglyceride levels in mice, cell-
301	cell and cell-extracellular matrix adhesion, and syndecan-2-mediated signaling. In contrast,
302	Cadetblue's top enrichment categories involved transcription-regulatory processes, specifically:
303	RNA splicing, chromatin remodeling, protein alkylation and methylation, DNA replication
304	regulation, several immune-related pathways, NF - $\kappa\beta$ and Wnt signaling pathways, and reductase
305	activity (Tables 2a-b; Table S3).

16

306 Table 2. Top Gene Ontology Enrichment Results for PFC Mega Modules Cadetblue and

307 Aliceblue.

a)

308

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
						SMYD1, ESR1, KAT6A, ASH1L, PAGR1, CBX4, KDM6B, ASH2L,
GO: Biological Process	chromatin organization	1.50E-09	4.12E-06	23	776	MYSM1, PHF21A, BPTF, UBN1, CBX6, SUPT16H, SMARCD3,
	_					H3F3B, PAX5, PAX7, BRD1, CABIN1, MGEA5, NR1H4, CBX8
		1 075 00	F 405 03		450	SMYD1, KAT6A, ASH1L, PAGR1, KDM6B, ASH2L, MYSM1,
	histone modification	1.97E-06	5.40E-03	14	453	PHF21A, PAX5, PAX7, BRD1, MGEA5, NR1H4, CBX8
	covalant chromatin modification	2 975 06	7 905 02	14	160	SMYD1, KAT6A, ASH1L, PAGR1, KDM6B, ASH2L, MYSM1,
	covalent chromatin mounication	2.07E-00	7.09E-05	14	408	PHF21A, PAX5, PAX7, BRD1, MGEA5, NR1H4, CBX8
	chromatin remodaling	1 475 05	4 045 02	0	165	SMYD1, ESR1, ASH2L, MYSM1, BPTF, SMARCD3, H3F3B,
	chromatin remotening	1.471-05	4.04L-02	0	105	PAX7
	RNA splicing	1 60F-05	4 40F-02	12	403	SRSF6, NUDT21, BCAS2, RBM39, RALY, RBM5, PRPF19,
		1.002 05	4.402 02	12	405	AKT2, CPSF2, SNRPD3, WDR77, AQR
	protein alkylation	2.44E-05	6.71E-02	8	177	SMYD1, ASH1L, ASH2L, PAX5, PAX7, SNRPD3, WDR77,
	p			-		NR1H4
	protein methylation	2.44E-05	6.71E-02	8	177	SMYD1, ASH1L, ASH2L, PAX5, PAX7, SNRPD3, WDR77,
				-		NR1H4
					738	MMS22L, SRSF6, NUDT21, KAT6A, PAGR1, CBX4, ELMSAN1,
GO: Cellular Component	nucleoplasm part	2.23E-05	7.49E-03	16		ASH2L, RBM39, PHF21A, UBN1, TONSL, PRPF19, SPOP,
						CPSF2, BRD1
						MMS22L, PSEN2, BCAS2, ESR1, KAT6A, ASH1L, ZNF207,
	chromosome	1.21E-04	4.07E-02	17	943	ASH2L, ESCO2, CBX6, TONSL, SUPT16H, PRPF19, SMARCD3,
	ribonucloosido dinhosnhata					H3F3B, NR1H4, CBX8
	roductase complex	1.24E-04	4.17E-02	2	3	RRM2B, RRM2
	DNA replication factor A					
	complex	1.39E-04	4.67E-02	3	16	BCAS2, TONSL, PRPF19
	nuclear replication fork	1 40F-04	4 71F-02	4	41	MMS22L BCAS2 TONSL PRPE19
	catalytic step 2 spliceosome	2 96F-04	9.94F-02	5	90	BCAS2 RALY PRPE19 SNRPD3 AOR
	oxidoreductase activity, acting					
GO: Molecular Function	on CH or CH2 groups	3.32E-05	1.62E-02	3	10	CYP2C8, RRM2B, RRM2
	oxidoreductase activity, acting					
	on CH or CH2 groups, disulfide	1.31E-04	6.38E-02	2	3	RRM2B, RRM2
	as acceptor					
	ribonucleoside-diphosphate					
	reductase activity, thioredoxin	1.31E-04	6.38E-02	2	3	RRM2B, RRM2
	disulfide as acceptor					
	ribonucleoside-diphosphate	1 31F-04	6 38F-02	2	3	RRM2B_RRM2
	reductase activity	1.512 01	0.502 02	-		
	chromatin binding	1.69E-04	8.24E-02	12	516	ESR1, KAT6A, ASH1L, RELB, CBX4, KDM6B, ASH2L, PHF21A,
						TLE4, SMARCD3, H3F3B, CABIN1
Mouse Phenotype	increased immunoglobulin level	1.16E-06	2.92E-03	14	307	TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1, ASH1L,
						BIRC3, RELB, MYSM1, CD4, PIK3C2A, RABGEF1, CABIN1
	abnormal humoral immune	F F2F 0C	4 205 02	10	500	TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1,
	response	5.52E-00	1.39E-02	18	500	MAP3K14, ASTIL, BIRC3, RELB, INFRSFIIA, MISINI, CD4,
						TRACZA, CD38, KABGEFI, PAAS, CABINI TRACZID2 CADDASE SEMAAR DSEN2 ESP1 SDTA1
	abnormal immunoglobulin level	7 68F-06	1 93F-02	17	522	MAD3K14 ASH11 BIRC3 RELB TNERSE11A MVSM1 CD4
	abilorniar minunogiobalin lever	7.002-00	1.552-02	17	522	PIK3C2A RARGEE1 PAX5 CARIN1
						TRAFSIP2 GADD45B SEMA4B ESB1 SPTA1 ASH11 BIRC3
	increased IgG level	9.35E-06	2.35E-02	11	225	MYSM1 CD4 PIK3C2A CABIN1
						TRAF3IP2. GADD45B. PSEN2. MYO1E. ESR1 . SPTA1. RRM2B.
	cortical renal glomerulopathies	1.18E-05	2.96E-02	10	188	ASH1L. RELB. PIK3C2A
	abnormal lymph node	4 055 05			200	SELL, TRAF3IP2, TRAF1, PSEN2, ESR1, SPTA1, RRM2B,
	morphology	1.85E-05	4.66E-02	14	390	MAP3K14, BIRC3, RELB, TNFRSF11A, CD4, PIK3C2A, PIP
	glomorulopophritic	1 055 05	4 015 02	0	121	TRAF3IP2, GADD45B, PSEN2, ESR1, SPTA1, ASH1L, RELB,
	giorneruioneprintis	1.956-05	4.916-02	0	121	PIK3C2A
						MYO1G, TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1,
	abnormal B cell physiology	3.21E-05	8.07E-02	18	644	SPTA1, MAP3K14, ASH1L, BIRC3, RELB, TNFRSF11A, MYSM1,
						CD4, PIK3C2A, RABGEF1, PAX5, CABIN1
Pathway	Signaling by Wnt	2.78E-06	2.47E-03	13	340	LGR4, ASH2L, FZD4, ARRB2, ZNRF3, TLE4, VPS35, H3F3B,
		4 077 0	0.447-00		0-	AKT2, GNAO1, FZD2, MOV10, RAC3
	NF-Kappa B signaling pathway	1.07E-04	9.44E-02	6	95	GADD45B, TRAF1, MAP3K14, BIRC3, RELB, TNFRSF11A
	ADODTOSIS	1.13E-04	9.9/E-U2	/	1 138	[GAUD45B, TKAF1, SEP14, SP1A1, WAP3K14, BIRC3, AK12

310 b)

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
GO: Biological Process	regulation of actin filament-based movement	4.76E-08	2.07E-04	9	37	FXYD1, ATP1A2, DBN1, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
	cardiac muscle cell-cardiac muscle cell adhesion	7.53E-08	3.27E-04	5	7	CXADR, JUP, DSC2, DSG2, DSP
	regulation of cardiac muscle cell contraction	1.64E-07	7.11E-04	8	31	FXYD1, ATP1A2, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
	actin filament-based process	3.57E-07	1.55E-03	36	688	CDC42EP4, ACTN1, MYOZ1, MKLN1, FXYD1, RHOF, SDC4, CUL3, PRR5, CRYAA, ARHGDIA, ATP2C1, CCDC88A, STAU2, DYNLL1, DIXDC1, ATP1A2, CXADR, DBN1, PTGER4, GJA5, JUP, CDK5R1, NF1, KCNJ2, CACNB2, DSC2, DSG2, DSP, ARHGEF5, CASP4, LCP1, CSRP3, LIMK1, LDB3, LRP1
	cell communication involved in cardiac conduction	4.34E-07	1.89E-03	9	47	PRKACA, ATP1A2, CXADR, GJA5, JUP, CACNB2, DSC2, DSG2, DSP
	desmosome organization	8.59E-07	3.73E-03	5	10	SNAI2, JUP, DSG2, DSP, PKP3
	cardiac muscle cell action potential	1.07E-06	4.65E-03	9	52	ATP1A2, CXADR, GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP
	cardiac muscle cell contraction	1.07E-06	4.65E-03	9	52	FXYD1, ATP1A2, GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP
	bundle of His cell to Purkinje myocyte communication	1.55E-06	6.72E-03	5	11	GJA5, JUP, DSC2, DSG2, DSP
	regulation of cardiac muscle cell action potential	2.30E-06	9.99E-03	6	20	CXADR, GJA5, JUP, DSC2, DSG2, DSP
	bundle of His cell-Purkinje myocyte adhesion involved in cell communication	2.63E-06	1.14E-02	4	6	JUP, DSC2, DSG2, DSP
	regulation of heart rate by cardiac conduction	2.65E-06	1.15E-02	7	31	GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP
	cardiac conduction	3.37E-06	1.46E-02	13	131	FXYD1, PRKACA, ATP1A2, ATP1A4, CXADR, GJA5, JUP, KCNJ2, CACNB2, CACNB4, DSC2, DSG2, DSP
	cardiac muscle cell action potential involved in contraction	7.69E-06	3.34E-02	7	36	GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP
	regulation of actin filament-based process	1.05E-05	4.58E-02	21	343	CDC42EP4, FXYD1, SDC4, ARHGDIA, CCDC88A, STAU2, DIXDC1, ATP1A2, DBN1, PTGER4, GJA5, JUP, CDK5R1, KCNJ2, DSC2, DSG2, DSP, ARHGEF5, CSRP3, LIMK1, LRP1
	lipoprotein localization	1.34E-05	5.83E-02	5	16	APOB, APOC2, MSR1, CUBN, LRP1
	lipoprotein transport	1.34E-05	5.83E-02	5	16	APOB, APOC2, MSR1, CUBN, LRP1
	regulation of cardiac muscle contraction	1.36E-05	5.91E-02	9	70	FXYD1, PRKACA, ATP1A2, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
GO: Cellular Component	intercalated disc	2.90E-06	1.53E-03	9	59	ACTN1, ATP1A2, CXADR, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
	cell-cell contact zone	1.56E-05	8.21E-03	9	72	ACTN1, ATP1A2, CXADR, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
	desmosome	1.61E-04	8.49E-02	5	26	JUP, DSC2, DSG2, DSP, PKP3
GO: Molecular Function	protein binding involved in heterotypic cell-cell adhesion	8.62E-07	7.88E-04	5	10	CXADR, JUP, DSC2, DSG2, DSP
	protein binding involved in cell adhesion	1.15E-06	1.05E-03	6	18	CXADR, ITGA2, JUP, DSC2, DSG2, DSP
	protein binding involved in cell-cell adhesion	2.62E-06	2.39E-03	5	12	CXADR, JUP, DSC2, DSG2, DSP
	cell adhesive protein binding involved in bundle of His cell- Purkinje myocyte communication	2.64E-06	2.41E-03	4	6	JUP, DSC2, DSG2, DSP
Human Phenotype	Dilated cardiomyopathy	4.35E-05	3.89E-02	9	87	ACAD9, CRYAB, UBR1, JUP, DSG2, DSP, LAMA4, CSRP3, LDB3
	Right ventricular cardiomyopathy	8.82E-05	7.90E-02	4	13	JUP, DSC2, DSG2, DSP
Mouse Phenotype	increased circulating triglyceride level	1.27E-05	4.77E-02	16	179	ALPI, COL1A1, VLDLR, AGPAT2, WRN, APOB, APOC2, TXNIP, RSBN1, CSF2, PRKACA, BGLAP, MED13, LEPR, LIPC, LRP1
Pathway	Non-integrin membrane-ECM interactions	3.41E-05	4.72E-02	7	46	ACTN1, SDC2, SDC4, ITGA2, LAMA3, LAMA4, LAMB3
	Syndecan-2-mediated signaling events	4.44E-05	6.14E-02	6	33	SDC2, CSF2, PRKACA, ITGA2, NF1, LAMA3

311

312 Functional enrichment results from ToppFun for Prefrontal Cortex Mega Modules Cadetblue (a)

and Aliceblue (b), where Bonferroni-corrected p<0.1.

18

315 Nucleus Accumbens

316	Using NAc acute ethanol expression data for edge-weights yielded 3,460 significant
317	modules containing a total of 4,213 genes, 15 of which were ALSPAC-nominal and 16 of which
318	were IASPSAD-nominal. After merging by content similarity, there were 171 significant mega-
319	modules. Nineteen MM contained at least one ALSPAC-nominal gene, and 73 MM contained at
320	least one IASPSAD-nominal gene. However, MM Sn did not significantly predict MM mean
321	ALSPAC GWAS gene-wise p-value (β =0.003, p=0.390). Two MMs, Cadetblue2 and Gray26,
322	each contained two ALSPAC-nominal genes (Table 1). Because there were 2 tests for
323	overrepresentation, $p < 0.025$ ($\alpha = 0.05/2$) was considered significant. Gray26, was significantly
324	overrepresented with ALSPAC-nominal genes, and Cadetblue2 showed a trend towards
325	overrepresentation with significance before correcting for multiple testing (Table 1).
326	Gray26's most central hub gene was HNRNPU (heterogeneous nuclear ribonucleoprotein
327	U; connectivity=6, Eigen-centrality=1), followed by <i>RBM39</i> (RNA binding motif protein 39;
328	k=3, EC=0.46) and CSNK1A1 (k=3, EC=0.37). The two ALSPAC-nominal genes BCAS2 (breast
329	carcinoma amplified sequence 2) and PCDH7 (protocadherin 7), shared their only edges with
330	RBM39 and HNRPNPU, respectively (Fig 4a). As seen in the PFC's Aliceblue, EAVL1 was a
331	hub gene of Cadetblue2. ELAVL1 (k=136, EC=1) was connected to both of the ALSPAC-
332	nominal genes, and served as the only connection for CPM and one of two connections for
333	MGST3 (microsomal glutathione S-transferase 3) (Fig 4b). Strikingly, PFC Aliceblue and NAc
334	Cadetblue 2 showed a highly significant overlap in their gene content, with 72 overlapping genes
335	(Table S2; $p=2.2 \times 10^{-16}$).

337	Fig 4. Nucleus Accumbens Mega Modules Gray26 and Cadetblue2. Nucleus Accumbens
338	Mega Modules Gray26 (a) and Cadetblue2 (b). Solid black arrows point to ALSPAC GWAS
339	nominal genes. These modules did not contain IASPSAD nominal genes. Edge-width represents
340	strength of correlation of expression changes between treatment and control mice, and node color
341	represents IASPSAD GWAS p-values.
342	
343	Both Cadetblue2 and Gray26 were significantly enriched with several functional
344	categories (Table S3). Like PFC Cadetblue, NAc Cadetblue2 was functionally enriched for gene
344 345	categories (Table S3). Like PFC Cadetblue, NAc Cadetblue2 was functionally enriched for gene groups related to nuclear function with transcription regulation pathways, particularly those
344 345 346	categories (Table S3). Like PFC Cadetblue, NAc Cadetblue2 was functionally enriched for gene groups related to nuclear function with transcription regulation pathways, particularly those involving RNA polymerase activity. Gray26 was most significantly enriched with genes related
344 345 346 347	categories (Table S3). Like PFC Cadetblue, NAc Cadetblue2 was functionally enriched for gene groups related to nuclear function with transcription regulation pathways, particularly those involving RNA polymerase activity. Gray26 was most significantly enriched with genes related to functions involving: telomere maintenance, organelle organization, ribonucleoprotein

20

a)

349 Table 3. Top Gene Ontology Enrichment Results for Nucleus Accumbens Mega Modules

350 Cadetblue2 and Gray26.

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
GO: Biological Process	negative regulation of transcription from RNA polymerase II promoter	9.38E-06	2.93E-02	23	810	TGIF2, ZBTB20, SREBF2, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, MNT, TBX2, MLX, YBX3, TFAP2C, MXD4, E2F8, ZBTB14, MLXIPL, UHRF1, TNF, ELK4, PAX3, LEF1
GO: Molecular Function	RNA polymerase II transcription factor activity, sequence-specific DNA binding	1.80E-09	1.20E-06	27	678	ZBTB20, SREBF2, GATA4, E2F7, CSRNP1, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, TEAD2, MLX, YBX3, FOXJ3, TFAP2C, E2F8, MLXIPL, KLF13, ELF2, ELK4, PAX3, LEF1
	transcriptional repressor activity, RNA polymerase II transcription regulatory region sequence-specific binding	3.04E-06	2.03E-03	11	182	ZBTB20, SREBF2, E2F7, MITF, MNT, TBX2, MLX, YBX3, TFAP2C, E2F8, MLXIPL
	transcription factor activity, RNA polymerase II core promoter proximal region sequence-specific binding	6.11E-06	4.08E-03	15	365	ZBTB20, SREBF2, FOXL2, NFIB, NFIC, MITF, NFYA, HAND2, TBX2, TFEB, TFAP2C, E2F8, MLXIPL, KLF13, LEF1
	RNA polymerase II regulatory region sequence-specific DNA binding	8.95E-06	5.98E-03	20	632	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, LEF1
	transcription regulatory region DNA binding	9.52E-06	6.36E-03	24	862	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, ZBTB14, MLXIPL, KLF13, UHRF1, TNF, ELK4, LEF1
	regulatory region DNA binding	1.01E-05	6.74E-03	24	865	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, ZBTB14, MLXIPL, KLF13, UHRF1, TNF, ELK4, LEF1
	RNA polymerase II regulatory region DNA binding	1.03E-05	6.87E-03	20	638	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, LEF1
	regulatory region nucleic acid binding	1.07E-05	7.14E-03	24	868	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, ZBTB14, MLXIPL, KLF13, UHRF1, TNF, ELK4, LEF1
	transcription regulatory region sequence-specific DNA binding	1.32E-05	8.82E-03	21	705	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, UHRF1, LEF1
	sequence-specific double-stranded DNA binding	2.50E-05	1.67E-02	21	736	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, UHRF1, LEF1
	core promoter proximal region sequence-specific DNA binding	7.08E-05	4.73E-02	14	399	SREBF2, GATA4, FOXL2, NFIB, NFIC, MITF, NFYA, TBX2, TFEB, E2F8, MLXIPL, KLF13, UHRF1, LEF1
	core promoter proximal region DNA binding	7.47E-05	4.99E-02	14	401	SREBF2, GATA4, FOXL2, NFIB, NFIC, MITF, NFYA, TBX2, TFEB, E2F8, MLXIPL, KLF13, UHRF1, LEF1
	transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-specific binding	9.15E-05	6.11E-02	13	358	GATA4, CSRNP1, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, HAND2, TFEB, TFAP2C, KLF13, LEF1
	double-stranded DNA binding	1.25E-04	8.37E-02	21	824	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, UHRF1, LEF1
Human Phenotype	Synophrys	3.61E-05	2.06E-02	5	48	ZBTB20, NFIX, MITF, KLF13, PAX3
Mouse Phenotype	absent coat pigmentation	2.38E-05	6.28E-02	4	15	MITF, TFEB, TFEC, PAX3

353 b)

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
GO: Biological Process negative regulation of telomere maintenance via telomerase		2.46E-05	2.92E-02	2	12	HNRNPU, PML
	negative regulation of organelle organization	4.65E-05	5.52E-02	4	340	PRKCD, FGFR2, HNRNPU, PML
negative regulation of telomere maintenance via telomere lengthening		5.06E-05	6.00E-02	2	17	HNRNPU, PML
GO: Cellular Component	ribonucleoprotein complex	8.99E-04	8.99E-02	4	751	CSNK1A1, RPS18, BCAS2, HNRNPU
	intracellular ribonucleoprotein complex	8.99E-04	8.99E-02	4	751	CSNK1A1, RPS18, BCAS2, HNRNPU
Pathway	Syndecan-4-mediated signaling events	2.67E-04	7.44E-02	2	31	PRKCD, ITGA5
Syndecan-2-mediated signaling events		3.03E-04	8.44E-02	2	33	PRKCD, ITGA5

Functional enrichment results from ToppFun for Nucleus Accumbens Mega Modules Cadetblue2
(a) and Gray26 (b), where Bonferroni-corrected p<0.1.

357

354

358 Ventral Tegmental Area

359 Use of VTA control/ethanol gene expression responses for edge weighting initially

resulted in 3,519 significant modules containing a total of 4,188 genes in EW-dmGWAS

analysis. Merging by content similarity, resulted in 276 MMs, each with a significant MM S_n.

362 Seventeen ALSPAC-nominal genes and 19 IASPSAD-nominal genes were spread across 25 and

363 156 mega-modules, respectively. Furthermore, MM-S_n significantly predicted mean ALSPAC

364 GWAS gene-wise *p*-value (β =-0.02, *p*=0.003).

365 Mega-modules with the highest representation of ALSPAC-nominal genes included Coral,

Limegreen, and Bisque (Table 1). Because there were 3 tests for overrepresentation, p < 0.017

367 (α =0.05/3) was considered significant. Although overrepresentation of ALSPAC-nominal genes

368 was not significant in Coral and Limegreen, it was significant in Bisque, which has the highest

369 MM-S_n of the three (Table 1; Fig 5). Bisque contained four highly interconnected genes: USP21

370 (ubiquitin specific peptidase 21; k=10, EC=1), USP15 (ubiquitin specific peptidase 15; k=10,

EC=0.65), TRIM25 (tripartite motif-containing 25; k=10, EC=0.49), and HECW2 (HECT, C2

and WW domain containing E3 ubiquitin protein ligase 2; k=12, EC=0.48). HECW2 and

22

- 373 TRIM25 shared edges with this MM's IASPSAD-nominal genes PRKG1 (protein kinase, cGMP-
- dependent, type I) and ACLY (ATP citrate lyase), respectively. However, none of the hub genes
- shared an edge with Bisque's ALSPAC nominal gene, *AKT2* (AKT serine/threonine kinase 2).
- 376 Finally, Bisque had significant enrichment in several functional categories (Table S3). It was
- 377 most significantly enriched with genes associated with ubiquitination, ligase and helicase
- activity, and eukaryotic translation elongation (Table 4; Table S3).
- 379

382

380 Table 4. Top Gene Ontology Enrichment Results for Ventral Tegmental Area Mega

381 Module Bisque.

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
GO: Cellular Component	nucleolus	6.41E-07	1.24E-04	17	894	ZNF106, NEK2, EEF1D, RPL36, PNKP, SELENBP1, ZNF655, RPS9, WRN, GATA3, ZFHX3, RORC, DGCR8, TTC3, ARNTL2, NEK11, RPL18
	eukaryotic translation elongation factor 1 complex	1.27E-04	2.47E-02	2	4	EEF1D, EEF1A2
GO: Molecular Function	ubiquitin-protein transferase activity	4.98E-07	1.33E-04	12	414	RC3H2, TRAF4, UBE2K, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, UBE2S, RNF114, TTC3, TRIM37
	ubiquitin-like protein transferase activity	9.70E-07	2.59E-04	12	441	RC3H2, TRAF4, UBE2K, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, UBE2S, RNF114, TTC3, TRIM37
	acid-amino acid ligase activity	3.42E-06	9.12E-04	9	259	RC3H2, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	ligase activity, forming carbon- nitrogen bonds	9.78E-06	2.61E-03	9	295	RC3H2, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	tubulin-glycine ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	protein-glycine ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	protein-glycine ligase activity, initiating	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	coenzyme F420-0 gamma-glutamyl ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	ribosomal S6-glutamic acid ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	coenzyme F420-2 alpha-glutamyl ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanine ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	protein-glycine ligase activity, elongating	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	tubulin-glutamic acid ligase activity	2.05E-05	5.46E-03	8	247	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	protein-glutamic acid ligase activity	2.17E-05	5.79E-03	8	249	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	ligase activity	2.38E-05	6.35E-03	10	415	LIG3, RC3H2, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	DNA helicase activity	2.43E-04	6.49E-02	4	65	ERCC2, GTF2H4, RAD54B, WRN
Pathway	Eukaryotic Translation Elongation	1.67E-04	8.37E-02	5	98	EEF1D, RPL36, RPS9, EEF1A2, RPL18

23

Functional enrichment results from ToppFun for Ventral Tegmental Area Mega ModuleBisque, where Bonferroni-corrected p<0.1.

385

Fig 5. Ventral Tegmental Area Mega Module Bisque. Ventral Tegmental Area Mega Modules
Bisque. Solid black arrows point to ALSPAC GWAS nominal genes, and dotted black arrows
represent IASPSAD nominal genes. Edge-width represents strength of correlation of expression
changes between treatment and control mice, and node color represents IASPSAD GWAS pvalues.

391

392 **Discussion**

393 To our knowledge, this is the first study to directly co-analyze human GWAS with mouse 394 brain ethanol-responsive gene expression data to identify ethanol-related gene networks relevant 395 to AD. Unlike previous studies that have employed cross-species validation methods for specific 396 genes or gene sets, this study analyzed human and mouse data in tandem to identify gene 397 networks across the entire genome, using the EW-dmGWAS algorithm. This approach 398 successfully identified significantly ethanol-regulated and AD-associated gene networks, or 399 modules. We further improved the existing EW-dmGWAS algorithm by merging highly 400 redundant modules to create more parsimonious mega-modules, thus decreasing complexity 401 without sacrificing significance. Additionally, we validated these results by testing for 402 overrepresentation with, and mega-module score prediction by, signals from an independent 403 GWAS dataset. Overall, our findings suggest that such direct integration of model organism 404 expression data with human protein interaction and GWAS data can productively leverage these

24

405 data sources. Furthermore, we present evidence for novel, cross-validated gene networks406 warranting further study for mechanisms underlying AUD.

407 Identification of network-level associations across GWAS datasets

408 One major concern with existing GWAS studies on AD had been the relative lack of

409 replication across studies. Although some very large GWAS studies on alcohol consumption

410 have shown replicable results [13-15], those do not account for all previously identified

411 associations. We reasoned that our integrative gene network-querying approach might identify

412 networks that shared signals from different GWASs on AD, even if the signals were not from the

413 same genes across GWASs. Concordant with this hypothesis, VTA mega-module scores

414 significantly predicted average gene-wise p-values from an independent GWAS dataset,

415 ALSPAC (Fig 2). This suggests that ethanol-regulated gene expression networks in this brain

416 region may be particularly sensitive to genetic variance and thus are highly relevant to

417 mechanisms contributing to risk for AD. This is possibly attributable to the involvement of VTA

418 dopaminergic reward pathways in the development of AD [41].

419 Although scores did not prioritize mega-modules with respect to ALSPAC results in PFC

420 and NAc, individual mega-modules were overrepresented with ALSPAC signals (Table 1). The

421 ALSPAC-overrepresented VTA and PFC mega-modules also contained nominally significant

422 genes from the GWAS dataset used for the network analysis, IASPSAD. These results suggest

423 that the integration of acute ethanol-related expression data from mice and human PPI can

424 identify functional networks that associate signals from different GWAS datasets.

425 **Composition and structure of mega-modules**

426 Functional composition of mega-modules varied between brain regions for the most part.
427 For example, although Aliceblue (PFC) and Cadetblue2 (NAc) shared the hub gene *ELAVL1*,

428	ALSPAC-nominal gene CPM, and had a significant overlap in their gene content, their
429	functional enrichment results were very different (Tables 2b and 3a). These results suggest that
430	brain regional ethanol-responsive gene expression results likely had an important impact on
431	composition of networks, thus leveraging protein-protein interaction network information and
432	GWAS results.
433	Despite such differences, the mega-modules presented in Table 1 shared certain structural
434	similarities. Most of the IAPSAD- and ALSPAC-nominal genes in these modules shared edges
435	with hub genes (Fig 3-5). These hub genes included: CUL3 and ELAVL1 from PFC Aliceblue;
436	ESR1 from PFC Cadetblue; ELAVL1rom NAc Cadetblue2; TRIM25 and HECW2 from VTA
437	Bisque. Further, GWAS nominally significant genes (IASPAD or ALSPAC) generally were not
438	hub genes in the derived networks (see Fig 3-5; Table S2). This may be consistent with the
439	general tenet that genetic variation in complex traits does not produce major alterations in
440	cellular function, but rather modulation of cellular mechanisms for maintaining homeostasis.
441	Hub genes may be more functionally more closely related to a given trait, but likely have such
442	widespread influence so as to be evolutionarily resistant to genetic variation in complex traits.
443	This is also consistent with the hypothesis that omnigenic influences are an important feature of
444	complex traits such as AUD [42].
445	One hub gene was found to influence network structure in both PFC and NAc. ELAVL1 is a
446	broadly expressed gene that acts as a RNA-binding protein in AU-rich domains, generally
447	localized within 3'-UTRs of mRNA. As such, ELAVL1 has been shown to alter mRNA stability
448	by altering binding of miRNA or other factors influencing mRNA degradation [43] and has been
449	implicated in activity-dependent regulation of gene expression in the brain with drug abuse [44].
450	The large interaction space for ELAVL1 in PFC Alice Blue and NAc Cadetblue 2 and the

26

451	multiple nominal GWAS hits within these genes suggest that ELAVL1 could have an important
452	modulatory function on the network of genes susceptible to genetic variation in AUD.

453 Functional aspects of mega-modules

454 This theory regarding network structure is further supported by our functional enrichment

455 analysis, which revealed several small groups of functionally related genes within each mega-

456 module. All of the mega-modules discussed above (Table 1) contained at least one GWAS-

457 nominal gene in the top enrichment groups, except Cadetblue2, which still had GWAS-nominal

458 genes in its significant enrichment groups (Table S3).

Another unifying feature across these mega-modules, except Aliceblue, was significant functional enrichment for pathways that regulate gene expression. Specifically, these pathways were related to chromatin organization, RNA splicing, and translation- and transcription-related processes (Table S3). This is not surprising, as alterations in gene expression have long been proposed as a mechanism underlying long-term neuroplasticity resulting in ethanol-dependent behavioral changes, and eventually dependence [45].

465 In contrast, the largest functional enrichment groups unique to Aliceblue were related to 466 actin-based filaments and cardiac function (Table 2). Actin not only provides cytoskeletal 467 structure to neurons, but also functions in dendritic remodeling in neuronal plasticity, which 468 likely contributes to AD development [46, 47]. Aliceblue was also significantly enriched for the 469 syndecan-2 signaling pathway, and contained the SDC2 gene itself, which functions in dendritic 470 structural changes together with F-actin [48]. Additionally, the most significant enrichment 471 group unique to Cadetblue was the Wnt signaling pathway, which also regulates actin function 472 [49, 50]. Of note, a prior study has shown that ARRB2 (a Cadetblue hub gene and member of 473 Wnt signaling pathway) knockout rats display significantly decreased levels of voluntary ethanol

27

474 consumption and psychomotor stimulation in response to ethanol [51]. These findings highlight 475 the potential importance of postsynaptic actin-related signaling and dendritic plasticity in PFC 476 gene networks responding to acute ethanol and contributing to genetic risk for AD. 477 Finally, although the NAc Cadetblue2 mega-module was highly enriched for functions related to transcriptional regulation, it also contained the gene FGF21 within its interaction space 478 479 (Table S2 and Fig 4b). FGF21 is a member of the fibroblast growth factor gene family and is a 480 macronutrient responsive gene largely expressed in liver. Importantly FGF21 has been shown to 481 be released from the liver by ethanol consumption and negatively regulates ethanol consumption 482 by interaction with brain FGF-receptor/beta-Klotho complexes. Beta-Klotho, a product of the KLB gene, is an obligate partner of the FGF receptor and has recently been shown to have a 483 484 highly significant association with alcohol consumption in recent very large GWAS studies [14, 485 15]. Although the role of *FGF21* and *KLB* in AD are not currently known, the association of 486 *FGF21* with the Cadetblue2 mega-module, containing nominally responsive genes from AD 487 GWAS studies, is a possible additional validation of the utility of our studies integrating protein-488 protein interaction information (tissue non-specific), AD GWAS (tissue non-specific) and brain 489 ethanol-responsive gene expression.

490 **Potential weaknesses and future studies**

The studies presented here provide evidence for the utility of integrating genomic expression data with protein-protein interaction networks and GWAS data in order to gain a better understanding of the genetic architecture of complex traits, such as AD. Our analysis also generated several testable hypotheses regarding gene networks and signaling mechanisms related to ethanol action and genetic burden for AD. However, these studies utilized acute ethanolrelated expression data in attempting to identify mechanisms of AD, a chronic ethanol exposure

28

497 disease. Use of a chronic exposure model could provide for a more robust integration of the 498 expression data and GWAS signals. However, we feel the current study is valid, since acute 499 responses to ethanol have been repeatedly shown to be a heritable risk factor for AD [52-54]. 500 Another potential shortcoming for this work regards the limited size of the GWAS studies 501 utilized and differences in phenotypic assessment. The IASPSAD study was based on AD 502 diagnosis, whereas ALSPAC was based on a symptom factor score. Had we used larger GWAS 503 studies based on the same assessment criteria, it is possible that greater overlap of GWAS signals 504 within mega-modules would have been observed. Recent large GWAS studies on ethanol have, 505 to date, generally concerned measures of ethanol consumption, rather than a diagnosis of alcohol 506 dependence per se [14, 15]. For this reason, we focused this initial effort on GWAS studies 507 concerned with alcohol dependence. However, using the IASPAD and ALSPAC studies allowed 508 us to identify gene networks that are robust across both the severe end of the phenotypic 509 spectrum (i.e. diagnosable AD), and for symptoms at the sub-diagnostic level. 510 Overall, this analysis successfully identified novel ethanol-responsive, AD-associated, 511 functionally enriched gene expression networks in the brain that likely play a role in the 512 developmental pathway from first ethanol exposure to AD, especially in the VTA. This is the 513 first analysis to identify such networks by directly co-analyzing gene expression data, protein-514 protein interaction data, and GWAS summary statistics. The identified modules provided insight 515 into common pathways between differing signals from independent, largely underpowered, yet 516 deeply phenotyped GWAS datasets. This supports the conjecture that the integration of different 517 GWAS results at a gene network level, rather than simply looking for replication of individual 518 gene signals, could make use of previously underpowered datasets and identify common genetic 519 mechanisms relevant to AD. Future expansion of such approaches to include larger GWAS

29

520	datasets and chronic ethanol expression studies, together with validation of key targets by gene
521	targeting in animals models, may provide both novel insight for the neurobiology of AD and the
522	development of improved therapeutic approaches.

523

524 Acknowledgements

- 525 The authors wish to thank members of the Miles laboratory and the Virginia Institute for
- 526 Psychiatric and Behavioral Genetics for their helpful comments and suggestions during the
- 527 course of these studies. Additionally, we thank Dr. Zhongming Zhou at the University of Texas
- 528 Health Sciences Center for suggestions regarding the utilization of EW-dmGWAS. None of the
- authors had any conflicts of financial interest in the performance of these studies.

30

References 530

531

532 1. Takahashi T, Lapham G, Chavez LI, Lee AK, Williams EC, Richards JE, et al.

533 Comparison of DSM-IV and DSM-5 criteria for alcohol use disorders in VA primary care 534 patients with frequent heavy drinking enrolled in a trial. Addiction science & clinical 535 practice. 2017;12(1):17. Epub 2017/07/19. doi: 10.1186/s13722-017-0082-0. PubMed

536 PMID: 28716049; PubMed Central PMCID: PMCPMC5514480.

537 Grant BF, Goldstein RB, Saha TD, Chou SP, Jung J, Zhang H, et al. Epidemiology of 2. 538 DSM-5 Alcohol Use Disorder: Results From the National Epidemiologic Survey on Alcohol 539 and Related Conditions III. JAMA psychiatry. 2015;72(8):757-66. Epub 2015/06/04. doi: 540 10.1001/jamapsychiatry.2015.0584. PubMed PMID: 26039070; PubMed Central PMCID: 541 PMCPMC5240584.

542 3. Stahre M, Roeber J, Kanny D, Brewer RD, Zhang X. Contribution of excessive alcohol 543 consumption to deaths and years of potential life lost in the United States. Preventing 544 chronic disease. 2014;11:E109. Epub 2014/06/27. doi: 10.5888/pcd11.130293. PubMed

- 545 PMID: 24967831: PubMed Central PMCID: PMCPMC4075492.
- 546 4. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A 547 comparative risk assessment of burden of disease and injury attributable to 67 risk factors 548 and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global 549 Burden of Disease Study 2010. The Lancet. 2012;380(9859):2224-60. doi: 10.1016/s0140-550 6736(12)61766-8.
- 551 Victor I. Reus, Laura J. Fochtmann, Oscar Bukstein, A. Evan Eyler, Donald M. Hilty, 5. 552 Marcela Horvitz-Lennon, et al. The American Psychiatric Association Practice Guideline for 553 the Pharmacological Treatment of Patients With Alcohol Use Disorder. American Journal of 554 Psychiatry. 2018;175(1):86-90. doi: 10.1176/appi.ajp.2017.1750101. PubMed PMID: 555 29301420.

556 Prescott CA, Kendler KS. Genetic and environmental contributions to alcohol abuse 6. 557 and dependence in a population-based sample of male twins. The American journal of 558 psychiatry. 1999;156(1):34-40. Epub 1999/01/19. doi: 10.1176/ajp.156.1.34. PubMed 559 PMID: 9892295.

- 560 Verhulst B, Neale MC, Kendler KS. The heritability of alcohol use disorders: a meta-7. 561 analysis of twin and adoption studies. Psychological medicine. 2015;45(5):1061-72. Epub 562 2014/08/30. doi: 10.1017/S0033291714002165. PubMed PMID: 25171596; PubMed 563 Central PMCID: PMCPMC4345133.
- 564 Buck KJ, Metten P, Belknap JK, Crabbe JC. Quantitative trait loci involved in genetic 8. 565 predisposition to acute alcohol withdrawal in mice. The Journal of neuroscience : the 566 official journal of the Society for Neuroscience. 1997;17(10):3946-55. Epub 1997/05/15.
- 567 PubMed PMID: 9133412.
- 568 Saba LM, Bennett B, Hoffman PL, Barcomb K, Ishii T, Kechris K, et al. A systems 9. 569 genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic
- 570 transmission. Neuropharmacology. 2011;60(7-8):1269-80. Epub 2010/12/28. doi:
- 571 10.1016/j.neuropharm.2010.12.019. PubMed PMID: 21185315; PubMed Central PMCID:
- 572 PMCPMC3079014.
- 573 Putman AH, Wolen AR, Harenza JL, Yordanova RK, Webb BT, Chesler EJ, et al. 10.
- 574 Identification of quantitative trait loci and candidate genes for an anxiolytic-like response

575 to ethanol in BXD recombinant inbred strains. Genes, brain, and behavior. 2016;15(4):367-576 81. Epub 2016/03/08. doi: 10.1111/gbb.12289. PubMed PMID: 26948279; PubMed 577 Central PMCID: PMCPMC4852167. 578 Sun Y, Zhang Y, Wang F, Sun Y, Shi J, Lu L. From genetic studies to precision 11. 579 medicine in alcohol dependence. Behavioural pharmacology. 2016;27(2-3 Spec Issue):87-580 99. Epub 2015/11/19. doi: 10.1097/FBP.0000000000000202. PubMed PMID: 26580132. 581 12. Gelernter J, Kranzler HR, Sherva R, Almasy L, Koesterer R, Smith AH, et al. Genome-582 wide association study of alcohol dependence:significant findings in African- and 583 European-Americans including novel risk loci. Molecular psychiatry. 2014;19(1):41-9. 584 Epub 2013/10/30. doi: 10.1038/mp.2013.145. PubMed PMID: 24166409; PubMed Central 585 PMCID: PMCPMC4165335. 586 Hart AB, Kranzler HR. Alcohol Dependence Genetics: Lessons Learned From 13. 587 Genome-Wide Association Studies (GWAS) and Post-GWAS Analyses. Alcoholism, clinical 588 and experimental research. 2015;39(8):1312-27. Epub 2015/06/26. doi: 589 10.1111/acer.12792. PubMed PMID: 26110981; PubMed Central PMCID: 590 PMCPMC4515198. 591 Schumann G, Liu C, O'Reilly P, Gao H, Song P, Xu B, et al. KLB is associated with 14. 592 alcohol drinking, and its gene product beta-Klotho is necessary for FGF21 regulation of 593 alcohol preference. Proceedings of the National Academy of Sciences of the United States of 594 America. 2016;113(50):14372-7. Epub 2016/12/03. doi: 10.1073/pnas.1611243113. 595 PubMed PMID: 27911795; PubMed Central PMCID: PMCPMC5167198. 596 Clarke TK, Adams MJ, Davies G, Howard DM, Hall LS, Padmanabhan S, et al. Genome-15. 597 wide association study of alcohol consumption and genetic overlap with other health-598 related traits in UK Biobank (N=112 117). Molecular psychiatry, 2017:22(10):1376-84. 599 Epub 2017/09/25. doi: 10.1038/mp.2017.153. PubMed PMID: 28937693; PubMed Central 600 PMCID: PMCPMC5622124. 601 Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding 16. 602 the missing heritability of complex diseases. Nature. 2009;461(7265):747-53. Epub 603 2009/10/09. doi: 10.1038/nature08494. PubMed PMID: 19812666; PubMed Central 604 PMCID: PMCPMC2831613. 605 Mamdani M. Williamson V. McMichael GO. Blevins T. Aliev F. Adkins A. et al. 17. 606 Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the 607 Nucleus Accumbens of Subjects with Alcohol Dependence. PloS one. 2015;10(9):e0137671. 608 Epub 2015/09/19. doi: 10.1371/journal.pone.0137671. PubMed PMID: 26381263; 609 PubMed Central PMCID: PMCPMC4575063. 610 Farris SP, Arasappan D, Hunicke-Smith S, Harris RA, Mayfield RD. Transcriptome 18. 611 organization for chronic alcohol abuse in human brain. Molecular psychiatry. 612 2015;20(11):1438-47. Epub 2014/12/03. doi: 10.1038/mp.2014.159. PubMed PMID: 613 25450227; PubMed Central PMCID: PMCPMC4452464. 614 Zhong H, Yang X, Kaplan LM, Molony C, Schadt EE. Integrating pathway analysis and 19. genetics of gene expression for genome-wide association studies. American Journal of 615 616 Human Genetics. 2010;86(4):581-91. doi: 10.1016/j.ajhg.2010.02.020. PubMed PMID: 617 20346437; PubMed Central PMCID: PMCPMC2850442. 618 Wang L, Jia P, Wolfinger RD, Chen X, Zhao Z. Gene set analysis of genome-wide 20. 619 association studies: methodological issues and perspectives. Genomics. 2011;98(1):1-8.

Epub 2011/05/14. doi: 10.1016/j.ygeno.2011.04.006. PubMed PMID: 21565265; PubMed

Farris SP, Miles MF. Fyn-dependent gene networks in acute ethanol sensitivity. PloS

32

21.

Central PMCID: PMCPMC3852939.

620

621

623	one. 2013;8(11):e82435. Epub 2013/12/07. doi: 10.1371/journal.pone.0082435. PubMed
624	PMID: 24312422; PubMed Central PMCID: PMCPMC3843713.
625	22. Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Sikela JM, et al. Ethanol-
626	responsive brain region expression networks: implications for behavioral responses to
627	acute ethanol in DBA/2J versus C57BL/6J mice. The Journal of neuroscience : the official
628	journal of the Society for Neuroscience. 2005;25(9):2255-66. Epub 2005/03/05. doi:
629	10.1523/JNEUROSCI.4372-04.2005. PubMed PMID: 15745951.
630	23. Smith ML, Lopez MF, Archer KJ, Wolen AR, Becker HC, Miles MF. Time-Course
631	Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol
632	and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.
633	PloS one. 2016;11(1):e0146257. Epub 2016/01/06. doi: 10.1371/journal.pone.0146257.
634	PubMed PMID: 26730594; PubMed Central PMCID: PMCPMC4701666.
635	24. Wolen AR, Phillips CA, Langston MA, Putman AH, Vorster PJ, Bruce NA, et al. Genetic
636	dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and
637	mechanistic implications. PloS one. 2012;7(4):e33575. doi:
638	10.1371/journal.pone.0033575. PubMed PMID: 22511924; PubMed Central PMCID:
639	РМСРМС3325236.
640	25. Crabbe JC. Use of animal models of alcohol-related behavior. Handbook of clinical
641	neurology. 2014;125:71-86. Epub 2014/10/14. doi: 10.1016/B978-0-444-62619-6.00005-
642	7. PubMed PMID: 25307569.
643	26. Trim RS, Schuckit MA, Smith TL. The relationships of the level of response to alcohol
644	and additional characteristics to alcohol use disorders across adulthood: a discrete-time
645	survival analysis. Alcoholism, clinical and experimental research. 2009;33(9):1562-70.
646	Epub 2009/06/03. doi: 10.1111/j.1530-0277.2009.00984.x. PubMed PMID: 19485971;
647	PubMed Central PMCID: PMCPMC2947374.
648	27. de Wit H, Phillips TJ. Do initial responses to drugs predict future use or abuse?
649	Neuroscience and biobehavioral reviews. 2012;36(6):1565-76. Epub 2012/05/01. doi:
650	10.1016/j.neubiorev.2012.04.005. PubMed PMID: 22542906; PubMed Central PMCID:
651	PMCPMC3372699.
652	28. Network, Pathway Analysis Subgroup of Psychiatric Genomics C. Psychiatric
653	genome-wide association study analyses implicate neuronal, immune and historie
654 (FF	patnways. Nature neuroscience. 2015;18(2):199-209. Epub 2015/01/20. doi:
055	10.1038/nn.3922. PubMed PMID: 25599223; PubMed Central PMCD: PMCPMC43/886/.
656 657	29. Adkins AE, Hack LM, Bigdell TB, Williamson VS, McMichael GO, Mamdani M, et al.
03/ 650	Ethanol Dognongo Dehaviaro in Model Organismo, Alashelism, alinizal and oversimental
030 650	research 2017.41(E).011 29 Enub 2017/02/22 doi: 10.1111/coor 12262 DubMod DMID.
660	28226201: PubMod Control PMCID: PMCPMC5404040
661	20220201, I ubmeu Central I MCD. I MCI MC3404949.
662	genome-wide association studies in protein-protein interaction networks. Bioinformatics
663	(Oxford England) 2011.27(1).95-102 Enub 2010/11/04 doi:
664	10 1093 /bioinformatics /btg615 PubMed PMID: 21045073: PubMed Central PMCID:
665	PMCPMC3008643.

33

Han S, Yang BZ, Kranzler HR, Liu X, Zhao H, Farrer LA, et al. Integrating GWASs and 666 31. 667 human protein interaction networks identifies a gene subnetwork underlying alcohol dependence. American Journal of Human Genetics. 2013;93(6):1027-34. Epub 668 669 2013/11/26. doi: 10.1016/j.ajhg.2013.10.021. PubMed PMID: 24268660; PubMed Central 670 PMCID: PMCPMC3853414. 671 32. Wang O, Yu H, Zhao Z, Jia P. EW dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles. Bioinformatics (Oxford, 672 673 England). 2015;31(15):2591-4. Epub 2015/03/26. doi: 10.1093/bioinformatics/btv150. 674 PubMed PMID: 25805723; PubMed Central PMCID: PMCPMC4514922. 675 33. Zhang L, Wang L, Ravindranathan A, Miles MF. A new algorithm for analysis of 676 oligonucleotide arrays: application to expression profiling in mouse brain regions. Journal of molecular biology. 2002;317(2):225-35. Epub 2002/03/21. doi: 677 678 10.1006/jmbi.2001.5350. PubMed PMID: 11902839. 679 34. Thornton T, McPeek MS. Case-control association testing with related individuals: a 680 more powerful quasi-likelihood score test. American Journal of Human Genetics. 681 2007;81(2):321-37. Epub 2007/08/02. doi: 10.1086/519497. PubMed PMID: 17668381; 682 PubMed Central PMCID: PMCPMC1950805. 683 35. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nature 684 685 genetics. 2012;44(8):955-9. Epub 2012/07/24. doi: 10.1038/ng.2354. PubMed PMID: 686 22820512; PubMed Central PMCID: PMCPMC3696580. 687 36. Li MX, Sham PC, Cherny SS, Song YO. A knowledge-based weighting framework to 688 boost the power of genome-wide association studies. PloS one. 2010;5(12):e14480. Epub 689 2011/01/11. doi: 10.1371/journal.pone.0014480. PubMed PMID: 21217833: PubMed 690 Central PMCID: PMCPMC3013112. 691 37. Edwards AC, Aliev F, Wolen AR, Salvatore JE, Gardner CO, McMahon G, et al. Genomic 692 influences on alcohol problems in a population-based sample of young adults. Addiction 693 (Abingdon, England). 2015;110(3):461-70. Epub 2014/12/03. doi: 10.1111/add.12822. 694 PubMed PMID: 25439982; PubMed Central PMCID: PMCPMC4329073. 695 Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S. Integrated 38. 696 network analysis platform for protein-protein interactions. Nat Methods. 2009;6(1):75-7. 697 doi: 10.1038/nmeth.1282. PubMed PMID: 19079255. 698 Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, et al. PINA 39. 699 v2.0: mining interactome modules. Nucleic acids research. 2012;40(Database issue):D862-700 5. Epub 2011/11/10. doi: 10.1093/nar/gkr967. PubMed PMID: 22067443; PubMed Central 701 PMCID: PMCPMC3244997. 702 40. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. 703 Methods in molecular biology (Clifton, NI). 2007;406:89-112. Epub 2008/02/22. PubMed 704 PMID: 18287689. 705 Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet 41. 706 Psychiatry. 2016;3(8):760-73. doi: 10.1016/S2215-0366(16)00104-8. PubMed PMID: 707 27475769. 708 42. Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic 709 to Omnigenic. Cell. 2017;169(7):1177-86. Epub 2017/06/18. doi: 710 10.1016/j.cell.2017.05.038. PubMed PMID: 28622505; PubMed Central PMCID: 711 PMCPMC5536862.

712 713 714 715 716 717 718 719 720 721 722 723 724	 43. Lu JY, Schneider RJ. Tissue distribution of AU-rich mRNA-binding proteins involved in regulation of mRNA decay. J Biol Chem. 2004;279(13):12974-9. Epub 2004/01/09. doi: 10.1074/jbc.M310433200. PubMed PMID: 14711832. 44. Tiruchinapalli DM, Caron MG, Keene JD. Activity-dependent expression of ELAV/Hu RBPs and neuronal mRNAs in seizure and cocaine brain. J Neurochem. 2008;107(6):1529- 43. Epub 2008/11/19. doi: 10.1111/j.1471-4159.2008.05718.x. PubMed PMID: 19014379. 45. Wilke N, Sganga M, Barhite S, Miles MF. Effects of alcohol on gene expression in neural cells. Exs. 1994;71:49-59. Epub 1994/01/01. PubMed PMID: 8032172. 46. Seo D, Sinha R. Neuroplasticity and Predictors of Alcohol Recovery. Alcohol research : current reviews. 2015;37(1):143-52. Epub 2015/08/11. PubMed PMID: 26259094; PubMed Central PMCID: PMCPMC4476600. 47. Kyzar EJ, Pandey SC. Molecular mechanisms of synaptic remodeling in alcoholism. Neuroscience letters. 2015;601:11-9. Epub 2015/01/28. doi:
725	10.1016/j.neulet.2015.01.051. PubMed PMID: 25623036; PubMed Central PMCID:
726	PMCPMC4506731.
727	48. Hu HT, Hsueh YP. Calcium influx and postsynaptic proteins coordinate the dendritic
720	niopodium-spine transition. Developmental neurobiology. 2014;74(10):1011-29. Epub
729	2014/04/25. doi: 10.1002/dileu.22101. rubmed FMID: 24755440.
730	during Axon Remodelling through the Actin-Binding Protein Ense PloS one
732	2015:10(8):e0134976. Epub 2015/08/08. doi: 10.1371/journal.pone.0134976. PubMed
733	PMID: 26252776: PubMed Central PMCID: PMCPMC4529215.
734	50. Chen CH, He CW, Liao CP, Pan CL. A Wnt-planar polarity pathway instructs neurite
735	branching by restricting F-actin assembly through endosomal signaling. PLoS genetics.
736	2017;13(4):e1006720. Epub 2017/04/07. doi: 10.1371/journal.pgen.1006720. PubMed
737	PMID: 28384160; PubMed Central PMCID: PMCPMC5398721.
738	51. Bjork K, Rimondini R, Hansson AC, Terasmaa A, Hyytia P, Heilig M, et al. Modulation
739	of voluntary ethanol consumption by beta-arrestin 2. FASEB journal : official publication of
740	the Federation of American Societies for Experimental Biology. 2008;22(7):2552-60. Epub
/41 742	2008/03/28. doi: 10.1096/fj.0/-102442. PubMed PMID: 1836/649.
742	52. Heath AC, Madden PA, Bucholz KK, Dinwiddle SH, Sluiske WS, Bierut LJ, et al.
743 711	Psychological medicine 1999.29(5):1069-81 Epub 1999/11/27 PubMed PMID:
744	10576299
746	53 Morean MF Corbin WR Subjective response to alcohol: a critical review of the
740	literature Alcoholism clinical and experimental research 2010:34(3):385-95 Enub
748	2009/12/24. doi: 10.1111/j.1530-0277.2009.01103.x. PubMed PMID: 20028359.
749	54. Ray LA, Mackillop I, Monti PM, Subjective responses to alcohol consumption as
750	endophenotypes: advancing behavioral genetics in etiological and treatment models of
751	alcoholism. Substance use & misuse. 2010;45(11):1742-65. Epub 2010/07/02. doi:
752	10.3109/10826084.2010.482427. PubMed PMID: 20590398; PubMed Central PMCID:
753	РМСРМС4703313.
754	

35

756 Supporting information

757 S1 Fig. Analytical Pipeline of Steps Following EW-dmGWAS. Empirical p-values were 758 calculated from standardized module scores based on a Z-distribution. The original EW-759 dmGWAS module score, permutation, and score standardization algorithms were used to 760 calculate the respective Mega Modules parameters. Modules were considered to have 761 >80% overlap if >80% of the genes in the smaller module was contained in the larger 762 module. False Discovery Rates were calculated based on the Benjamini-Hochberg 763 algorithm, using the "stats" package in R. Intramodular connectivity was defined as the 764 number of edges (i.e. connections) attached to that node (i.e. gene). Eigen-Centrality was 765 calculated using the "igraph" package in R. 766 **S1 Table.** Brain Region-Specific S-score Values. One table per brain region, containing 767 each of the following values: RMA values and S-scores from the maximally expressed 768 probeset per gene, for each BXD strain; the associated probeset IDs, human gene symbols, 769 and mouse gene symbols; and the Fisher's combined False Discovery Rate (q-value) for 770 each probeset.

S2 Table. Mega Module Characteristics. One table per brain region, containing each of
the following characteristics, for all significant Mega Modules: name; constituent genes;
ALPSAC and IASPSAD p-values for each gene; Mega Module score (S_n), p-value (S_n_p), and
False Discovery Rate (S_n_qFDR); and intramodular eigencentrality and connectivity.

575 Significance values $< 10^{-16}$ are rounded to 0.

776 S3 Table. Mega Module Gene Ontology Enrichment. One table for each ALSPAC-

overrepresented Mega Module, containing ToppFun output for gene ontology enrichment

groups with *p*<0.01 and minimum group size of 3 genes and maximum size of 1,000 genes,

- 779 for the following categories: Biological Process, Cellular Component, Molecular Function,
- 780 Human Phenotype, Mouse Phenotype, and Pathways.

