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Abstract 

 

Despite recent advances in targeted drugs and immunotherapy, cancer remains “the 

emperor of all maladies” due to inevitable emergence of resistance. Drug resistance is thought to 

be driven by mutations and/or dynamic plasticity that deregulate pathway activities and 

regulatory programs of a highly heterogeneous tumour. In this study, we propose a modelling 

framework to simulate population dynamics of heterogeneous tumour cells with reversible drug 

resistance. Drug sensitivity of a tumour cell is determined by its internal states, which are 

demarcated by coordinated activities of multiple interconnected oncogenic pathways. Transitions 

between cellular states depend on the effects of targeted drugs and regulatory relations between 

the pathways. Under this framework, we build a simple model to capture drug resistance 

characteristics of BRAF-mutant melanoma, where two cell states are described by two mutually 

inhibitory – main and alternative – pathways. We assume that cells with an activated main 

pathway are proliferative yet sensitive to the BRAF inhibitor, and cells with an activated 

alternative pathway are quiescent but resistant to the drug. We describe a dynamical process of 

tumour growth under various drug regimens using the explicit solution of mean-field equations. 

Based on these solutions, we compare efficacy of three treatment strategies: static treatments 

with continuous and constant dosages, periodic treatments with regular intermittent phases and 

drug holidays, and treatments derived from optimal control theory (OCT). Based on these 

analysis, periodic treatments outperform static treatments with a considerable margin, while 

treatments based on OCT outperform the best periodic treatment. Our results provide insights 

regarding optimal cancer treatment modalities for heterogeneous tumours, and may guide the 

development of optimal therapeutic strategies to circumvent drug resistance and due to tumour 

plasticity. 

Keywords: tumour management, targeted treatments, drug resistance, state transitions, pathway 

regulation, oncogenic states  
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Introduction 

 

 Despite the recent advances of targeted treatments and immunotherapy, complete cure of 

cancer is still rare due to the almost inevitable emergence of resistance [1,2]. Drug resistance 

arises from a wide range of complex processes at multiple levels [3–5]. At the tumour level, drug 

response emerges primarily from population dynamics of cancer cells. The most well-known 

mechanism is clonal evolution [6,7]. A bulk tumour is often populated by a heterogeneous group 

of cancer cells with diverse mutational landscapes, epigenomic states, pathway activities and 

gene regulatory programs. Treatments induce differential fitness of subclones and consequently 

select for the most resistant ones. In addition to clonal evolution, treatments may also induce 

differential plasticity of tumour cells by shifting their pathway activities [8] and regulatory 

programs [9]. The major difference between these two processes pertains to reversibility of drug 

resistance. For clonal evolution, drug sensitivity of an individual cell is determined solely by its 

genetic landscape and thus remains invariant during its life span. Drug resistance of a subclone is 

thus an irreversible phenotype as a resistant subclone will rarely back-mutate to a sensitive one. 

For differential plasticity, drug sensitivity of an individual cell is a reversible dynamic state 

rather than a fixed phenotype. Both mechanisms are supported by numerous experimental 

evidence (e.g., for clonal evolution, [10]; for differential plasticity of tumour cells [8,11–14]). 

However, the latter process may account for drug resistance that can be reverted when the 

therapy is lifted [15,16]. 

 

 There is a rich literature of mathematical models for tumour clonal evolution that 

undergoes treatments (e.g., [17–23]). In contrast, models of cellular plastic responses to 

treatments are relatively limited and recent (e.g., [24–26], see also reviews [27–29]). The 

ultimate purpose of those models is to quantitatively predict tumour’s drug responses and 

employ this information to design effective treatments. Previously, we proposed a unified 

framework encompassing both mathematical models of tumour population dynamics and 

treatment design [30]. We considered a simple evolution model involved in subclones with 

differential resistance of two drugs, and tested efficacy of six heuristic treatment strategies by 

simulating population dynamics with a large number of parameter combinations informed by 

literature and clinical experience. We further extended the work by three drug systems and 
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generalizing treatment strategies that incorporate long-term prediction of tumour population 

composition [31]. 

 

An important missing piece in this unified framework is a mathematical model that 

tackles reversible drug responses of cancer cells. To fill this gap, here we propose a model to 

explore the population dynamics of cancer cells during or after treatment with targeted agents 

that produce reversible effects. The state of each cell is inferred from the activities of multiple 

inter-dependent pathways, whereas the fitness of each cell depends on its internal state and the 

external environment (i.e. drug dosage). Treatments alter the cellular state composition of the 

population by both facilitating the single-cell state transitions in certain directions and inhibiting 

proliferation of subpopulations with different efficiencies. To capture the essence of the 

considered phenomenon, we consider only a simple scenario in which there are two major 

populations with mutually antagonistic signalling pathways. The main pathway promotes cell 

proliferation more efficiently but is also sensitive to a therapeutic agent. The alternative pathway 

induces slow proliferation but is also resistant to the agent. Due to reversibility of the states, the 

treatment strategy aims to balance between controlling the tumour load and reducing the 

influence of resistant cells. 

 

Despite its simplicity, this model represents reasonably well the switching behaviour of 

BRAFV600E mutant melanomas treated with BRAF inhibitor (vemurafenib) as previously reported 

[32,33]. Melanoma is a frequently lethal form of skin cancer with incidence rates continuing to 

rise in many countries [34]. Approximately half of cases harbour a BRAFV600 mutation [35]. The 

resulting mutation leads to constitutive activation of a down-stream cascade of the mitogen 

activated protein (MAPK) pathway including MEK and ERK that promote proliferation of 

cancer cells. Treatment with single-agent BRAF inhibitor disrupts MAPK signalling and 

achieves remission but leads to relapse in 6.7 months on average [32]. As of 2014, the standard 

of care for BRAFV600 mutant melanoma is the combination of inhibitors of BRAF and MEK 

[36,37]. Still, resistance emerges through numerous genetic mechanisms [38–41] or phenotypic 

changes, such as switching from the suppressed MITF pathway to an alternative pathway 

involving activation of NFκB [13,14,42,43]. The latter process of switching between two major 

oncogenic programs is accompanied by physiological changes in cancer cells [44]. 
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 These characteristics allow us to abstract the problem and formulate a minimal dynamical 

model that involves interactions of two distinct pathways. We derive the master equations for the 

dynamics of tumour population size and state composition and find their analytic solutions with 

arbitrary drug regimens. Based on these solutions, we compare the performance of three 

treatment strategies on simulated data: i) static treatments with continuous and constant dosages, 

ii) periodic treatments with regular intermittent treatment days and drug holidays, and iii) the 

treatments that minimize the tumour size change after fixed time periods. 

 

 

Model and methods 

 

1. Assumptions and concepts 

 

We consider a general and abstract case where cancer cells are self-replicating entities 

possessing different internal states with different proliferative capacities, distinct sensitivities to 

treatments, and consequently, the size and composition of the entire tumour population. From 

this more general case, we study a particular instance in detail as outlined below. The following 

simplifying assumptions are introduced: 

i. The mutational landscape of tumour cells does not acquire major driver events 

(“hallmarks of cancer” [45]) or new resistance mutations during the course of 

therapy. In fact this may not be the case and integration of models of genetic 

evolution of resistance and cellular plasticity is an important future step.  

ii. The dominant subclone of tumour cells, which is the focus here, by default 

possesses elevated activities of the “main” pathway that render it highly 

proliferative.  

iii. Proliferation can also be sustained by an “alternative” pathway with lower 

efficiency. The two pathways are mutually inhibitory, thus without external 

intervention the tumour population is dominated by cells with an active main 

pathway over those with an active alternative pathway.  
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iv. A targeted agent or targeted combination inhibits proliferation of cells with an 

active main pathway and concomitantly facilitates activity transitions from the 

main to the alternative pathway.  

Fig 1A illustrates the conceptual framework of the model. This may be seen as an archetypical 

bistable state model that may cover a particular class of internal “wirings” of a cell. 

 

Activities of the two pathways demarcate three cellular states (Fig 1BC): active main 

pathway and inactive alternative pathway (state “1”), inactive main pathway and active 

alternative pathway (state “2”), and inactive main and alternative pathways (state “0”). 

Simultaneous activation of both pathways is not allowed since they are mutually inhibitory. 0 is a 

transient state between 1 and 2.  

 

Each single cell can encounter three stochastic events: proliferation, death, and state 

transition (1 0 2→ →  or 2 0 1→ → ). The population dynamics of the birth-death process can be 

well approximated by ordinary differential equations. To determine the population dynamics of 

cellular states, we adopt a well-known approach from statistical physics by treating cells as 

particles undergoing Brownian motions inside a double-well potential [46]. In this model, each 

pathway possesses a double-well potential. The two equilibria of the system (the two local 

minima of the potential) represent up and down regulation of the two pathway activities (Fig 1D). 

Probabilities of staying in each state (and thereby the fraction of cells in each state) are 

determined by the “energy gap” between two local minima. Without external intervention, lower 

wells (more likely states) of the main pathway correspond to up-regulation of the main pathway 

and down-regulation of the alternative pathway. 

 

The drug inhibits both activity of the main pathway and proliferation of main pathway-

active cells, but has no effect on the alternative pathway. Mathematically it lifts the well of the 

up regulation state and lowers the well of the down regulation state of the main pathway 

potential function, and does not change the shape of the alternative pathway potential function. 

The extent of potential function change depends on administered dosage and consequently shifts 

the cellular state composition. We describe a magnitude of a relative shift by a variable σ that is 

constrained between zero and one. It decodes the treatment intensity with two extremalities: 
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  0σ =  for no treatment, and  1 σ =  for a maximally tolerated dosage (MTD) administered. The 

latter shuts down the main pathway and turns on the alternative pathway, and thus drives drug 

resistance emergence. 

 

This setting makes the disease incurable by continuous administration of a single 

therapeutic agent since the tumour inevitably relapses [47]. However, the patient's life span can 

be significantly improved with proper arrangements of treatment dosage and schedule even of 

this single agent. We aim to minimize the tumour size after a fixed period of time. To fulfil this 

goal, an effective strategy should maintain a subtle balance of proliferative but sensitive cells vs. 

quiescent but resistant cells, such that the tumour is responsive to the drug but also has a limited 

growth rate. We compare the outcomes of three treatment strategies: a benchmark strategy of 

static treatment with a continuous and constant dosage, a heuristic strategy of periodic treatment 

with regular intermittent treatment days and drug holidays, and an analytic strategy derived from 

optimal control theory. 

 

2. Dynamic equations. 

 

Population dynamics of cells follows a linear differential equation:  

 

 ,
d ( ) (1 ( ))

1 ( ) ( )
d 1E

n t x t
b cx t d n t

t eκ
χ

Δ

⎛ ⎞−⎛ ⎞= − − −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
  (1) 

 

where ( )n t  denotes the total population size at time t, x(t) is the fraction of resistant cells (at state 

2), b and d denote constant birth and death rates respectively. The fitness is penalized by two 

costs: the cost of resistance c, and the cost of inactivation of the main pathway χ. The latter is 

factored by the proportion of sensitive cells ( ( )1 x t− ), multiplied by the fraction of them with 

currently inactivated main pathway ( ( ) 1
Δ 1k Ee

−
+ , where ΔE  is the difference in depths of 

potential wells of the main pathway).  
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The complementary differential equation for the fraction of resistant cells ( )x t  is written 

by using the flow diagram in Fig 1D: 

 

 
d ( ) (1 ( ))

( )(1 ( )) ( ).
d 1 1E E

x t x t
b c x t x t x t

t e eκ κ
χ μ μΔ Δ

−⎛ ⎞= − − + −⎜ ⎟+ +⎝ ⎠
  (2) 

 

Here, the first term resembles the replicator dynamics [48], where the growth rate is equal to the 

difference between two fitness costs – it describes cell competition between different types. The 

two following terms indicate the transition flows between the sensitive state 1 and the resistant 

state 2. We denote the transition rates to and from the resistant states as μ  and μ  respectively. 

 

We assume a linear dependence of the drug effect on the treatment intensity σ. 

Consequently, the double-well potential is defined by two quadratic polynomials that are 

attached to each other at the intermediate threshold point (Fig S1B). Then the values of E– and 

ΔE in (1)–(2) are also quadratic functions of σ, see also Appendix A for more details. 

  

We refer readers to Table 1 for summary of all model parameter and their estimates. 

 

Results 

 

1. Static treatment. 

 

First, we report dynamics of tumour size of static treatments where the drug is 

administered at a constant dosage. The treatments with low intensities (e.g. 0.2σ =  in Fig 2A, 

red curve) yield exponential tumour growth. The treatments with intermediate or high intensities 

(e.g. 0.4σ ≥  in Fig 2A, yellow and cyan curves) cause initial shrinkage of a tumour due to 

elimination of the proliferative cells, while the remaining resistant cells regrow and the tumour 

relapses in the later stage.  

 

To compare the outcomes of different treatment regimens, we report the fold change in 

tumour size after two years. For static treatments with varying intensities (Fig 2C, red curve), the 
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best outcome is reached at an intermediate level of applied treatment intensity (2.3-fold increase 

at 0.52).σ =  Treatment intensities higher or lower than the minimizer will lead to larger tumour 

sizes, yet the level of increase is highly skewed toward left. For example, the treatment of 

0.1σ =  gives an extremely large final increase in tumour size, while the treatment of a MTD 

( 1.0)σ =  leads to a 3.1-fold final increase in tumour size. 

 

Treatment outcomes can also be quantified by the relapse time of regrowing back to its 

initial size. We confirm again that the optimal setting for static treatments is to apply the 

intermediate treatment intensity. The maximal relapse time of 6.33 months is achieved at 

0.59σ =  (Fig S3A). The MTD yields a relapse time of 5.43 months, despite the fact that it 

reduces the tumour size by the maximal amount of 36% during the initial remission period 

compared to all other regimens (Fig S3B). The MTD is thus beneficial only in a short-term. The 

static treatment of low intensity (e.g. 0.1σ = ) only slows down tumour growth and does not lead 

to a remission. This confirms that therapy of adequate intensity is required and beneficial. 

Tumour shrinkage may not predict subsequent outcomes when dynamics of heterogeneous 

populations are considered. 

 

2. Periodic treatment. 

 

Tumour relapse is driven by emergence of resistant cells. This process is reversible in our 

model (Fig S3C), so we may expect improvement in the therapeutic outcomes by leveraging 

treatment and non-treatment to create a subtle balance of proliferative and resistant cells. The 

simplest strategy of this kind is a periodic treatment with an equal length of active phase and 

drug holidays. 

 

Treatments may yield different outcomes simply due to their difference in the cumulative 

drug quantities administered during the entire episode. To fairly compare treatments with 

different period lengths and phases (including the static treatments), we normalize drug 

intensities by the fraction of active phases over the entire episode. For a fixed time horizon T, 

each periodic treatment is characterized by three parameters: the average treatment intensity σ , 

the number of periods of active treatments K ( 1, 2, ...),K =  and the length of each period Δ. The 
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drug intensity administered during the active phase is adjusted to 

( )/ total length of active phasesTσ × . There are two possible scenarios in terms of the phases of 

the period (Fig 3A). First, the time horizon T ends with a drug holiday ( (2 1) 0,T K− − Δ >  

terminal phase angle 2 ),Tπ θ π≤ <  then there are K full active phases, and the adjusted treatment 

intensity is given by / ( ).T Kσ σ= Δ  Second, the time horizon T ends with an active phase 

( (2 1) 0,T K− − Δ <  terminal phase angle 0 ),Tθ π≤ <  then there are ( 1)K −  full drug holidays. 

The total time of drug administration is ( 1)T K− − Δ , and the adjusted treatment intensity is 

given by / ( ( 1) ).T T Kσ σ= − − Δ  Consequently, the range of all possible adjusted treatment 

intensities for given K is: ,min max[ , ],K Kσ σ σ∈  where max 2σ σ=  (total period T consists of K full 

periods of active phases and drug holidays), and ,min (2 1) /K KKσ σ= −  (total period T consists 

of K full periods of active phases and ( 1)K −  full periods of drug holidays), see Fig 3B. 

 

To assess the influence of treatment schedules on final outcomes, we fix the average 

dosage intensity and compare tumour size changes in two years with varying period lengths Δ. 

Dosages of all periodic treatments are adjusted to equalize their cumulative dosages. We first 

consider treatments of a relatively low intensity 0.2σ =  (Fig 3C). The local minima of the 

tumour size are achieved by applying max 2Kσ σ σ= =  with the terminal phase angle 0Tθ =  (e.g., 

the red dot in Fig 3C and the red waveform in Fig 3B). In contrast, the schedules that apply 

,min (2 1) /K K K Kσ σ σ= = −  with the terminal phase angle Tθ π=  (e.g., the blue dot in Fig 3C 

and the blue waveform in Fig 3B) yield the local maxima in tumour size. All treatment schedules 

under 0.2σ =  lead to low terminal level of resistance (Fig 3C bottom panel), indicating they are 

incapable of eliminating the proliferative (sensitive) part of the tumour. 

 

We then consider periodic treatments with a higher average intensity of 0.4σ =  (Fig 3D). 

In this setting, the outcomes of the two scenarios are the opposite of the previous setting 0.2.σ =

The local minima of the tumour size are achieved by applying ,min (2 1) /K K K Kσ σ σ= = −  with 

the terminal phase Tθ π=  (e.g., the blue dot in Fig 3D and the blue waveform in Fig 3B), 

whereas the schedules by applying max 2Kσ σ σ= =  with the terminal phase 0Tθ =  (e.g., the red 
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dot in Fig 3D and the red waveform in Fig 3B) give rise to local maxima in tumour size (e.g., the 

red dot in Fig 3D and the red waveform in Fig 3B). 

 

The results drawn from these two cases can be summarized as a simple guideline. When 

the drug appears to be ineffective because only low values of average intensity can be achieved 

(e.g., 0.2),σ =  the optimal schedule is to shorten active phases and create an integral number of 

complete periods, to maximize the average intensity within the active periods. This will amplify 

the relatively weak intensity within active phases. When the drug appears to be of more effective 

for pathway inhibition, because sufficiently average intensity is permitted (e.g., .40σ = ), the 

optimal schedule is to distribute the drug over a longer time span and create a half integral 

number of complete periods, assuming this is permitted. All the other terminal phases will 

truncate either an active phase or a drug holiday phase and thus lead to inferior outcomes. 

 

We further find the values of σ  and Δ that jointly optimize the treatment outcome (Fig 

S4A). Low treatment intensities with 0.2σ ≤  are incapable of controlling tumour growth 

regardless of treatment schedules. The gradient along Δ is drastically heightened around 0.3σ = . 

This is exactly when we observe the shift in distribution of local minima and maxima for the fold 

increase in tumour size (Fig S4C). The global minimum of the tumour size change 2.82 is 

reached at 0.405σ =  and 16Δ =  days (the red star in Fig S4A). This corresponds to the 

treatment with 22 active phases and 21 drug holidays during two years of treatment (Fig S4D). 

However, the terrain of the tumour size change near the global minimum is relatively flat. For 

instance, the tumour size change is 3.00 when 0.395σ =  and 32Δ =  days. 

 

Another free parameter of periodic treatments is the duty cycle a  (length of the active 

phase of one cycle / length of one cycle). We fix the length of each treatment period to 

2 32cΔ = Δ =  days and vary a  and σ  (Fig S5C). Fig S5 indicates the best outcome is achieved 

at approximately the same treatment as before: 0.485,a =  0.39,σ =  the adjusted treatment 

intensity during the active phase equals 0.804,σ =  and the fold increase is 2.81. We also obtain 

similar results when varying the adjusted treatment intensity σ  rather than the average σ  (Fig 

S6). 
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3. Optimal treatment. 

 

Both static and periodic treatments are straightforward to implement but often not 

optimal in terms of the outcome. Here we define optimality as minimizing the tumour size at a 

fixed terminal time (or time horizon) T. To solve this problem, we apply optimal control theory 

to update treatment intensities at each moment depending on the tumour state (tumour size and 

level of resistance). This requires a constant monitoring of the patient, see [16] for discussion. In 

brief, treatment design is translated into the problem of controlling the temporal function of 

treatment intensity ( )tσ  to minimize the log ratio of final to initial tumour sizes ( )ln ( ) / (0)n T n , 

subjected to the tumour population dynamics (equation 1). Solution of the optimal control 

problem is described in Appendix B and based on the method of generalized characteristics [49–

51].  

 

The optimal ( )tσ  is determined by both the initial proportion of resistant cells and the 

length of the time horizon. Fig 4 illustrates optimal trajectories of three initial conditions. (i) The 

time horizon T is shorter than a threshold: 0 ,T T T−= <  and initially the proportion of resistant 

cells is 0. The optimal treatment applies a dosage close to MTD for the whole period. Proportion 

of resistance cells increases over time and reaches a level of about 75% for given baseline 

parameters at the terminal point. (ii) T is longer than the same threshold: 0 ,T T T+= >  and 

initially the proportion of resistant cells is 0. The optimal treatment comprises three stages. It 

starts with a high intensity close MTD for about one month, then sharply lowers the dose to a 

moderate level till about one month before the terminal point, and finally resumes the high 

dosage till the end. Proportion of resistance cells climbs up and reaches about 75% in the first 

stage, maintains at this level in the second stage, and further increases again in the third stage. 

(iii) T is longer than the same threshold: 0 ,T T T+= >  and initially the proportion of resistant cells 

is 1. The optimal treatment also consists of three stages. In the first stage the drug is not 

administered. Proportion of resistant cells thus decreases to 75%. Treatment intensities and 

resistance trajectories in the second and third stages coincide with case (ii). Importantly, a dose-

sparing regimen in the middle of (ii) and (iii) concurs with the periodic treatment in its efficiency 
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by keeping the balance between sensitive and resistant parts of the tumour. This prepares the 

patient for the final stage of the treatment when the sensitive part of the tumour is eradicated 

with greater efficiency. Overall, optimal treatments aim for establishing and maintaining a fixed 

balance between proliferative and resistant cells as long as possible until near the terminal point, 

and then switch to the maximal dosage throughout the remaining time to eradicate as many 

proliferative cells as possible (curves ii and iii in Fig 4; Fig 5B). Yet when the time horizon is 

short, the long term benefit of a balanced population is no longer relevant, and the optimal 

treatment is to reduce the current tumour size by administering the maximal dosage (curve i in 

Fig 4; Fig 5B). The clinically relevant time horizon may depend on other factors such as the 

emergence of genetically distinct subclones with different properties. 

 

4. Comparison of different treatments. 

 

The performances of the three aforementioned treatment strategies conform with the 

following order: best static treatment ≤  best periodic treatment ≤  optimal treatment. Superiority 

of periodic over static treatments is illustrated in Fig 2. The treatment derived from the optimal 

control theory is superior to all dynamic treatments including periodic treatments. To 

quantitatively compare their performances, we fix the time horizon to two years, set the best 

static treatment intensity to 0.52,σ =  the best periodic treatment intensity to 0.8σ =  and period 

to 16 days according to Fig S4C, and find the optimal dynamic treatment by solving the optimal 

control problem. Fig 5 shows the comparison outcomes of those three treatments. The terminal 

tumour sizes (relative the initial tumour size) are consistent with the aforementioned order. The 

static treatment yields a poor outcome (4.85-fold increase of tumour size after two years). The 

periodic treatment gives a much better result (2.93-fold increase after two years), which is just 

marginally inferior to the minimally achievable estimate obtained from the optimal treatment 

(2.52-fold change after two years). Notice that the optimal strategy keeps the tumour size higher 

than in the periodic treatment until about one month before the terminal time. This counter-

intuitive action provides a balance between the sensitive and resistant cells and allows more 

efficient reduction of the tumour size at the final stage. The population composition trajectories 

of the three treatments are shown in Fig 5B. Proportion of resistant cells steadily increases to a 

fixed value and maintains onward in the static treatment due to the constant administration of the 
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drug. Proportion of resistant cells in the periodic treatment undergoes an initial transient stage 

and oscillates around a fixed value, synchronous with the period of the treatment. Proportion of 

resistant cells in the optimal treatment sharply reaches a fixed level, remains invariant most of 

the time, and suddenly increases in the last stage. This pattern follows exactly the scenarios 

described in Fig 4. 

 

5. Sensitivity analysis. 

 

Eleven baseline parameter values in the model (Table 1) are not guaranteed to be accurate 

and unique. To investigate the influence of parameter values in optimal treatment outcomes, we 

assess the fold change in tumour size after two years by varying parameter values. Fig 6A shows 

the effect of variation in characteristic switching times between the main and alternative 

pathways, when the cost of resistance 4%c = . The tumour does not shrink if the inverse switch 

from the alternative to the main pathway is slower than the direct switch from the main to the 

alternative pathway (the red-yellow region above the solid black line), while remission can be 

achieved if the reciprocal relation between the two switching times holds (the blue region below 

the solid black line). However, the result depends on the cost of resistance: a higher cost induces 

slower proliferation of resistant cells and thus accommodates a wider range of switching times 

leading to tumour reduction (Fig 6C), while a lower cost has the opposite effect (Fig 6B). We 

further investigate how the optimal proportion of resistant and sensitive cells depends on 

aforementioned parameters (Fig S7). The optimal proportion of resistant cells is positively 

correlated with 1 / μ  (Fig S7B) and negatively correlated with 1 / μ  (Fig S7A). We also notice 

that the optimal proportion is below 50% only when μ  is four times slower than μ  (area below 

dashed line in Fig S7C). 

 

Fig S8 shows the variation of tumour size with respect to other model parameters. The 

most sensitive parameters are the cost of resistance c (Fig S8A) and the robustness parameter κ 

(Fig S8E). The latter indicates how likely the main pathway switches between its on- and off-

states due to internal stochastic effects. The system possessing the baseline κ value used in our 

simulation yields near the smallest tumour size (green dot in Fig S8E). A more unstable main 

pathway (smaller κ values) impairs the effect of drug holidays as a sensitive cell will randomly 
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drift to the resistant state with high probability. Reciprocally, a more stable main pathway 

(higher κ values) deteriorates the effect of treatment as a cell is not responsive to the pathway 

inhibitor. Thus time-varying treatments are effective only in a narrow range of pathway 

robustness. 

 

 

Discussion 

 

Both optimal and periodic treatments outperform the static treatment by more than two 

folds in terms of the tumour size after two years (2.52-fold, 2.93-fold and 4.85-fold respectively). 

Efficacy of periodic treatments was discussed in prior studies [16,52]. Drug addiction is one 

possible cause [33]: resistant subclones not only tolerate the administered drug but also depend 

on it. Drug holidays in these cases deplete the “nutrient” supply and reduce the resistant subclone 

population. Gatenby et al. [53] considered a more general “adaptive therapy” as means to 

maintain proper balance of sensitive and resistant subclone populations undergoing competition. 

Our simulation outcomes corroborate the superiority of periodic treatments and concur with the 

prior discussions about their benefits, albeit the proposed mechanisms causing the benefits are 

different. Those mechanisms may co-exist and can be all tackled by periodic treatments, at least 

in the setting of a single therapy as modelled here. In spite of a good approximation to the global 

optimum and simplicity of implementation, the best periodic treatment is still marginally inferior 

to the optimal treatment strategy. In principle, one should always adopt the treatment strategy 

that yields the best outcome. In practice, physicians have to consider multiple factors when 

deciding the treatment including cost-effectiveness, the higher risk of medical errors when 

implementing complex recommendations, and the feasibility of repeated tumour sampling or 

liquid biopsy to provide accurate input data to correctly design and execute an optimal control 

algorithm. Both periodic and optimal treatments likely require substantial modifications. 

Traditionally in clinical studies the current agent is abandoned when there is a 20% increase in 

the sum of the longest linear dimension of large measurable lesions, corresponding to a 73% 

increase in volume [54]. Such a practice does not allow for periodic treatments. Also, the optimal 

treatment in our model requires continuous monitoring of the tumour population composition. If 

such monitoring is either costly or infeasible, then a properly designed periodic treatment is a 
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reasonable surrogate for the optimal treatment. Dynamic treatments of cancer require biomarkers 

for functional states that can be continuously and non-invasively monitored. This may be a 

greater challenge for complex gene expression changes and their associated physiological 

changes than it is for mutations for which highly sensitive polymerase chain reaction techniques 

are available. 

 

Intriguingly, the best treatment plans of all three strategies attempt to establish and 

maintain an optimal proportion of sensitive and resistant cells (fraction of sensitive cells is about 

75% in our simulations) throughout the entire period (Fig 5B). The best static treatment drives 

the population toward a value above such optimal composition. The best periodic treatment 

quickly leads the population to the optimal composition and then makes it oscillate around this 

value. The global optimal treatment quickly forces the population toward the optimal 

composition, alters the dosage to maintain it, and finally maximizes the dosage for final most 

efficient curbing of the tumour at the very end. The outcome of a treatment strategy seems to 

depend critically on its controllability to reach this composition as quick as possible and stay 

there as long as possible. In this sense, the static treatment is a poor controller, because it cannot 

reach that target. Both periodic and optimal treatments are good controllers as they quickly reach 

the target value and maintain it onward. Curiously, while the total population under the best 

periodic treatment steadily increases with small ripples, the total population under the optimal 

treatment grows more rapidly and finally plunges to a much lower value (Fig 5A). This is 

because the higher growth rate allowed by the optimal treatment leads to a more optimal balance 

of sensitive and resistant cells for efficient final curbing of the tumour. This also identifies a 

possible hurdle in implementing an optimal treatment regimen into clinical practice because its 

performance at the initial state is even worse than with a static treatment, and this is likely to 

result in earlier termination of the therapy per current paradigms (Fig 5A). However, design of 

optimal treatment may help to estimate performance of other suboptimal treatments such as 

periodic or adaptive regimens. Thus, the solution of optimal control problems for tumour 

management may contribute valuable information even if not applied in practice. 

 

Many of the parameter estimates such as the characteristic time of switching between two 

genetic programs are subjected to uncertainty. Despite impressive progress in the field, recent 
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studies [8,14] indicated that the technology of single-cell transcriptomics still does not allow 

rigorous measurement of the kinetics of a change in growth rates of sensitive and resistant cells 

due to epigenetic reprogramming. Laboratory studies in cell lines may not reflect observations of 

net growth rates of tumours in patients (cf reported proliferation rates in [13] and [55]). This 

causes difficulties for model inference. Based on this, we first proposed an estimate of 

characteristic switching times and then implemented a sensitive analysis to verify the robustness 

of our outcomes. We anticipate in the future that laboratory model systems will be developed 

that enable testing and refinement of our findings. 

 

We assume that reprogrammable cell states require not only an instant change in activity 

of both pathways (with faster time scales), but also its “hardwiring” in the physiology of a cell 

[25]. For example, a recent study [8] implements a special state called a meta-resistant state that 

still does not guarantee a permanent resistant state, but remains reversible, similar to our model 

formulation (cf Fig 1B and C). 

 

The model in this study captures aspects of the reversible process of drug resistance. By 

integrating with our prior work for the irreversible process of drug resistance [30,31], we plan to 

build a relatively complete model capturing both reversible and irreversible processes and design 

the treatment strategies accordingly. Outgrowth of rare subclonal resistance mutations or 

acquisition of new resistance mutation may occur on a longer timescale than the phenomena 

discussed herein. Extension in multiple directions is required, such as incorporating the activities 

of the major cancer pathways in the cellular internal states, expanding the drugs and treatment 

options, and including molecular-level resistance mechanisms. However, such extension will 

also substantially increase the model complexity and data requirements, a particular problem for 

clinical translation. A principled method to balance the required features of the model and their 

associated data requirements, as well as specific methods for dealing with uncertainty and 

incomplete information, remain critical tasks.  
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Figures 

 

 

Fig 1: Mathematical modelling framework. (A) Schematic diagram of the pathway interaction 

within tumour cells. Activity of the main pathway is induced by an upstream gene, e.g. a driver 
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oncogene, that can be blocked by the drug action. The regulation of the alternative resistant 

pathway remains unaffected. Both pathways are antagonistic to each other. (B) Original 

framework to model the switch between activated pathways “1” and “2” occurring through a 

transient state “0” where both pathways are shut down. (C) Flow diagram for a modified model 

with two states used to derive main equations. (D) Characteristics of a system without and with 

treatment. Each pathway activity is modelled by a stochastically moving particle in a potential 

well. The treatment changes only the potential for the main pathway, while the potential for the 

alternative pathway remains invariant.  
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Fig 2: Comparison of static and periodic treatments. (A) Change in tumour size in two years 

of static treatments. Responses of treatments with six drug intensities are shown in different 

colours. (B) Tumour dynamics in two years of periodic treatments. Each period consists of 14 

days of active phases interleaved with 14 days of drug holidays. To equalize the cumulative drug 

effect of the two strategies over the entire treatment duration, two treatments are comparable 

when the drug intensity of the periodic treatment is two-fold as that of the corresponding static 

treatment. Static treatments with intensities >0.5 (not shown in A) may perform better than 

periodic regimens due to higher cumulative drug dosage. (C) Change in tumour size after two 

years of treatment for static (red) and periodic regimen (blue). The dashed orange line indicates 

the best outcome for the tumour management obtained by solving an optimal control problem. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/381418doi: bioRxiv preprint 

https://doi.org/10.1101/381418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig 3: Analysis of periodic treatments. (A) Two scenarios of periodic treatment phases. If the 

average treatment intensity is constrained by ,σ  the adjusted treatment intensity administered 

during the active phase equals / ( )T Kσ σ= Δ  (Scenario 1), and / ( ( 1) )T T Kσ σ= − − Δ  
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(Scenario 2). K = 3 for both scenarios shown in A. (B) Two possible periodic regimens with 

maximal (red) and minimal (blue) numbers of drug holidays respectively. (C) and (D) shows the 

outcome of periodic treatments for intermediate and high treatment intensities respectively. 

Horizontal axes indicate the length of drug holidays per period. Vertical axes indicate the fold 

change of tumour size after two years. The outcomes of the equivalent static treatments are 

shown as dashed orange lines. The outcome of the top panel in C is beyond the scale of the y-

axis (293.9 fold), thus is indicated as a number. Blue and red dots in panels C and D correspond 

to two periodic schedules shown in panel B. 
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Fig 4: Optimal treatment intensity is determined by the current level of resistance and the 

total time span of treatment. The temporal axis marks the direction from the start of a 

treatment (a positive number) to the terminal point of treatment. The threshold value 0 1.75T =  

months separates the trajectories with and without a dose-sparing regimen whose trajectory is 

marked by the dashed line. Trajectories of three regimens are illustrated (see description in the 

text). Trajectory colours indicate the applied treatment intensity (legend). 
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Fig 5: Comparison of three different treatment schedules in terms of fold-change in tumour 

size (A) and dynamics of intratumoral resistance (B). The dashed horizon indicates the fold-

change equal one. Line colours indicate the applied treatment intensity. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/381418doi: bioRxiv preprint 

https://doi.org/10.1101/381418
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

Fig 6: Sensitivity of tumour size after two years of optimally designed treatment. The varied 

parameters are characteristic switching times 1μ −  and 1μ −  (horizontal and vertical axis 

respectively). Three panels refer to different values of resistance cost: 4%c =  (baseline, A), 2%  

(B), 6%  (C). Other parameters are fixed according to Table 1. The contour line for the fold 

change equal to one is indicated by solid black, four other contours are shown in grey and 

correspond to the fold change in the panel to each line. Diagonal for μ μ=  is shown in dashed 

black. The location of the baseline parameters is indicated by the green point in A. 
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Table 1. Baseline parameter values used in this study. 

Parameter  Variable Value Ref. 

Birth rate  b  0.14 day 1−  [56] 

Death rate  d  0.13 day 1−  [56] 

Cost of resistance  c  4%   

Cost of inactivation of both pathways  χ  0.3  

Characteristic switching time from the main to the 

alternative pathway  

1μ −  28 days  

Characteristic switching time from the alternative to 

the main pathway  

1μ −  60 days  

Expression of the main pathway at down state  α  0.3 [57] 

Threshold level for the production function of the main 

pathway  

θ  0.45 [57] 

Robustness parameter for the main pathway  κ  40  

Effect of the drug on shifting the threshold level in 

activity of the main pathway  

L  0.2  

Initial level of resistance  ε  1% [58] 
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