


Figure 3: Calibration cytof test data. The plots present the cumulative distributions for each of the first three
markers. Top: before calibration. Bottom: after calibration.

Figure 4: Differences between pairwise correlation coefficients of CyTOF test data before and after calibration.
The differences are much smaller after calibration, implying that the correlation structure of the two batches is
significantly more similar than before calibration.

that it is reported in [17] that the MMD between the source and target batches, when training a MMD-ResNet on
patient 1 was 0.27. Here the corresponding value is 0.26, despite the fact that our system was not trained on this
patient, but rather on patient 2, while the data of patient 1 was used merely for testing.

Finally, to investigate further the preservation of biological structures on the test data, we take a similar
approach to [17] and visually inspect the quality of the calibration on the sub-population of Killer T-cells in the

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/380816doi: bioRxiv preprint 



data before calibration after calibration
Train .19±.001 .17±.001
Test .26±.01 .19±.01

Table 1: MMD between the two batches before and after calibration.

Figure 5: Calibration of CyTOF test data: Killer T-cells in the 2D subspace of the markers CD28 and GzB.

2D subspace of the markers CD28 and GzB, which is shown in Figure 5. As can be seen, the distributions of the
Killer T-cells sub-population in the two batches are much closer after calibration.

To conclude the CyTOF experiments, we investigated the reconstruction errors and calibration differences
through various points of view. In addition to performing high quality calibration on the train data, we also
observed similar performance on test data, i.e., on a second patient, having unique biological conditions, whose
data was not used during training.

4.2 scRNA-seq
Drop-seq [14] is a novel technique for simultaneous measurement of single-cell mRNA expression levels of
all genes of numerous individual cells. As a single run of drop-seq typically does not contain enough cells to
perform an analysis, multiple runs need to be conducted, a process that might introduce batch effects into the
measurements.

In this section we experiment with the publicly available scRNA-seq data described in [17], where a dataset
with 13,166 genes is normalized and projected onto the subspace of leading 37 principal components. Altogether,
the data contains 27,499 cells in two batches. For a more detailed description of the data we refer the reader to
section 4.3 in [17].

Figure 6 shows a T-SNE embedding of data before and after removing the batch effects. As can be seen, our
system seems to correctly calibrate the data and align is different sub-populations.
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Figure 6: Calibration of scRNA-seq data.

4.3 Technical details
All reported results were obtained where E,DA, DB ,Disc all had a basic Multi Layer Perceptron (MLP) archi-
tecture, having two hidden layers, each of 20 leaky ReLU units. The code space dimension was 15 in the CyTOF
experiments and 20 for the scRNA-seq experiments. We used Adam optimizer with learning rate of 10−3 and
batch size of 64. Z-transform was applied to all data prior to training. Our publicly available code and data
reproduce all reported results.

5 Conclusion
We proposed a deep learning-based approach for batch effect removal. Our approach is based on utilizing ad-
versarial loss in order to obtain a encoding of the data which correspond solely to the intrinsic biological state
of a subject, along with requiring good reconstruction of the data, which implies that no significant biological
information is lost during the calibration process. We demonstrated the performance of our proposed approach
on two novel high throughput technologies, CyTOF and scRNA-seq. Moreover, we also demonstrated that our
approach can achieve good performance on test data obtained from subjects who are different from the subjects
whose data used for training.
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