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 204 

Fig. 2.  Genotyping error of polyRAD, EBG, LinkImpute, and rrBLUP in a diversity panel of 205 

565 diploid Miscanthus sinensis.  The benefits of incorporating population structure into the 206 

genotyping model and using continuous rather than discrete genotypes are illustrated.  Genotypes 207 

were coded on a scale of 0 to 2 for diploids and 0 to 4 for tetraploids.  Root mean squared error 208 

(RMSE) was calculated between actual genotypes and genotypes ascertained from simulated 209 
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RAD-seq reads at 395 SNP markers (lower RMSE = higher accuracy).  To simulate tetraploid 210 

genotypes, genotypes were combined across closely-related individuals.  (A) RMSE calculated 211 

using only genotypes with more than zero reads.  Median read depth is indicated, including 212 

genotypes with zero reads.  Each point represents one SNP.  Smoothing curves are included for 213 

each genotyping method and genotype type.  (B) RMSE calculated using only genotypes with 214 

zero reads, by genotyping or imputation method and genotype type.  LinkImpute works for 215 

diploids only and therefore was not tested on the tetraploid population. 216 

  217 
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In diploid M. sinensis and tetraploid potato F1 mapping populations, polyRAD 218 

outperformed the GATK method, particularly when linked markers were used for informing the 219 

priors in polyRAD (Fig. 3A).  In diploids and tetraploids respectively using genotypes with non-220 

zero read depth, error (RMSE) was reduced by 38.2% (SE 2.4%) and 51.7% (SE 0.5%) using the 221 

polyRAD linkage model with respect to the GATK model.  For imputation, polyRAD using the 222 

linkage model performed similarly to LinkImpute and rrBLUP (Fig. 3B).  Although only F1 223 

populations are presented here, many other population types are supported in polyRAD. 224 

  225 
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 226 

Fig. 3.  Genotyping error of polyRAD, EBG, LinkImpute, and rrBLUP in F1 mapping 227 

populations of diploid Miscanthus sinensis and tetraploid potato.  The benefits of incorporating 228 

population design and linkage into the genotyping model, as well as using continuous rather than 229 

discrete genotypes, are illustrated.  Genotypes were coded on a scale of 0 to 2 for diploids and 0 230 

to 4 for tetraploids.  Root mean squared error (RMSE) was calculated between actual genotypes 231 
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and genotypes ascertained from simulated RAD-seq reads (lower RMSE = higher accuracy).  232 

The diploid population included 241 markers across 83 individuals, and the tetraploid population 233 

included 2538 markers across 238 individuals. (A) RMSE calculated using only genotypes with 234 

more than zero reads.  Median read depth is indicated, including genotypes with zero reads.  235 

Each point represents one SNP.  Smoothing curves are included for each genotyping method and 236 

genotype type.  (B) RMSE calculated using only genotypes with zero reads, by genotyping or 237 

imputation method and genotype type.  Discrete genotypes from the polyRAD model without 238 

linkage were not available in the diploid population for genotypes with zero reads because most 239 

markers had even priors across two genotypes.  LinkImpute works for diploids only and 240 

therefore was not tested on the tetraploid population. 241 

  242 
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Genotyping error was also reduced 10-15% in most cases by exporting genotypes as 243 

continuous numerical variables (weighted mean genotypes), rather than discrete values (Figs. 2 244 

and 3).  For example, in a diploid, a true heterozygote (numeric value of 1) with reads only for 245 

the reference allele might erroneously be called as zero (homozygous for the reference allele) if 246 

only the most probable genotype is exported.  However, the genotype could be called 0.4 if 247 

continuous genotypes are allowed, indicating that there is a 60% chance of it being a 248 

homozygote and 40% chance of it being a heterozygote, and thereby reducing the error from 1.0 249 

to 0.6.  Similarly in polyploids, continuous numerical genotypes can correct for errors in allele 250 

copy number estimation of heterozygotes. 251 

Downstream applications and implications for sequencing strategies 252 

The genotyping methods implemented in polyRAD will have the most benefit for marker 253 

analysis where 1) the accuracy of individual genotypes is important, and 2) genotypes can be 254 

treated as continuous rather than discrete variables. Analyses that seek to quantify marker-trait 255 

associations in a population of individuals, such as genome-wide association studies, quantitative 256 

trait locus mapping, and genomic prediction methods involving variable selection, could 257 

especially benefit.  By reducing genotyping error, polyRAD will increase the power of these 258 

methods to detect true associations.  Analyses that will benefit less from polyRAD genotyping 259 

are those where an average is taken across many genotypes in order to estimate a statistic, such 260 

as allele frequencies in a population or overall relatedness of individuals (including kinship-261 

based methods of genomic prediction), because genotyping errors generally are not biased 262 

towards one allele or the other and tend to balance out over many individuals and loci (Buerkle 263 

and Gompert 2013; Dodds et al. 2015). 264 
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The advantages of polyRAD for accurate genotyping at low sequence read depth alter the 265 

economics of sequence-based genotyping, enabling researchers to purchase fewer sequencing 266 

lanes, multiplex more samples per lane, and/or retain more markers during filtering.  In 267 

particular, for protocols using restriction enzymes where read depth varies considerably from 268 

locus to locus depending on fragment size (Beissinger et al. 2013; Davey et al. 2013; Andrews et 269 

al. 2016), there are diminishing returns on increasing the per-sample read depth, because some 270 

loci receive far more reads than are needed for accurate genotyping while other loci remain poor 271 

quality.  Using population structure and linkage between loci, polyRAD uses information from 272 

high-depth markers to improve genotyping accuracy of low-depth markers, helping to maximize 273 

the useful information that is obtained from sequencing data.  This advance is expected to 274 

improve breeding efficiency and economics. 275 
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