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2	

Abstract 22	

Genome-wide association studies on alcohol dependence, by themselves, have yet to account for 23	

the estimated heritability of the disorder and provide incomplete mechanistic understanding of 24	

this complex trait. Integrating brain ethanol-responsive gene expression networks from model 25	

organisms with human genetic data on alcohol dependence could aid in identifying dependence-26	

associated genes and functional networks in which they are involved. This study used a 27	

modification of the Edge-Weighted Dense Module Searching for genome-wide association 28	

studies (EW-dmGWAS) approach to co-analyze whole-genome gene expression data from 29	

ethanol-exposed mouse brain tissue, human protein-protein interaction databases and alcohol 30	

dependence-related genome-wide association studies. Results revealed novel ethanol-regulated 31	

and alcohol dependence-associated gene networks in prefrontal cortex, nucleus accumbens, and 32	

ventral tegmental area. Three of these networks were overrepresented with genome-wide 33	

association signals from an independent dataset. These networks were significantly 34	

overrepresented for gene ontology categories involving several mechanisms, including actin 35	

filament-based activity, transcript regulation, Wnt and Syndecan-mediated signaling, and 36	

ubiquitination. Together, these studies provide novel insight for brain mechanisms contributing 37	

to alcohol dependence.  38	
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3	

Introduction 39	

 Alcohol Use Disorder [1], which spans the spectrum from abusive drinking to full alcohol 40	

dependence (AD), has a lifetime prevalence of 29.1% among adults in the United States [2]. 41	

Alcohol misuse ranks third in preventable causes of death in the U.S. [3] and fifth in risk factors 42	

for premature death and disability, globally [4]. Although pharmacological therapy for AUD 43	

exists [5], the effectiveness is limited and the relapse rate is high. Improvement in AUD 44	

treatment requires research on the underlying genetic and biological mechanisms of the 45	

progression from initial exposure to misuse, and finally to dependence. 46	

Twin studies estimate that AUD is roughly 50% heritable [6, 7]. Multiple rodent model 47	

studies have used selective breeding to enrich for ethanol behavioral phenotypes or have 48	

identified ethanol-related behavioral quantitative trait loci [8-10],  further confirming the large 49	

genetic contribution to alcohol behaviors. Recent studies have also documented genetic factors 50	

influencing the effectiveness of existing pharmacological treatments for AD, further 51	

substantiating genetic contributions to the mechanisms and treatment of AUD [11]. Genome-52	

wide association studies (GWAS) in humans have identified several genetic variants associated 53	

with alcohol use and dependence [12-15]. However, they have yet to account for a large portion 54	

of the heritability estimated by twin studies. Lack of power, due to a large number of variants 55	

with small effects, is believed to the source of this “missing heritability”” [16]. Although recent 56	

large-scale studies have shown promise in identifying novel genetic contributions to alcohol 57	

consumption, these studies do not contain the deep phenotypic information necessary for 58	

identifying variants associated with dependence. Further, such GWAS results still generally lack 59	

information about how detected single gene variants are mechanistically related to the disease 60	

phenotype.  61	
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Genome-wide gene expression studies are capable of improving the power of GWAS by 62	

providing information about the gene networks in which GWAS variants function [17-20]. 63	

Although gene expression in brain tissue has been studied in AD humans [17, 18], these studies 64	

are often difficult to conduct and interpret, due to lack of control over experimental variables and 65	

small sample sizes. However, extensive studies in rodent models have successfully identified 66	

ethanol-associated gene expression differences and gene networks in brain tissue [21-24]. 67	

Multiple ethanol-behavioral rodent models exist to measure different aspects of the 68	

developmental trajectory from initial exposure to compulsive consumption [25]. Acute 69	

administration to naïve mice models the response of initial alcohol exposure in humans, which is 70	

an important predictor of risk for AD [26, 27]. Wolen et al. used microarray analysis across a 71	

mouse genetic panel to  identify expression correlation-based networks of acute ethanol-72	

regulated genes, along with significantly associated expression quantitative trait loci in the 73	

prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) [24]. 74	

Furthermore, specific networks also correlated with other ethanol behavioral data derived from 75	

the same mouse genetic panel (BXD recombinant inbred lines) [10]. These results suggested that 76	

studying acute ethanol-exposed rodent brain gene expression could provide insight into relevant 77	

mechanistic frameworks and pathways underlying ethanol behaviors.  78	

Several studies have integrated GWAS and gene expression or gene network data to cross-79	

validate behavioral genetic finding [17]. For instance, the Psychiatric Genomics Consortium [28] 80	

tested for enrichment of nominally significant genes from human GWAS in previously identified 81	

functional pathways, and found shared functional enrichment of signals for schizophrenia, major 82	

depression disorder, and bipolar disorder in several categories. These pathways included histone 83	

methylation, neural signaling, and immune pathways [28]. Mamdani et al. reversed this type of 84	
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analysis by testing for significant enrichment of previously identified GWAS signals in gene 85	

networks from their study. They found that expression quantitative trait loci for AD-associated 86	

gene expression networks in human prefrontal cortex tissue had significant enrichment with AD 87	

diagnosis and symptom count GWAS signals from the Collaborative Study on the Genetics of 88	

Alcoholism dataset [17]. Additional approaches have taken human GWAS significant (or 89	

suggestive) results for AD and provided additional confirmation by showing that expression 90	

levels for such genes showed correlations with ethanol behaviors in rodent models [29].  Such 91	

methods are informative with respect to analyzing the function of genes that have already 92	

reached some association significance threshold. However, they do not provide information 93	

about genes not reaching such statistical thresholds, but possibly still having important 94	

contributions to the genetic risk and mechanisms of AUD 95	

Dense module searching for GWAS (dmGWAS) is an algorithm for directly integrating 96	

GWAS data and other biological network information so as to identify gene networks 97	

contributing to a genetic disorder, even if few of the individual network genes exceed genome-98	

wide statistical association thresholds [30]. The initial description of this approach utilized 99	

Protein-Protein Interaction (PPI) network data to identify networks associated with a GWAS 100	

phenotype. Modules derived from protein-protein interactions were scored from node-weights 101	

based on gene-level GWAS p-values. This approach was used to identify AD-associated PPI 102	

networks that replicated across ethnicities and showed significant aggregate AD-association in 103	

independent GWAS datasets [31], thus demonstrating the potential utility of the method. A more 104	

recent iteration of the dmGWAS algorithm, termed Edge-Weighted dense module searching for 105	

GWAS (EW-dmGWAS), allows integration of gene expression data to provide a direct co-106	

analysis of gene expression, PPI, and GWAS data [32].  107	
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Utilization of the EW-dmGWAS algorithm would allow for identification of gene networks 108	

coordinately weighted for GWAS significance for AD in humans and ethanol-responsiveness in 109	

model organism brain gene expression data. We hypothesized that such an approach could 110	

provide novel information about gene networks contributing to the risk for AUD, while also 111	

adding mechanistic information about the role of such networks in ethanol behaviors. We show 112	

here the first use of such an approach for the integration of human PPI connectivity with mouse 113	

brain expression responses to acute ethanol and human GWAS results on AD. Our design 114	

incorporated the genome-wide microarray expression dataset derived from the acute ethanol-115	

exposed mouse brain tissue used in Wolen et al. [10, 24], human protein-protein interaction data 116	

from the Protein Interaction Network database, and AD GWAS summary statistics from the Irish 117	

Affected Sib-Pair Study of Alcohol Dependence [29]. Importantly, we validated the identified 118	

ethanol-regulated and AD-associated networks by co-analysis with an additional, independent 119	

AD GWAS study on the Avon Longitudinal Study of Parents and Children dataset. Our results 120	

could provide important methodological and biological function insight for further studies on the 121	

mechanisms and treatment of AUD.  122	

 123	

Materials and methods 124	

Samples 125	

Mouse gene expression data 126	

All mouse brain microarray data (Affymetrix GeneChip Mouse Genome 430 2.0) are from 127	

Wolen et al., 2012 [24] and can be downloaded from the GeneNetwork resource 128	

(www.genenetwork.org), via accession numbers GN135-137, GN154-156 and GN228-230, 129	
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7	

respectively for PFC, NAc and VTA data. Additionally, PFC microarray data is available from 130	

the Gene Expression Omnibus (GEO) via accession number GSE28515. Treatment and control 131	

groups each contained one mouse from each strain and were given IP injections of saline or 1.8 132	

g/kg of ethanol, respectively. Euthanasia and brain tissue collection took place 4 hours later. 133	

Data used for edge weighting in EW-dmGWAS analysis included Robust Multi-array Average 134	

(RMA) values, background-corrected and normalized measures of probe-wise expression, from 135	

the PFC, VTA, and NAc of male mice in 27-35 BXD recombinant inbred strains and two 136	

progenitor strains (DBA/2J and C57BL/6J). For filtering of the same microarray datasets prior to 137	

EW-dmGWAS analysis (see below), we used probe-level expression differences between control 138	

and treatment groups determined in Wolen study using the S-score algorithm [33] (Table S1). 139	

Fisher’s Combined Test determined S-score significance values for ethanol regulation of each 140	

probeset across the entire BXD panel, and empirical p-values were calculated by 1,000 random 141	

permuations. Finally, q-values were calculated from empirical p-values to correct for multiple 142	

testing.  143	

Ethanol-responsive genes are predicted to be involved in pathways of neural adaptations 144	

that lead to dependence [24]. We predicted they would also be involved in mechanistic pathways 145	

from which GWAS signals are being detected. We therefore performed a low-stringency filter 146	

for ethanol-responsiveness prior to EW-dmGWAS so as to ensure edge weighting focused on 147	

ethanol responsivity. To identify genes with suggestive ethanol responsiveness, we used a S-148	

score probeset-level threshold of qFDR<0.1 for differential expression, in any one of the three 149	

brain regions. Genes associated with these probesets were carried forward in our analysis. 150	

Multiple probesets from single genes were reduced to single gene-wise expression levels within 151	

a particular brain region by selecting the maximum brain region-specific RMA value for each 152	
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gene. After removing genes that were absent from the human datasets, 6,050 genes remained 153	

with expression values across all three brain regions (Fig 1).   154	

 155	

Fig 1. Data Pipeline for Determining Ethanol-Regulation and Merging Datasets. Pipeline 156	

used to prepare the data for the present analysis. The first cell contains the starting number of 157	

genes in the BXD mouse PFC, NAc, and VTA gene expression dataset.   158	

 159	

Human GWAS data 160	

  The Irish Affected Sib-Pair Study of Alcohol Dependence (IASPSAD) AD GWAS 161	

dataset was used for the EW-dmGWAS analysis. It contains information from 1,748 unscreened 162	

controls (43.2% male) and 706 probands and affected siblings (65.7% male) from a native Irish 163	

population, after quality control [29]. Samples were genotyped on Affymetrix v6.0 SNP arrays. 164	

Diagnostic criteria for AD were based on the DSM-IV, and probands were ascertained from in- 165	

and out-patient alcoholism treatment facilities. Association of each Single Nucleotide 166	

Polymorphisms (SNP) with AD diagnosis status was tested by the Modified Quasi-Likelihood 167	

Score method [34], which accounts for participant relatedness. SNPs were imputed using 168	

IMPUTE2 [35] to hg19/1000 Genomes, and gene-wise p-values were calculated using 169	

Knowledge-Based mining system for Genome-wide Genetic studies (KGG2.5) [36].  170	

 The Avon Longitudinal Study of Parents and Children (ALSPAC) GWAS gene-wise p-171	

values were used to examine the ability of EW-dmGWAS to validate the EW-dmGWAS 172	

networks. This GWAS tested SNP association with a factor score calculated from 10 Alcohol 173	

Use Disorder Identification Test items for 4,304 (42.9% male) participants from Avon, UK. 174	

Samples were genotyped by the Illumina HumanHap550 quad genome-wide SNP platform [37].  175	
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Although the analyzed phenotype was not identical to that in the IASPSAD GWAS, this 176	

dataset was similar to IASPSAD in that: 100% of the sample was European; the male to female 177	

ratio was roughly 1:1; SNPs were imputed to hg19/1000 Genomes; and gene-wise p-values were 178	

calculated by KGG2.5.  179	

 180	

Protein network data 181	

The Protein-Protein Interaction (PPI) network was obtained from the Protein Interaction 182	

Network Analysis (PINA 2.0) Platform (http://omics.bjcancer.org/pina/interactome.pina4ms.do). 183	

This platform includes PPI data from several different databases, including: Intact, MINT, 184	

BioGRID, DIP, HPRD, and MIPS/Mpact. The Homo sapiens dataset was used for this analysis 185	

[38, 39]. Uniprot IDs were used to match protein symbols to their corresponding gene symbols 186	

[40].  187	

 188	

Statistical methods 189	

EW-dmGWAS 190	

The edge-weighted dense module searching for GWAS (dmGWAS_3.0) R package was 191	

used to identify treatment-dependent modules (small, constituent networks) nested within a 192	

background PPI network (https://bioinfo.uth.edu/dmGWAS/). We used the PPI framework for 193	

the background network, IASPSAD GWAS gene-wise p-values for the node-weights, and RMA 194	

values from in acute ethanol- and saline-exposed mouse PFC, VTA, and NAc for edge-weights.  195	

By the EW-dmGWAS algorithm, higher node-weights represent lower (i.e. more significant) 196	

GWAS p-values, whereas higher edge-weights represent a greater response difference of two 197	

genes between ethanol and control groups. This is calculated by taking the difference of 198	
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correlations in RMA expression values of the two genes in control vs. ethanol treated BXD lines. 199	

The module score algorithm incorporated edge- and node-weights, which were each weighted to 200	

prevent bias towards representation of nodes or edges in module score calculations. Higher 201	

module scores represent higher edge- and node-weights. Genes were kept in a module if they 202	

increased the standardized module score (Sn) by 0.5%. Sn corresponding to a permutation-based, 203	

empirical qFDR<0.05 were considered significant. A significant Sn (i.e. more significant qFDR 204	

values) indicates that a module’s constituent genes are more highly associated with AD in 205	

humans, and their interactions with each other are more strongly perturbed by acute ethanol 206	

exposure in mice than randomly constructed modules of the same size.  207	

Due to the redundancy of genes between modules, we modified the EW-dmGWAS output 208	

by iteratively merging significant modules that overlapped >80% until no modules had >80% 209	

overlap, for each brain region. Percent overlap represented the number of genes contained in 210	

both modules (for every possible pair) divided by the number of genes in the smaller module. 211	

We call the final resulting modules “mega-modules”. Standardized mega-module scores (MM-212	

Sn) were calculated using the algorithms employed by EW-dmGWAS. MM-Sn corresponding to 213	

qFDR<0.05 were considered significant (Fig S1). Finally, connectivity (k) and Eigen-centrality 214	

(EC) were calculated using the igraph R package for each gene in each module to identify hub 215	

genes. Nodes with EC>0.2 and in the top quartile for connectivity for a module were considered 216	

to be hub genes. 217	

Overlap with ALSPAC 218	

 Genes with an ALSPAC GWAS gene-wise p<0.001 were considered nominally 219	

significant, and will be referred to as “ALSPAC-nominal genes” from here on out. We used 220	

linear regression to test MM-Sn’s prediction of mean ALSPAC GWAS gene-wise p-value of 221	
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11	

each mega-module. Given our hypothesis that EW-dmGWAS would identify alcohol-associated 222	

gene networks and prioritize them by association, we predicted that higher MM-Sn’s would 223	

predict lower (i.e. more significant) mean GWAS p-values. Empirical p-values<0.017, reflecting 224	

Bonferroni correction for 3 independent tests (one per brain region): α=0.05/3, were considered 225	

to represent significant association.  226	

Overrepresentation of ALSPAC-nominal genes within each mega-module was analyzed for 227	

those modules containing  >1 such gene.  For each of these mega-modules, 10,000 modules 228	

containing the same number of genes were permuted to determine significance. Empirical p-229	

values < 0.05/n (where n = total number of mega-modules tested) were considered significant. 230	

 231	

Functional enrichment analysis 232	

 To determine if mega-modules with significant overrepresentation of ALSPAC-nominal 233	

genes represented an aggregation of functionally related genes, ToppGene 234	

(https://toppgene.cchmc.org/) was used to analyze functional enrichment. Categories of 235	

biological function, molecular function, cellular component, mouse phenotype, human 236	

phenotype, pathways, and drug interaction were tested for over-representation. Significant over-237	

representation results were defined as p<0.01 (uncorrected), n≥3 genes overlap and n≤1000 238	

genes per functional group. Given the number of categories and gene sets tested, our discussion 239	

below was narrowed to the most relevant categories, defined as Bonferroni-corrected p<0.1. 240	

 241	

Results 242	

 Of the initial 45,037 probesets for the mouse gene expression arrays, 16,131 were 243	

associated with human-mouse homologues and had qFDR<0.1 for ethanol responsiveness (S-244	
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score) in at least one of the three brain regions (Fig 1). These probesets corresponded to a total of 245	

7,730 genes and were trimmed to a single probeset per gene by filtering for the most abundant 246	

probeset as described in Methods. After removing genes that were absent from either the PPI 247	

network or the IASPSAD dataset, the final background PPI network for EW-dmGWAS analysis 248	

contained 6,050 genes (nodes) and 30,497 interactions (edges). The nodes contained 25 of the 78 249	

IASPSAD-nominal genes and 24 of the 100 ALSPAC-nominal genes.	There	was	no	overlap	250	

between	the	IASPSAD	and	ALSPAC	nominal	gene	sets. 251	

 252	

Prefrontal Cortex 253	

 For analysis using PFC expression data for edge-weights, results revealed 3,545 254	

significant modules (qFDR<0.05) containing a total of 4,300 genes, with 14 ALSPAC-nominal 255	

genes and 18 IASPSAD-nominal genes. These modules were merged to form 314 mega-256	

modules, all with significant MM-Sn. Twelve mega-modules contained at least one ALSPAC-257	

nominal gene, and 160 contained at least one IASPSAD-nominal gene. However, MM-Sn did not 258	

significantly predict mean ALSPAC GWAS gene-wise p-value (β=-0.003, p=0.327, Fig 2). 259	

 260	

Fig 2. Mega Module Score v. Module Average ALSPAC GWAS p-Value. Correlation 261	

between each Mega Module’s score and average ALSPAC gene-wise GWAS p-value, for the 262	

Prefrontal Cortex (PFC) (β=-0.003, p=0.327), Nucleus Accumbens (Nac) (β=0.003, p=0.390), 263	

and Ventral Tegmental Area (VTA) (β=-0.02, p=0.003). Blue lines represent the line of best fit, 264	

estimated by linear regression, surrounded by their 95% confidence intervals (shaded gray). 265	

 266	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/380584doi: bioRxiv preprint 

https://doi.org/10.1101/380584
http://creativecommons.org/licenses/by/4.0/


13	

Two mega-modules, Aliceblue and Cadetblue, contained multiple ALSPAC-nominal genes 267	

(Table 1). Because overrepresentation was tested for 2 mega-modules, p<0.025 (α=0.05/2) was 268	

considered significant. Cadetblue, was significantly overrepresented with ALSPAC-nominal 269	

genes (Table 1). Each of Cadetblue’s ALSPAC- and IASPSAD-nominal genes was connected to 270	

one of its most highly connected hub genes, ESR1 (estrogen receptor 1; connectivity (k)=31, 271	

Eigen-centrality (EC)=1) and ARRB2 (beta-arrestin-2; k=13, EC=0.25) (Fig 3). Although the 272	

ALSPAC-nominal gene overrepresentation was not significant for Aliceblue, it approached 273	

significance (Table 1). Further, Aliceblue had the second-highest MM-Sn in the PFC and 274	

contained 3 ALSPAC-nominal genes and 3 IASPSAD-nominal genes (Table 1).  For these 275	

reasons, Aliceblue was carried through to functional enrichment analysis. Aliceblue’s two hub 276	

genes were ELAVL1 ((embryonic lethal, abnormal vision)-like 1; k=165, EC=1) and CUL3 277	

(cullin 3; k=75, EC=0.21), which were connected to two of the three ALSPAC-nominal genes. 278	

Of these, CPM’s (carboxypeptidase M’s) only edge was with ELAVL1, and EIF5A2’s 279	

(eukaryotic translation initiation factor 5A2’s) only edge was with CUL3 (Fig 3). 280	

  281	
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Table 1. ALSPAC Nominal Gene Overrepresentation. 282	

 283	

The following characteristics are displayed for each mega-module that contained >1 ALSPAC-284	

nominal gene: affiliated brain region; total number of constituent genes (kg); constituent 285	

ALSPAC- and IASPSAD-nominal genes; empirical p-values for ALSPAC-nominal 286	

overrepresentation (Overrep. p); MM-Sn,and the associated False Discovery Rate (MM-Sn 287	

qFDR). 288	

 * p<0.05 for MM Sn and p<0.05/n for ALSPAC overrepresentation, where n=number of tests 289	

per brain region 290	

 291	

Brain&Region Mega,modules kg MM,Sn& MM,Sn&qFDR Overrep.&p Gene IASPSAD&GWAS&p ALSPAC&GWAS&p
PFC aliceblue 392 11.19 <1E,16* 0.063 CPM 0.493 6.48E,05*

CACNB2 0.978 4.97E,04*
EIF5A2 0.163 8.06E,04*
RSL1D1 3.48E,04* 0.217
SMARCA2 4.91E,04* 0.877
KIAA1217 8.84E,04* 0.904

cadetblue 125 6.30 1.08E,06* 0.013* BCAS2 0.029 4.65E,04*
PIK3C2A 0.432 9.52E,04*
RSL1D1 3.48E,04* 0.217
AKT2 3.90E,05* 0.980

NAc cadetblue2 195 8.04 8.06E,16* 0.042 CPM 0.493 6.48E,05*
MGST3 0.358 4.62E,04*

gray26 12 6.39 9.95E,11* <0.001* PCDH7 0.007 2.10E,04*
BCAS2 0.029 4.65E,04*

VTA coral 399 4.78 1.00E,06* 0.068 CPM 0.493 6.48E,05*
DENND2C 0.018 4.33E,04*
BIRC7 0.930 4.37E,04*
MGST3 0.358 4.62E,04*
PIK3CA 7.06E,05* 0.007
TNN 3.00E,04* 0.018
ANO6 6.32E,04* 0.780

SMARCA2 4.91E,04* 0.877
SIMC1 2.04E,04* 0.977

limegreen 220 5.22 1.19E,07* 0.054 DENND2C 0.018 4.33E,04*
EIF5A2 0.163 8.06E,04*
RSL1D1 3.48E,04* 0.217
CCND2 1.94E,04* 0.603
AKT2 3.90E,05* 0.980

bisque 89 6.22 7.57E,10* 0.006* ACLY 0.701 2.21E,04*
PRKG1 0.647 8.26E,04*
AKT2 3.90E,05* 0.980
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15	

Fig 3. Prefrontal Cortex Mega Modules Aliceblue and Cadetblue. Prefrontal Cortex Mega 292	

Modules Cadetblue (a) and Aliceblue (b).  Solid black arrows point to ALSPAC GWAS nominal 293	

genes, and dotted black arrows represent IASPSAD nominal genes. Edge-width represents 294	

strength of correlation of expression changes between treatment and control mice, and node color 295	

represents IASPSAD GWAS p-values. 296	

 297	

Both Cadetblue and Aliceblue showed significant enrichment in several functional categories 298	

(Table S3). In sum, top functional enrichment categories for Aliceblue were related to actin-299	

based movement, cardiac muscle signaling and action, increased triglyceride levels in mice, cell-300	

cell and cell-extracellular matrix adhesion, and syndecan-2-mediated signaling. In contrast, 301	

Cadetblue’s top enrichment categories involved transcription-regulatory processes, specifically: 302	

RNA splicing, chromatin remodeling, protein alkylation and methylation, DNA replication 303	

regulation, several immune-related pathways, NF-κβ and Wnt signaling pathways, and reductase 304	

activity (Tables 2a-b; Table S3).   305	
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Table 2. Top Gene Ontology Enrichment Results for PFC Mega Modules Cadetblue and 306	

Aliceblue. 307	

a) 308	

 309	

Category Name p,value
q,value1

Bonferroni
Hit1Count1in1
Query1List

Hit1Count1
in1Genome Hit1in1Query1List

GO:1Biological1Process chromatin1organization 1.50E,09 4.12E,06 23 776
SMYD1,1ESR1,1KAT6A,1ASH1L,1PAGR1,1CBX4,11KDM6B,1ASH2L,1
MYSM1,1PHF21A,1BPTF,1UBN1,11CBX6,1SUPT16H,1SMARCD3,1
H3F3B,1PAX5,1PAX7,11BRD1,1CABIN1,1MGEA5,1NR1H4,1CBX8

histone1modification 1.97E,06 5.40E,03 14 453 SMYD1,1KAT6A,1ASH1L,1PAGR1,1KDM6B,1ASH2L,1MYSM1,1
PHF21A,1PAX5,1PAX7,1BRD1,1MGEA5,11NR1H4,1CBX8

covalent1chromatin1modification 2.87E,06 7.89E,03 14 468 SMYD1,1KAT6A,1ASH1L,1PAGR1,1KDM6B,1ASH2L,1MYSM1,1
PHF21A,1PAX5,1PAX7,1BRD1,1MGEA5,11NR1H4,1CBX8

chromatin1remodeling 1.47E,05 4.04E,02 8 165 SMYD1,1ESR1,1ASH2L,1MYSM1,1BPTF,1SMARCD3,1H3F3B,1
PAX7

RNA1splicing 1.60E,05 4.40E,02 12 403 SRSF6,1NUDT21,1BCAS2,1RBM39,1RALY,1RBM5,11PRPF19,1
AKT2,11CPSF2,1SNRPD3,1WDR77,1AQR

protein1alkylation 2.44E,05 6.71E,02 8 177 SMYD1,1ASH1L,1ASH2L,1PAX5,1PAX7,1SNRPD3,11WDR77,1
NR1H4

protein1methylation 2.44E,05 6.71E,02 8 177 SMYD1,1ASH1L,1ASH2L,1PAX5,1PAX7,1SNRPD3,11WDR77,1
NR1H4

GO:1Cellular1Component nucleoplasm1part 2.23E,05 7.49E,03 16 738
MMS22L,1SRSF6,1NUDT21,1KAT6A,1PAGR1,1CBX4,1ELMSAN1,1
ASH2L,1RBM39,1PHF21A,1UBN1,11TONSL,1PRPF19,1SPOP,1
CPSF2,11BRD1

chromosome 1.21E,04 4.07E,02 17 943
MMS22L,1PSEN2,1BCAS2,1ESR1,1KAT6A,1ASH1L,11ZNF207,1
ASH2L,1ESCO2,1CBX6,1TONSL,1SUPT16H,1PRPF19,1SMARCD3,1
H3F3B,11NR1H4,1CBX8

ribonucleoside,diphosphate1
reductase1complex

1.24E,04 4.17E,02 2 3 RRM2B,1RRM2

DNA1replication1factor1A1
complex

1.39E,04 4.67E,02 3 16 BCAS2,1TONSL,1PRPF19

nuclear1replication1fork 1.40E,04 4.71E,02 4 41 MMS22L,1BCAS2,1TONSL,1PRPF19
catalytic1step121spliceosome 2.96E,04 9.94E,02 5 90 BCAS2,1RALY,1PRPF19,1SNRPD3,1AQR

GO:1Molecular1Function oxidoreductase1activity,1acting1
on1CH1or1CH21groups

3.32E,05 1.62E,02 3 10 CYP2C8,1RRM2B,1RRM2

oxidoreductase1activity,1acting1
on1CH1or1CH21groups,1disulfide1

as1acceptor
1.31E,04 6.38E,02 2 3 RRM2B,1RRM2

ribonucleoside,diphosphate1
reductase1activity,1thioredoxin1

disulfide1as1acceptor
1.31E,04 6.38E,02 2 3 RRM2B,1RRM2

ribonucleoside,diphosphate1
reductase1activity

1.31E,04 6.38E,02 2 3 RRM2B,1RRM2

chromatin1binding 1.69E,04 8.24E,02 12 516 ESR1,1KAT6A,1ASH1L,1RELB,1CBX4,1KDM6B,1ASH2L,1PHF21A,1
TLE4,1SMARCD3,1H3F3B,1CABIN1

Mouse1Phenotype increased1immunoglobulin1level 1.16E,06 2.92E,03 14 307 TRAF3IP2,1GADD45B,1SEMA4B,1PSEN2,1ESR1,11SPTA1,1ASH1L,1
BIRC3,1RELB,1MYSM1,1CD4,11PIK3C2A,1RABGEF1,1CABIN1

abnormal1humoral1immune1
response 5.52E,06 1.39E,02 18 566

TRAF3IP2,1GADD45B,1SEMA4B,1PSEN2,1ESR1,11SPTA1,1
MAP3K14,1ASH1L,1BIRC3,1RELB,11TNFRSF11A,1MYSM1,1CD4,1
PIK3C2A,1CD38,11RABGEF1,1PAX5,1CABIN1

abnormal1immunoglobulin1level 7.68E,06 1.93E,02 17 522
TRAF3IP2,1GADD45B,1SEMA4B,1PSEN2,1ESR1,11SPTA1,1
MAP3K14,1ASH1L,1BIRC3,1RELB,11TNFRSF11A,1MYSM1,1CD4,1
PIK3C2A,1RABGEF1,11PAX5,1CABIN1

increased1IgG1level 9.35E,06 2.35E,02 11 225 TRAF3IP2,1GADD45B,1SEMA4B,1ESR1,1SPTA1,11ASH1L,1BIRC3,11
MYSM1,1CD4,1PIK3C2A,1CABIN1

cortical1renal1glomerulopathies 1.18E,05 2.96E,02 10 188 TRAF3IP2,1GADD45B,1PSEN2,1MYO1E,1ESR11,1SPTA1,1RRM2B,11
ASH1L,1RELB,1PIK3C2A

abnormal1lymph1node1
morphology

1.85E,05 4.66E,02 14 390 SELL,1TRAF3IP2,1TRAF1,1PSEN2,1ESR1,1SPTA1,11RRM2B,1
MAP3K14,1BIRC3,1RELB,1TNFRSF11A,11CD4,1PIK3C2A,1PIP

glomerulonephritis 1.95E,05 4.91E,02 8 121 TRAF3IP2,1GADD45B,1PSEN2,1ESR1,1SPTA1,1ASH1L,1RELB,1
PIK3C2A

abnormal1B1cell1physiology 3.21E,05 8.07E,02 18 644
MYO1G,1TRAF3IP2,1GADD45B,1SEMA4B,1PSEN2,1ESR1,1
SPTA1,1MAP3K14,1ASH1L,1BIRC3,1RELB,1TNFRSF11A,1MYSM1,1
CD4,1PIK3C2A,1RABGEF1,1PAX5,1CABIN1

Pathway Signaling1by1Wnt 2.78E,06 2.47E,03 13 340 LGR4,1ASH2L,1FZD4,1ARRB2,1ZNRF3,1TLE4,1VPS35,1H3F3B,1
AKT2,11GNAO1,1FZD2,1MOV10,1RAC3

NF,kappa1B1signaling1pathway 1.07E,04 9.44E,02 6 95 GADD45B,1TRAF1,1MAP3K14,1BIRC3,1RELB,1TNFRSF11A
Apoptosis 1.13E,04 9.97E,02 7 138 GADD45B,1TRAF1,1SEPT4,1SPTA1,1MAP3K14,1BIRC3,1AKT2
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b) 310	

 311	

Functional enrichment results from ToppFun for Prefrontal Cortex Mega Modules Cadetblue (a) 312	

and Aliceblue (b), where Bonferroni-corrected p<0.1. 313	

  314	

Category Name p,value
q,value1

Bonferroni
Hit1Count1in1
Query1List

Hit1Count1in1
Genome Hit1in1Query1List

GO:1Biological1Process regulation1of1actin1filament,based1
movement

4.76E,08 2.07E,04 9 37 FXYD1,1ATP1A2,1DBN1,1GJA5,1JUP,1KCNJ2,1DSC2,1DSG2,1DSP

cardiac1muscle1cell,cardiac1muscle1
cell1adhesion

7.53E,08 3.27E,04 5 7 CXADR,1JUP,1DSC2,1DSG2,1DSP

regulation1of1cardiac1muscle1cell1
contraction

1.64E,07 7.11E,04 8 31 FXYD1,1ATP1A2,1GJA5,1JUP,1KCNJ2,1DSC2,1DSG2,1DSP

actin1filament,based1process 3.57E,07 1.55E,03 36 688

CDC42EP4,1ACTN1,1MYOZ1,1MKLN1,1FXYD1,1RHOF,1SDC4,1
CUL3,1PRR5,1CRYAA,1ARHGDIA,1ATP2C1,1CCDC88A,1STAU2,1
DYNLL1,1DIXDC1,1ATP1A2,1CXADR,1DBN1,1PTGER4,1GJA5,1
JUP,1CDK5R1,1NF1,1KCNJ2,1CACNB2,11DSC2,1DSG2,1DSP,1
ARHGEF5,1CASP4,1LCP1,1CSRP3,1LIMK1,1LDB3,1LRP1

cell1communication1involved1in1
cardiac1conduction

4.34E,07 1.89E,03 9 47 PRKACA,1ATP1A2,1CXADR,1GJA5,1JUP,1CACNB2,1DSC2,1DSG2,1
DSP

desmosome1organization 8.59E,07 3.73E,03 5 10 SNAI2,1JUP,1DSG2,1DSP,1PKP3

cardiac1muscle1cell1action1potential 1.07E,06 4.65E,03 9 52 ATP1A2,1CXADR,1GJA5,1JUP,1KCNJ2,1CACNB2,1DSC2,1DSG2,1
DSP

cardiac1muscle1cell1contraction 1.07E,06 4.65E,03 9 52 FXYD1,1ATP1A2,1GJA5,1JUP,1KCNJ2,1CACNB2,1DSC2,1DSG2,1
DSP

bundle1of1His1cell1to1Purkinje1
myocyte1communication

1.55E,06 6.72E,03 5 11 GJA5,1JUP,1DSC2,1DSG2,1DSP

regulation1of1cardiac1muscle1cell1
action1potential

2.30E,06 9.99E,03 6 20 CXADR,1GJA5,1JUP,1DSC2,1DSG2,1DSP

bundle1of1His1cell,Purkinje1
myocyte1adhesion1involved1in1cell1

communication
2.63E,06 1.14E,02 4 6 JUP,1DSC2,1DSG2,1DSP

regulation1of1heart1rate1by1cardiac1
conduction

2.65E,06 1.15E,02 7 31 GJA5,1JUP,1KCNJ2,1CACNB2,1DSC2,1DSG2,1DSP

cardiac1conduction 3.37E,06 1.46E,02 13 131 FXYD1,1PRKACA,1ATP1A2,1ATP1A4,1CXADR,1GJA5,1JUP,1KCNJ2,1
CACNB2,1CACNB4,1DSC2,1DSG2,1DSP

cardiac1muscle1cell1action1
potential1involved1in1contraction

7.69E,06 3.34E,02 7 36 GJA5,1JUP,1KCNJ2,1CACNB2,1DSC2,1DSG2,1DSP

regulation1of1actin1filament,based1
process 1.05E,05 4.58E,02 21 343

CDC42EP4,1FXYD1,1SDC4,1ARHGDIA,1CCDC88A,1STAU2,1
DIXDC1,1ATP1A2,1DBN1,1PTGER4,1GJA5,1JUP,1CDK5R1,1KCNJ2,1
DSC2,1DSG2,1DSP,1ARHGEF5,1CSRP3,1LIMK1,1LRP1

lipoprotein1localization 1.34E,05 5.83E,02 5 16 APOB,1APOC2,1MSR1,1CUBN,1LRP1
lipoprotein1transport 1.34E,05 5.83E,02 5 16 APOB,1APOC2,1MSR1,1CUBN,1LRP1

regulation1of1cardiac1muscle1
contraction

1.36E,05 5.91E,02 9 70 FXYD1,1PRKACA,1ATP1A2,1GJA5,1JUP,1KCNJ2,1DSC2,1DSG2,1
DSP

GO:1Cellular1Component intercalated1disc 2.90E,06 1.53E,03 9 59 ACTN1,1ATP1A2,1CXADR,1GJA5,1JUP,1KCNJ2,1DSC2,1DSG2,1DSP
cell,cell1contact1zone 1.56E,05 8.21E,03 9 72 ACTN1,1ATP1A2,1CXADR,1GJA5,1JUP,1KCNJ2,1DSC2,1DSG2,1DSP

desmosome 1.61E,04 8.49E,02 5 26 JUP,1DSC2,1DSG2,1DSP,1PKP3

GO:1Molecular1Function protein1binding1involved1in1
heterotypic1cell,cell1adhesion

8.62E,07 7.88E,04 5 10 CXADR,1JUP,1DSC2,1DSG2,1DSP

protein1binding1involved1in1cell1
adhesion

1.15E,06 1.05E,03 6 18 CXADR,1ITGA2,1JUP,1DSC2,1DSG2,1DSP

protein1binding1involved1in1cell,cell1
adhesion

2.62E,06 2.39E,03 5 12 CXADR,1JUP,1DSC2,1DSG2,1DSP

cell1adhesive1protein1binding1
involved1in1bundle1of1His1cell,

Purkinje1myocyte1communication
2.64E,06 2.41E,03 4 6 JUP,1DSC2,1DSG2,1DSP

Human1Phenotype Dilated1cardiomyopathy 4.35E,05 3.89E,02 9 87 ACAD9,1CRYAB,1UBR1,1JUP,1DSG2,1DSP,1LAMA4,1CSRP3,1LDB3
Right1ventricular1cardiomyopathy 8.82E,05 7.90E,02 4 13 JUP,1DSC2,1DSG2,1DSP

Mouse1Phenotype increased1circulating1triglyceride1
level

1.27E,05 4.77E,02 16 179 ALPI,1COL1A1,1VLDLR,1AGPAT2,1WRN,1APOB,1APOC2,1TXNIP,1
RSBN1,1CSF2,1PRKACA,1BGLAP,1MED13,1LEPR,1LIPC,1LRP1

Pathway Non,integrin1membrane,ECM1
interactions

3.41E,05 4.72E,02 7 46 ACTN1,1SDC2,1SDC4,1ITGA2,1LAMA3,1LAMA4,1LAMB3

Syndecan,2,mediated1signaling1
events

4.44E,05 6.14E,02 6 33 SDC2,1CSF2,1PRKACA,1ITGA2,1NF1,1LAMA3
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Nucleus Accumbens 315	

 Using NAc acute ethanol expression data for edge-weights yielded 3,460 significant 316	

modules containing a total of 4,213 genes, 15 of which were ALSPAC-nominal and 16 of which 317	

were IASPSAD-nominal.  After merging by content similarity, there were 171 significant mega-318	

modules. Nineteen MM contained at least one ALSPAC-nominal gene, and 73 MM contained at 319	

least one IASPSAD-nominal gene. However, MM Sn did not significantly predict MM mean 320	

ALSPAC GWAS gene-wise p-value (β=0.003, p=0.390). Two MMs, Cadetblue2 and Gray26, 321	

each contained two ALSPAC-nominal genes (Table 1). Because there were 2 tests for 322	

overrepresentation, p<0.025 (α=0.05/2) was considered significant. Gray26, was significantly 323	

overrepresented with ALSPAC-nominal genes, and Cadetblue2 showed a trend towards 324	

overrepresentation with significance before correcting for multiple testing (Table 1).  325	

Gray26’s most central hub gene was HNRNPU (heterogeneous nuclear ribonucleoprotein 326	

U; connectivity=6, Eigen-centrality=1), followed by RBM39 (RNA binding motif protein 39; 327	

k=3, EC=0.46) and CSNK1A1 (k=3, EC=0.37). The two ALSPAC-nominal genes BCAS2 (breast 328	

carcinoma amplified sequence 2) and PCDH7 (protocadherin 7), shared their only edges with 329	

RBM39 and HNRPNPU, respectively (Fig 4a). As seen in the PFC’s Aliceblue, EAVL1 was a 330	

hub gene of Cadetblue2. ELAVL1 (k=136, EC=1) was connected to both of the ALSPAC-331	

nominal genes, and served as the only connection for CPM and one of two connections for 332	

MGST3 (microsomal glutathione S-transferase 3) (Fig 4b). Strikingly, PFC Aliceblue and NAc 333	

Cadetblue 2 showed a highly significant overlap in their gene content, with 72 overlapping genes 334	

(Table S2; p=2.2 x 10-16). 335	

 336	
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19	

Fig 4. Nucleus Accumbens Mega Modules Gray26 and Cadetblue2. Nucleus Accumbens 337	

Mega Modules Gray26 (a) and Cadetblue2 (b).  Solid black arrows point to ALSPAC GWAS 338	

nominal genes. These modules did not contain IASPSAD nominal genes. Edge-width represents 339	

strength of correlation of expression changes between treatment and control mice, and node color 340	

represents IASPSAD GWAS p-values.  341	

 342	

 Both Cadetblue2 and Gray26 were significantly enriched with several functional 343	

categories (Table S3). Like PFC Cadetblue, NAc Cadetblue2 was functionally enriched for gene 344	

groups related to nuclear function with transcription regulation pathways, particularly those 345	

involving RNA polymerase activity. Gray26 was most significantly enriched with genes related 346	

to functions involving: telomere maintenance, organelle organization, ribonucleoprotein 347	

complexes, and syndecan-mediated signaling (Tables 3a-b; Table S3).  348	
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Table 3. Top Gene Ontology Enrichment Results for Nucleus Accumbens Mega Modules 349	

Cadetblue2 and Gray26. 350	

a) 351	

  352	

Category Name p,value
q,value1

Bonferroni
Hit1Count1in1
Query1List

Hit1Count1in1
Genome Hit1in1Query1List

GO:1Biological1Process
negative1regulation1of1transcription1
from1RNA1polymerase1II1promoter 9.38E,06 2.93E,02 23 810

TGIF2,1ZBTB20,1SREBF2,1E2F7,1FOXL2,1NFIB,1NFIC,1NFIX,1
MITF,1MNT,1TBX2,1MLX,1YBX3,1TFAP2C,1MXD4,1E2F8,1
ZBTB14,1MLXIPL,1UHRF1,1TNF,1ELK4,11PAX3,1LEF1

GO:1Molecular1Function
RNA1polymerase1II1transcription1
factor1activity,1sequence,specific1

DNA1binding
1.80E,09 1.20E,06 27 678

ZBTB20,1SREBF2,1GATA4,1E2F7,1CSRNP1,1FOXL2,1NFIB,1
NFIC,1NFIX,1MITF,11NFYA,1MNT,1HAND2,1TBX2,1TFEB,1
TEAD2,1MLX,1YBX3,1FOXJ3,1TFAP2C,11E2F8,1MLXIPL,1
KLF13,1ELF2,1ELK4,1PAX3,1LEF1

transcriptional1repressor1activity,1
RNA1polymerase1II1transcription1

regulatory1region1sequence,specific1
binding

3.04E,06 2.03E,03 11 182 ZBTB20,1SREBF2,1E2F7,1MITF,1MNT,1TBX2,1MLX,1YBX3,1
TFAP2C,1E2F8,11MLXIPL

transcription1factor1activity,1RNA1
polymerase1II1core1promoter1

proximal1region1sequence,specific1
binding

6.11E,06 4.08E,03 15 365
ZBTB20,1SREBF2,1FOXL2,1NFIB,1NFIC,1MITF,1NFYA,1
HAND2,1TBX2,1TFEB,11TFAP2C,1E2F8,1MLXIPL,1KLF13,1
LEF1

RNA1polymerase1II1regulatory1
region1sequence,specific1DNA1

binding
8.95E,06 5.98E,03 20 632

SREBF2,1GATA4,1E2F7,1FOXL2,1NFIB,1NFIC,1NFIX,1MITF,1
NFYA,1MNT,11HAND2,1TBX2,1TFEB,1MLX,1YBX3,1TFAP2C,1
E2F8,1MLXIPL,1KLF13,1LEF1

transcription1regulatory1region1DNA1
binding 9.52E,06 6.36E,03 24 862

SREBF2,1GATA4,1E2F7,1FOXL2,1NFIB,1NFIC,1NFIX,1MITF,1
NFYA,1MNT,11HAND2,1TBX2,1TFEB,1MLX,1YBX3,1TFAP2C,1
E2F8,1ZBTB14,1MLXIPL,1KLF13,1UHRF1,1TNF,1ELK4,1LEF1

regulatory1region1DNA1binding 1.01E,05 6.74E,03 24 865
SREBF2,1GATA4,1E2F7,1FOXL2,1NFIB,1NFIC,1NFIX,1MITF,1
NFYA,1MNT,11HAND2,1TBX2,1TFEB,1MLX,1YBX3,1TFAP2C,1
E2F8,1ZBTB14,1MLXIPL,1KLF13,1UHRF1,1TNF,1ELK4,1LEF1

RNA1polymerase1II1regulatory1
region1DNA1binding 1.03E,05 6.87E,03 20 638

SREBF2,1GATA4,1E2F7,1FOXL2,1NFIB,1NFIC,1NFIX,1MITF,1
NFYA,1MNT,11HAND2,1TBX2,1TFEB,1MLX,1YBX3,1TFAP2C,1
E2F8,1MLXIPL,1KLF13,1LEF1

regulatory1region1nucleic1acid1
binding 1.07E,05 7.14E,03 24 868

SREBF2,1GATA4,1E2F7,1FOXL2,1NFIB,1NFIC,1NFIX,1MITF,1
NFYA,1MNT,11HAND2,1TBX2,1TFEB,1MLX,1YBX3,1TFAP2C,1
E2F8,1ZBTB14,1MLXIPL,1KLF13,1UHRF1,1TNF,1ELK4,1LEF1

transcription1regulatory1region1
sequence,specific1DNA1binding 1.32E,05 8.82E,03 21 705

SREBF2,1GATA4,1E2F7,1FOXL2,1NFIB,1NFIC,1NFIX,1MITF,1
NFYA,1MNT,11HAND2,1TBX2,1TFEB,1MLX,1YBX3,1TFAP2C,1
E2F8,1MLXIPL,1KLF13,1UHRF1,1LEF1

sequence,specific1double,stranded1
DNA1binding 2.50E,05 1.67E,02 21 736

SREBF2,1GATA4,1E2F7,1FOXL2,1NFIB,1NFIC,1NFIX,1MITF,1
NFYA,1MNT,11HAND2,1TBX2,1TFEB,1MLX,1YBX3,1TFAP2C,1
E2F8,1MLXIPL,1KLF13,1UHRF1,1LEF1

core1promoter1proximal1region1
sequence,specific1DNA1binding

7.08E,05 4.73E,02 14 399 SREBF2,1GATA4,1FOXL2,1NFIB,1NFIC,1MITF,1NFYA,1TBX2,1
TFEB,1E2F8,11MLXIPL,1KLF13,1UHRF1,1LEF1

core1promoter1proximal1region1DNA1
binding

7.47E,05 4.99E,02 14 401 SREBF2,1GATA4,1FOXL2,1NFIB,1NFIC,1MITF,1NFYA,1TBX2,1
TFEB,1E2F8,11MLXIPL,1KLF13,1UHRF1,1LEF1

transcriptional1activator1activity,1
RNA1polymerase1II1transcription1

regulatory1region1sequence,specific1
binding

9.15E,05 6.11E,02 13 358 GATA4,1CSRNP1,1FOXL2,1NFIB,1NFIC,1NFIX,1MITF,1NFYA,1
HAND2,1TFEB,11TFAP2C,1KLF13,1LEF1

double,stranded1DNA1binding 1.25E,04 8.37E,02 21 824
SREBF2,1GATA4,1E2F7,1FOXL2,1NFIB,1NFIC,1NFIX,1MITF,1
NFYA,1MNT,11HAND2,1TBX2,1TFEB,1MLX,1YBX3,1TFAP2C,1
E2F8,1MLXIPL,1KLF13,1UHRF1,1LEF1

Human1Phenotype Synophrys 3.61E,05 2.06E,02 5 48 ZBTB20,1NFIX,1MITF,1KLF13,1PAX3
Mouse1Phenotype absent1coat1pigmentation 2.38E,05 6.28E,02 4 15 MITF,1TFEB,1TFEC,1PAX3
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b) 353	

 354	

Functional enrichment results from ToppFun for Nucleus Accumbens Mega Modules Cadetblue2 355	

(a) and Gray26 (b), where Bonferroni-corrected p<0.1.  356	

  357	

Ventral Tegmental Area 358	

 Use of VTA control/ethanol gene expression responses for edge weighting initially 359	

resulted in 3,519 significant modules containing a total of 4,188 genes in EW-dmGWAS 360	

analysis. Merging by content similarity, resulted in 276 MMs, each with a significant MM Sn. 361	

Seventeen ALSPAC-nominal genes and 19 IASPSAD-nominal genes were spread across 25 and 362	

156 mega-modules, respectively. Furthermore, MM-Sn significantly predicted mean ALSPAC 363	

GWAS gene-wise p-value (β=-0.02, p=0.003).	 364	

Mega-modules with the highest representation of ALSPAC-nominal genes included Coral, 365	

Limegreen, and Bisque (Table 1). Because there were 3 tests for overrepresentation, p<0.017 366	

(α=0.05/3) was considered significant. Although overrepresentation of ALSPAC-nominal genes 367	

was not significant in Coral and Limegreen, it was significant in Bisque, which has the highest 368	

MM-Sn of the three (Table 1; Fig 5). Bisque contained four highly interconnected genes: USP21 369	

(ubiquitin specific peptidase 21; k=10, EC=1), USP15 (ubiquitin specific peptidase 15; k=10, 370	

EC=0.65), TRIM25 (tripartite motif-containing 25; k=10, EC=0.49), and HECW2 (HECT, C2 371	

and WW domain containing E3 ubiquitin protein ligase 2; k=12, EC=0.48). HECW2 and 372	

Category Name p,value
q,value1

Bonferroni
Hit1Count1in1
Query1List

Hit1Count1in1
Genome Hit1in1Query1List

GO:1Biological1Process negative1regulation1of1telomere1maintenance1via1
telomerase

2.46E,05 2.92E,02 2 12 HNRNPU,1PML

negative1regulation1of1organelle1organization 4.65E,05 5.52E,02 4 340 PRKCD,1FGFR2,1HNRNPU,1PML
negative1regulation1of1telomere1maintenance1via1

telomere1lengthening
5.06E,05 6.00E,02 2 17 HNRNPU,1PML

GO:1Cellular1Component ribonucleoprotein1complex 8.99E,04 8.99E,02 4 751 CSNK1A1,1RPS18,1BCAS2,1HNRNPU
intracellular1ribonucleoprotein1complex 8.99E,04 8.99E,02 4 751 CSNK1A1,1RPS18,1BCAS2,1HNRNPU

Pathway Syndecan,4,mediated1signaling1events 2.67E,04 7.44E,02 2 31 PRKCD,1ITGA5
Syndecan,2,mediated1signaling1events 3.03E,04 8.44E,02 2 33 PRKCD,1ITGA5
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TRIM25 shared edges with this MM’s IASPSAD-nominal genes PRKG1 (protein kinase, cGMP-373	

dependent, type I) and ACLY (ATP citrate lyase), respectively. However, none of the hub genes 374	

shared an edge with Bisque’s ALSPAC nominal gene, AKT2 (AKT serine/threonine kinase 2). 375	

Finally, Bisque had significant enrichment in several functional categories (Table S3). It was 376	

most significantly enriched with genes associated with ubiquitination, ligase and helicase 377	

activity, and eukaryotic translation elongation (Table 4; Table S3). 378	

 379	

Table 4. Top Gene Ontology Enrichment Results for Ventral Tegmental Area Mega 380	

Module Bisque. 381	

 382	

Category Name p,value
q,value1

Bonferroni
Hit1Count1in1
Query1List

Hit1Count1in1
Genome Hit1in1Query1List

GO:1Cellular1Component nucleolus 6.41E,07 1.24E,04 17 894
ZNF106,1NEK2,1EEF1D,1RPL36,1PNKP,1SELENBP1,1
ZNF655,1RPS9,1WRN,1GATA3,1ZFHX3,1RORC,1DGCR8,11
TTC3,1ARNTL2,1NEK11,1RPL18

eukaryotic1translation1elongation1
factor111complex

1.27E,04 2.47E,02 2 4 EEF1D,1EEF1A2

GO:1Molecular1Function ubiquitin,protein1transferase1
activity

4.98E,07 1.33E,04 12 414 RC3H2,1TRAF4,1UBE2K,1TRIM2,1TRIM25,1TRIM9,1
HECW2,1TRIM8,1UBE2S,1RNF114,1TTC3,1TRIM37

ubiquitin,like1protein1transferase1
activity

9.70E,07 2.59E,04 12 441 RC3H2,1TRAF4,1UBE2K,1TRIM2,1TRIM25,1TRIM9,1
HECW2,1TRIM8,1UBE2S,1RNF114,1TTC3,1TRIM37

acid,amino1acid1ligase1activity 3.42E,06 9.12E,04 9 259 RC3H2,1TRIM2,1TRIM25,1TRIM9,1HECW2,1TRIM8,11
RNF114,1TTC3,1TRIM37

ligase1activity,1forming1carbon,
nitrogen1bonds

9.78E,06 2.61E,03 9 295 RC3H2,1TRIM2,1TRIM25,1TRIM9,1HECW2,1TRIM8,11
RNF114,1TTC3,1TRIM37

tubulin,glycine1ligase1activity 1.87E,05 5.00E,03 8 244 RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

protein,glycine1ligase1activity 1.87E,05 5.00E,03 8 244 RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

protein,glycine1ligase1activity,1
initiating

1.87E,05 5.00E,03 8 244 RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

coenzyme1F420,01gamma,glutamyl1
ligase1activity

1.87E,05 5.00E,03 8 244 RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

ribosomal1S6,glutamic1acid1ligase1
activity

1.87E,05 5.00E,03 8 244 RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

coenzyme1F420,21alpha,glutamyl1
ligase1activity

1.87E,05 5.00E,03 8 244 RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

UDP,N,acetylmuramoylalanyl,D,
glutamyl,2,6,diaminopimelate,D,
alanyl,D,alanine1ligase1activity

1.87E,05 5.00E,03 8 244
RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

protein,glycine1ligase1activity,1
elongating

1.87E,05 5.00E,03 8 244 RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

tubulin,glutamic1acid1ligase1
activity

2.05E,05 5.46E,03 8 247 RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

protein,glutamic1acid1ligase1
activity

2.17E,05 5.79E,03 8 249 RC3H2,1TRIM2,1TRIM9,1HECW2,1TRIM8,1RNF114,1
TTC3,11TRIM37

ligase1activity 2.38E,05 6.35E,03 10 415 LIG3,1RC3H2,1TRIM2,1TRIM25,1TRIM9,1HECW2,1TRIM8,11
RNF114,1TTC3,1TRIM37

DNA1helicase1activity 2.43E,04 6.49E,02 4 65 ERCC2,1GTF2H4,1RAD54B,1WRN
Pathway Eukaryotic1Translation1Elongation 1.67E,04 8.37E,02 5 98 EEF1D,1RPL36,1RPS9,1EEF1A2,1RPL18
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Functional	enrichment	results	from	ToppFun	for	Ventral	Tegmental	Area	Mega	Module	383	

Bisque,	where	Bonferroni-corrected	p<0.1.		384	

		385	

Fig 5. Ventral Tegmental Area Mega Module Bisque. Ventral Tegmental Area Mega Modules 386	

Bisque.  Solid black arrows point to ALSPAC GWAS nominal genes, and dotted black arrows 387	

represent IASPSAD nominal genes. Edge-width represents strength of correlation of expression 388	

changes between treatment and control mice, and node color represents IASPSAD GWAS p-389	

values. 390	

	391	

Discussion	392	

To our knowledge, this is the first study to directly co-analyze human GWAS with mouse 393	

brain ethanol-responsive gene expression data to identify ethanol-related gene networks relevant 394	

to AD. Unlike previous studies that have employed cross-species validation methods for specific 395	

genes or gene sets, this study analyzed human and mouse data in tandem to identify gene 396	

networks across the entire genome, using the EW-dmGWAS algorithm. This approach 397	

successfully identified significantly ethanol-regulated and AD-associated gene networks, or 398	

modules. We further improved the existing EW-dmGWAS algorithm by merging highly 399	

redundant modules to create more parsimonious mega-modules, thus decreasing complexity 400	

without sacrificing significance. Additionally, we validated these results by testing for 401	

overrepresentation with, and mega-module score prediction by, signals from an independent 402	

GWAS dataset. Overall, our findings suggest that such direct integration of model organism 403	

expression data with human protein interaction and GWAS data can productively leverage these 404	
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data sources. Furthermore, we present evidence for novel, cross-validated gene networks 405	

warranting further study for mechanisms underlying AUD. 406	

Identification of network-level associations across GWAS datasets 407	

One major concern with existing GWAS studies on AD had been the relative lack of 408	

replication across studies. Although some very large GWAS studies on alcohol consumption 409	

have shown replicable results [13-15], those do not account for all previously identified 410	

associations. We reasoned that our integrative gene network-querying approach might identify 411	

networks that shared signals from different GWASs on AD, even if the signals were not from the 412	

same genes across GWASs. Concordant with this hypothesis, VTA mega-module scores 413	

significantly predicted average gene-wise p-values from an independent GWAS dataset, 414	

ALSPAC (Fig 2). This suggests that ethanol-regulated gene expression networks in this brain 415	

region may be particularly sensitive to genetic variance and thus are highly relevant to 416	

mechanisms contributing to risk for AD. This is possibly attributable to the involvement of VTA 417	

dopaminergic reward pathways in the development of AD [41].  418	

Although scores did not prioritize mega-modules with respect to ALSPAC results in PFC 419	

and NAc, individual mega-modules were overrepresented with ALSPAC signals (Table 1). The 420	

ALSPAC-overrepresented VTA and PFC mega-modules also contained nominally significant 421	

genes from the GWAS dataset used for the network analysis, IASPSAD. These results suggest 422	

that the integration of acute ethanol-related expression data from mice and human PPI can 423	

identify functional networks that associate signals from different GWAS datasets. 424	

Composition and structure of mega-modules  425	

Functional composition of mega-modules varied between brain regions for the most part. 426	

For example, although Aliceblue (PFC) and Cadetblue2 (NAc) shared the hub gene ELAVL1, 427	
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ALSPAC-nominal gene CPM, and had a significant overlap in their gene content, their 428	

functional enrichment results were very different (Tables 2b and 3a). These results suggest that 429	

brain regional ethanol-responsive gene expression results likely had an important impact on 430	

composition of networks, thus leveraging protein-protein interaction network information and 431	

GWAS results.   432	

Despite such differences, the mega-modules presented in Table 1 shared certain structural 433	

similarities. Most of the IAPSAD- and ALSPAC-nominal genes in these modules shared edges 434	

with hub genes (Fig 3-5). These hub genes included: CUL3 and ELAVL1 from PFC Aliceblue; 435	

ESR1 from PFC Cadetblue; ELAVL1rom NAc Cadetblue2; TRIM25 and HECW2 from VTA 436	

Bisque. Further, GWAS nominally significant genes (IASPAD or ALSPAC) generally were not 437	

hub genes in the derived networks (see Fig 3-5; Table S2). This may be consistent with the 438	

general tenet that genetic variation in complex traits does not produce major alterations in 439	

cellular function, but rather modulation of cellular mechanisms for maintaining homeostasis. 440	

Hub genes may be more functionally more closely related to a given trait, but likely have such 441	

widespread influence so as to be evolutionarily resistant to genetic variation in complex traits. 442	

This is also consistent with the hypothesis that omnigenic influences are an important feature of 443	

complex traits such as AUD [42]. 444	

One hub gene was found to influence network structure in both PFC and NAc. ELAVL1 is a 445	

broadly expressed gene that acts as a RNA-binding protein in AU-rich domains, generally 446	

localized within 3’-UTRs of mRNA. As such, ELAVL1 has been shown to alter mRNA stability 447	

by altering binding of miRNA or other factors influencing mRNA degradation [43] and has been 448	

implicated in activity-dependent regulation of gene expression in the brain with drug abuse [44]. 449	

The large interaction space for ELAVL1 in PFC Alice Blue and NAc Cadetblue 2 and the 450	
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multiple nominal GWAS hits within these genes suggest that ELAVL1 could have an important 451	

modulatory function on the network of genes susceptible to genetic variation in AUD. 452	

Functional aspects of mega-modules 453	

This theory regarding network structure is further supported by our functional enrichment 454	

analysis, which revealed several small groups of functionally related genes within each mega-455	

module. All of the mega-modules discussed above (Table 1) contained at least one GWAS-456	

nominal gene in the top enrichment groups, except Cadetblue2, which still had GWAS-nominal 457	

genes in its significant enrichment groups (Table S3). 458	

Another unifying feature across these mega-modules, except Aliceblue, was significant 459	

functional enrichment for pathways that regulate gene expression. Specifically, these pathways 460	

were related to chromatin organization, RNA splicing, and translation- and transcription-related 461	

processes (Table S3). This is not surprising, as alterations in gene expression have long been 462	

proposed as a mechanism underlying long-term neuroplasticity resulting in ethanol-dependent 463	

behavioral changes, and eventually dependence [45]. 464	

In contrast, the largest functional enrichment groups unique to Aliceblue were related to 465	

actin-based filaments and cardiac function (Table 2). Actin not only provides cytoskeletal 466	

structure to neurons, but also functions in dendritic remodeling in neuronal plasticity, which 467	

likely contributes to AD development [46, 47]. Aliceblue was also significantly enriched for the 468	

syndecan-2 signaling pathway, and contained the SDC2 gene itself, which functions in dendritic 469	

structural changes together with F-actin [48]. Additionally, the most significant enrichment 470	

group unique to Cadetblue was the Wnt signaling pathway, which also regulates actin function 471	

[49, 50]. Of note, a prior study has shown that ARRB2 (a Cadetblue hub gene and member of 472	

Wnt signaling pathway) knockout rats display significantly decreased levels of voluntary ethanol 473	
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consumption and psychomotor stimulation in response to ethanol [51]. These findings highlight 474	

the potential importance of postsynaptic actin-related signaling and dendritic plasticity in PFC 475	

gene networks responding to acute ethanol and contributing to genetic risk for AD. 476	

Finally, although the NAc Cadetblue2 mega-module was highly enriched for functions 477	

related to transcriptional regulation, it also contained the gene FGF21 within its interaction space 478	

(Table S2 and Fig 4b). FGF21 is a member of the fibroblast growth factor gene family and is a 479	

macronutrient responsive gene largely expressed in liver. Importantly FGF21 has been shown to 480	

be released from the liver by ethanol consumption and negatively regulates ethanol consumption 481	

by interaction with brain FGF-receptor/beta-Klotho complexes. Beta-Klotho, a product of the 482	

KLB gene, is an obligate partner of the FGF receptor and has recently been shown to have a 483	

highly significant association with alcohol consumption in recent very large GWAS studies [14, 484	

15]. Although the role of FGF21 and KLB in AD are not currently known, the association of 485	

FGF21 with the Cadetblue2 mega-module, containing nominally responsive genes from AD 486	

GWAS studies, is a possible additional validation of the utility of our studies integrating protein-487	

protein interaction information (tissue non-specific), AD GWAS (tissue non-specific) and brain 488	

ethanol-responsive gene expression. 489	

Potential weaknesses and future studies  490	

The studies presented here provide evidence for the utility of integrating genomic 491	

expression data with protein-protein interaction networks and GWAS data in order to gain a 492	

better understanding of the genetic architecture of complex traits, such as AD. Our analysis also 493	

generated several testable hypotheses regarding gene networks and signaling mechanisms related 494	

to ethanol action and genetic burden for AD. However, these studies utilized acute ethanol-495	

related expression data in attempting to identify mechanisms of AD, a chronic ethanol exposure 496	
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disease. Use of a chronic exposure model could provide for a more robust integration of the 497	

expression data and GWAS signals. However, we feel the current study is valid, since acute 498	

responses to ethanol have been repeatedly shown to be a heritable risk factor for AD	[52-54]. 499	

Another potential shortcoming for this work regards the limited size of the GWAS studies 500	

utilized and differences in phenotypic assessment. The IASPSAD study was based on AD 501	

diagnosis, whereas ALSPAC was based on a symptom factor score. Had we used larger GWAS 502	

studies based on the same assessment criteria, it is possible that greater overlap of GWAS signals 503	

within mega-modules would have been observed.  Recent large GWAS studies on ethanol have, 504	

to date, generally concerned measures of ethanol consumption, rather than a diagnosis of alcohol 505	

dependence per se [14, 15]. For this reason, we focused this initial effort on GWAS studies 506	

concerned with alcohol dependence. However, using the IASPAD and ALSPAC studies allowed 507	

us to identify gene networks that are robust across both the severe end of the phenotypic 508	

spectrum (i.e. diagnosable AD), and for symptoms at the sub-diagnostic level.  509	

Overall, this analysis successfully identified novel ethanol-responsive, AD-associated, 510	

functionally enriched gene expression networks in the brain that likely play a role in the 511	

developmental pathway from first ethanol exposure to AD, especially in the VTA. This is the 512	

first analysis to identify such networks by directly co-analyzing gene expression data, protein-513	

protein interaction data, and GWAS summary statistics. The identified modules provided insight 514	

into common pathways between differing signals from independent, largely underpowered, yet 515	

deeply phenotyped GWAS datasets. This supports the conjecture that the integration of different 516	

GWAS results at a gene network level, rather than simply looking for replication of individual 517	

gene signals, could make use of previously underpowered datasets and identify common genetic 518	

mechanisms relevant to AD. Future expansion of such approaches to include larger GWAS 519	
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datasets and chronic ethanol expression studies, together with validation of key targets by gene 520	

targeting in animals models, may provide both novel insight for the neurobiology of AD and the 521	

development of improved therapeutic approaches. 522	
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Supporting	information	756	

S1	Fig.	Analytical	Pipeline	of	Steps	Following	EW-dmGWAS.	Empirical	p-values	were	757	

calculated	from	standardized	module	scores	based	on	a	Z-distribution.	The	original	EW-758	

dmGWAS	module	score,	permutation,	and	score	standardization	algorithms	were	used	to	759	

calculate	the	respective	Mega	Modules	parameters.	Modules	were	considered	to	have	760	

>80%	overlap	if	>80%	of	the	genes	in	the	smaller	module	was	contained	in	the	larger	761	

module.	False	Discovery	Rates	were	calculated	based	on	the	Benjamini-Hochberg	762	

algorithm,	using	the	“stats”	package	in	R.	Intramodular	connectivity	was	defined	as	the	763	

number	of	edges	(i.e.	connections)	attached	to	that	node	(i.e.	gene).	Eigen-Centrality	was	764	

calculated	using	the	“igraph”	package	in	R.		765	

S1	Table.	Brain	Region-Specific	S-score	Values.	One	table	per	brain	region,	containing	766	

each	of	the	following	values:	RMA	values	and	S-scores	from	the	maximally	expressed	767	

probeset	per	gene,	for	each	BXD	strain;	the	associated	probeset	IDs,	human	gene	symbols,	768	

and	mouse	gene	symbols;	and	the	Fisher’s	combined	False	Discovery	Rate	(q-value)	for	769	

each	probeset.		770	

S2	Table.	Mega	Module	Characteristics.	One	table	per	brain	region,	containing	each	of	771	

the	following	characteristics,	for	all	significant	Mega	Modules:	name;	constituent	genes;	772	

ALPSAC	and	IASPSAD	p-values	for	each	gene;	Mega	Module	score	(Sn),	p-value	(Sn_p),	and	773	

False	Discovery	Rate	(Sn_qFDR);	and	intramodular		eigencentrality	and	connectivity.	774	

Significance	values	<	10-16	are	rounded	to	0.		775	

S3	Table.	Mega	Module	Gene	Ontology	Enrichment.	One	table	for	each	ALSPAC-776	

overrepresented	Mega	Module,	containing	ToppFun	output	for	gene	ontology	enrichment	777	

groups	with	p<0.01	and	minimum	group	size	of	3	genes	and	maximum	size	of	1,000	genes,	778	
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for	the	following	categories:	Biological	Process,	Cellular	Component,	Molecular	Function,	779	

Human	Phenotype,	Mouse	Phenotype,	and	Pathways.			780	
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Nucleus Accumbens Mega Module Cadet Blue 2
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Ventral Tegmental Area Mega Module Bisque
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