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ABSTRACT	

The detection of somatic single nucleotide variants (SNVs) is critical in both research and 

clinical applications. Studies of human cancer typically use matched normal (reference) 

samples from a distant tissue to increase SNV prediction accuracy. This process both 

doubles sequencing costs and poses challenges when reference samples are not readily 

available, such as for many cell-lines. To address these challenges, we created S22S: an 

approach for the prediction of somatic mutations without need for matched reference tissue. 

S22S takes underlying sequence data, augments them with genomic background context 

and population frequency information, and classifies SNVs as somatic or non-somatic. We 

validated S22S using primary tumor/normal pairs from four tumor types, spanning two 

different sequencing technologies. S22S robustly identifies somatic SNVs, with the area 

under the precision recall curve reaching 0.97 in kidney clear cell carcinoma, comparable to 

the best tumor/normal analysis pipelines. S22S is freely available at 

http://labs.oicr.on.ca/Boutros-lab/software/s22s. 
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Technological advances in DNA sequencing have enabled routine analysis of cancer 

genomes. The identification of somatic single nucleotide variants (SNVs) is commonly used 

to catalog mutational landscapes1–3, to link genomics with drug efficacy4–6 and to create 

clinically useful diagnostics7,8. In most of these studies, predictions are made from matched 

tumor/normal pairs, and large benchmarks have evaluated their accuracy9–12. There is, 

however, an increasing number of applications where matched normal reference samples 

are not readily available. Normal samples comprise about half of sequencing costs in clinical 

studies, and their collection is not always routine or even possible for retrospective cohorts 

that include deceased patients. Similarly, cell-line studies, such as those used for drug-

screening, rarely have matched normal samples. 

However SNV identification without a reference sample significantly reduces detection 

accuracy13–15. Many groups resort to ad hoc metrics or repurposing tools originally designed 

for germline analysis4,15,16, since only a small number of analytical tools accommodate 

unmatched tumor samples. The most popular approach is to generate a surrogate normal 

from a pool of normal samples17–19, which only removes false positives resulting from 

germline contamination, not other types of errors15–17. The resulting datasets anecdotally 

have high false-positive rates, but no systematic benchmark yet exists13. To address this 

challenge, we created Single-sample Somatic SNV Selector (S22S): a random forest 

classifier that acts to identify true somatic SNVs from single-sample tumor sequencing data. 

S22S classifies SNVs as somatic or not by integrating sequencing characteristics, 

background genomic context (such as GC content, homopolymer rate and trinucleotide 

context) and population prevalence of both germline and somatic mutations (see Online 

Methods). 

To generate a set of gold-standard for model training, we used samples with matched-

normal references from three tumor types from the Cancer Genome Atlas (TCGA) network – 

head and neck squamous cell carcinoma (HNSC)20, kidney renal clear-cell carcinoma 

(KIRC)21, prostate adenocarcinoma (PRAD)22 – and a breast cancer dataset that utilized a 

targeted sequencing platform23. S22S operates under the hypothesis that true somatic calls 

possess distinct profiles of sequencing properties, genomic contexts and population 

frequencies and thus can be discriminated from false calls. To build the feature set, SNVs 

were called for each sample in four ways: (1) the normal sample was used to identify 

germline variants using GATK24–26, (2) somatic mutations were identified by an SNV caller 

(MuTect17, SomaticSniper27 or Strelka28) using the tumour-normal pair and (3) GATK 

(HaplotypeCaller) and (4) MuTect17 with a panel of normal samples (PoN) were used to call 
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SNVs from tumor samples alone to capture characteristics of unmatched analyses (see 

Online Methods). To facilitate appropriate model testing, 30% of the samples from each 

tumor type were set aside for validation. A separate PoN was generated for each tumor type 

– BRCA, HNSC, KIRC and PRAD – by running MuTect on each normal sample from the 

training set individually and subsequently aggregating the results. SNVs were then assigned 

true or false class labels according to the overlap between the four call-sets, where all 

somatic SNVs detected from T/N analysis were deemed as true positives and all other 

genomic positions as true negatives (Figure 1A). To optimize signal for machine-learning, in 

the training set those (rare) calls that were both somatic (calls predicted to be somatic by an 

SNV caller on T/N pair) and germline (GATK on reference samples) were removed, but 

these were retained in the validation set to avoid bias in assessment. We used somatic SNV 

calls from three different algorithms (MuTect17, SomaticSniper27 or Strelka28), as well as the 

intersecting ensemble set of calls, to facilitate labeling of the true class to avoid model bias 

and overfitting to any particular tool. The overall process is outlined in Figure 1A. 

To accurately identify somatic SNVs in the absence of a normal sample, we leveraged four 

largely orthogonal data types. First, we incorporated the frequency of known mutations – 

both at the gene and variant levels – in both normal populations and tumor cohorts (where 

available). Second, we included metrics indicating sequence quality, such as mapping 

quality, coverage and position along the read. Third, the genomic context of each variant 

was considered, including elements like homopolymer rate and GC content, which are 

correlated with errors in somatic SNV prediction9, and trinucleotide context, to adjust for 

trinucleotide mutational signatures29. Fourth, direct evidence supporting the mutation was 

measured, for example with the number of reads supporting each allele. Table 1 lists all 

features. These were used for hyper-parameter tuning via 10-fold cross-validation and model 

fitting in the training cohort (Figure 1A). 

To evaluate the performance of S22S, we first used the respective held-out test datasets for 

each tumor (nBRCA = 164, nHNSC = 113, nKIRC = 100, nPRAD = 56) and measured the Area 

Under the Precision Recall Curve (AUPRC). In all four test datasets, S22S showed high 

precision and recall (Figure 1B). We selected our operating point for each dataset (i.e. the 

threshold used for binary classification, representing a specific precision-recall tradeoff) to be 

that with the maximum F1 score. To compare the performance of S22S with alternative 

approaches, we examined the precision and recall of five different tumor-only approaches. 

We first considered the use of a germline caller (GATK) on the tumor sample. Second, we 

looked at the use of MuTect on the tumor sample using a surrogate reference normal cohort 
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derived from the training dataset (in PoN mode). We also considered three additional 

reference-free SNV prediction tools: Virtual Normal Correction (VNC)18, EBFilter19 and 

VarDict30. None of these exceeded a precision of 0.10 for any operating point in either of the 

four tumors assessed, and S22S was Pareto superior to all of them (Figure 1B-C, 

Supplementary Figure 1, Supplementary Data 1). 

To demonstrate the impact of improved reference-free somatic classification on applications 

evaluating mutational landscapes, we looked at the ten most recurrently-mutated genes 

reported by the original studies20–23. For each recurrent gene, we calculated the proportion of 

correctly predicted mutations (true positive rate) and the proportion of correctly predicted 

non-mutated genes (true negative rate). S22S dramatically improved true negative rates for 

all recurrent genes (Supplementary Figure 2). To extend its application, we assessed the 

ability of S22S to identify recurrently-mutated genes in cell line studies and applied the 

HNSC model trained on MuTect calls to a handful HNSC cell lines and compared the results 

with a commonly-used surrogate – MuTect with a PoN (Supplementary Figure 3). We 

compared the top 20 recurrent genes identified by both methods – S22S with minimal 

filtering (dbSNP and COSMIC only) and MuTect with a PoN with extensive filtering (see 

Somatic SNV Calling in Online Methods). While the results from using MuTect with a PoN 

was nearly uninterpretable – many genes identified as being mutated across all cell lines, 

thus only the top 20 sorted alphabetically are shown – S22S was able to drastically reduce 

noise and produce some potentially biologically-relevant results. 

While the use of TCGA and other large publicly-available datasets provided sufficiently-

sized cohorts for method benchmarking, smaller studies (e.g. rare tumor types) will have 

fewer training data available. To assess the sensitivity of S22S performance to training set 

size, we performed a subset analysis. S22S hyper-parameter optimization and modeling 

was repeated in a titration series with subsets of the training dataset and validated on the 

same independent held-out dataset used previously. We used sample sets of 5, 10, 25, 50 

and 100 (and increasing additional sets in increments of 50 as sample sizes allowed) for 

each tumor and trained three models per tumor (one for each SNV caller). For all models, 

AUPRC increased in large steps up to 50 sample training cohorts, with smaller gains from 

additional samples beyond this threshold (Figure 1D, Supplementary Figures 4-7). 

S22S has been shown to improve prediction accuracy in the presence of a training dataset 

related to the given experiment. However, there are many situations where disease-specific 

or tool-specific training data is unavailable. In this scenario, a surrogate dataset may prove 

sufficient. To assess the performance of S22S in such cases, we first applied the model 
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trained on somatic calls from a given SNV caller (i.e. MuTect) from one tumor to the test sets 

of the other three tumors that also used somatic calls from this caller (i.e. MuTect), and 

assessed the cross-tumor model performance (Supplementary Figure 8). We next, for 

each tumor type, applied models trained using different SNV callers to the test sets of the 

other SNV callers to evaluate the cross-caller model performance (Supplementary Figure 

9). As expected, performance was decreased by training on a different tumor type or SNV 

caller, but the AUPRC remained higher than any other method, reaching an AUPRC of 0.90 

for the KIRC-trained model (using MuTect) evaluated on the HNSC testing dataset 

(Supplementary Figures 8). This suggests that a similar set of features is important for 

prediction performance across tumor types as well as SNV calling algorithms.  

To the sensitivity of S22S to model features, we conducted a titration study of model 

features, similar to our sample-size analysis. We repeated model training using a subset of 

the features each time – with features grouped based on their respective data types (i.e. 

sequencing quality, population frequency, etc., see Table 1) – and tested the performance 

on the respective held-out test sets. We observed that certain categories of features were 

more predictive of somatic status than others, and that the ranking of categories differed 

slightly across tumors and SNV calling algorithms, but overall, the best performing models 

were those that incorporated all features (Figure 1E). To assess the contributions of each 

feature more deeply, we next evaluated the most discriminative features in each model by 

quantifying the mean decrease in the Gini coefficient. This is a metric that describes node 

purity and quantifies a variable’s usefulness in partitioning observations31. There was a set of 

features was important both across tumor types as well as SNV callers, as well as some 

more specific to specific models - this variability in ranking likely accounts for differential 

performance across tumor types and SNV callers (Supplementary Figure 10-11). 

In summary, we have demonstrated accurate prediction of somatic variants without matched 

reference samples by integrating sequencing data with genomic and population prior 

knowledge. By using these effectively as a prior, S22S outperforms current standards of 

tumor-only SNV calling in all performance metrics, even when little or no training data are 

available. Additional development and community efforts can help build a collection of 

models that are robust and applicable to different tumors, even those with significant 

contamination such as acute myeloid leukemia. S22S is agnostic to sequencing platform, 

and can work with WGS, exome or targeted sequencing panels, and its implementation is 

freely available. Many somatic SNV callers (both tumor/normal and reference-free) 

incorporate panels of reference samples, but the distribution of such panels can be restricted 
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by their incorporation of germline SNP data. In addition, these normal panels can grow 

burdensome and costly, both in terms of storage and computations. By contrast, S22S 

models can be readily shared, and indeed those generated here are available along with the 

respective training and testing data (Supplementary Data 2-9). Large consortia like ExAC, 

TCGA, ICGC and ICGC-ARGO are ideally placed to generate, in a centralized way, robust 

models for somatic SNV detection that can be shared with the community as a whole. 
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TABLE AND FIGURE LEGENDS	

Table 1 | Classification Features	
We extracted a total of 59 features for PRAD and 61 features for BRCA, KIRC and HNSC. 

Features are categorized based on origin and purpose. The PRAD model has two fewer 

features than the other three models (ClippingRankSum and SOR are missing), as it was 

analyzed using an older version of GATK, which lacked these two metrics. 

Figure 1 | S22S predicts somatic variants without reference samples	
A schematic of the algorithm is shown in (A). Per sample, S22S extracts features from the 

VCF file and from the tumor BAM file and annotates these with population frequency data 

from publicly available germline and somatic databases to build a feature vector for that 

sample. We set aside 30% of the samples for validation as an independent test set and 

aggregate the feature matrices for the remaining 70% of the samples to generate our 

training set. We used 10-fold cross validation on the training set to parameterize our model. 

The optimal parameters are used to train a random forest on the full training set. Finally, we 

assessed model performance on the held-out test set. This procedure was repeated for all 

four tumor types. Overall model performance for models trained using somatic calls from 

MuTect is shown in (B). Each model performed well in cis-tumor application on the test 

dataset, with an AUPRC exceeding 0.9 in all cases. This is superior to existing reference-

free SNV calling methods such as EBFilter (EBF) and MuTect using a PoN (MuT). Model 

performance remains high with other SNV callers (C). The models trained on somatic calls 

from several different SNV callers for the KIRC dataset are shown, where the AUPRC 

reaches 0.97 when Strelka is used, and far exceeds the performance of other reference-free 

somatic classification methods, EBFilter (EBF), VarDict, Virtual Normal Correction (VNC) 

and MuTect using a PoN (MuTect). S22S is robust to decreased sample-size (D). PR-curves 

are constructed from models trained on subsets of the full training data for KIRC using 

somatic calls from MuTect. The lower AUPRC seen with smaller sample sizes demonstrates 

that adding additional samples will increase the predictive power of the final model. Further 

investigation of how model decisions are made reveals that certain subsets of features are 

more predictive of somatic status, but that a model trained using the full set of features had 

highest performance overall (E). 
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ONLINE METHODS	

Datasets	

To build the training and test sets for our models, we leveraged publicly-available exome 

sequencing samples of primary tumors and their matched normal samples from three cancer 

types published by the The Cancer Genome Atlas (TCGA) network: head and neck cancer 

(HNSC)20, kidney renal clear cell cancer (KIRC)21 and prostate cancer (PRAD)22, and one 

tumor type – breast cancer (BRCA) – from a targeted sequencing panel23. For TCGA 

datasets, BAM files were obtained from the Cancer Genomics Hub (CGHub, 

https://cghub.ucscedu/)32 and realigned using BWA33 and recalibrated using GATK24–26 prior 

to downstream analyses (described in depth below). Our final HNSC cohort is composed of 

376 tumor/normal pairs, our KIRC cohort of 335 tumor/normal pairs and our PRAD cohort is 

composed of 188 tumor/normal pairs. For the targeted breast cancer dataset, BAM files 

were obtained from the European Genome-phenome Archive (EGA)34, under the ID of 

EGAD00001002115, and recalibrated using GATK prior to downstream analysis. The final 

BRCA cohort is composed of 546 tumor/normal pairs. All models trained are available in 

Supplementary Data 2-5 while the training and testing matrices for all model building used 

for the four tumor types are available in Supplementary Data 6-9. 

Defining True/False Classes	

In order to train our model to accurately recognize true calls from false ones, we took a 

comprehensive approach when defining our truth and false sets. To create an adequate 

feature space, we performed SNV calling (focusing on substitutions rather than indels) in 

four manners. First, we called germline and somatic SNVs using the standard approach with 

tumor/normal pairs, and used GATK24–26 for germline SNPs and and three SNV callers – 

MuTect, SomaticSniper27 and Strelka – for somatic SNVs. We also performed tumor-only 

SNV calling in two ways, first using GATK in tumor-only mode and subsequently, using 

MuTect17 with a panel of normal samples (PoN) generated from the normal samples of each 

respective tumor type. We defined the true class using variants identified from an SNV caller 

on paired samples that were absent in the GATK germline calls. The false class 

encompassed all calls that were present in the germline set as well as both tumor-only call 

sets, but not found in the somatic set (Figure 1A). To eliminate ambiguity for our learner, we 

elected to omit any overlaps found between the germline and somatic calls from downstream 
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analysis. We also trained models using somatic calls from three SNV callers to label our 

truth set in order to avoid learning patterns of any particular SNV calling algorithm. 

Realignment and Recalibration of Sequencing Data	

For each TCGA BAM file obtained from CGHub, back-conversion to FASTQ files was done 

to allow realignment to the human reference genome for standardization, using the 

SamToFastq function from picard (v.1.92) (http://broadinstitute.github.io/picard). For PRAD, 

lane-level raw sequencing reads were realigned to human reference build hg19 using bwa33 

aln (v0.5.7), while for HNSC and KIRC, the realignment was performed with the human 

reference build GRCh37 with decoy (hs37d5) and bwa mem (v0.7.12). Merging of lane-level 

BAMs from the same library within each sample was facilitated via picard (v1.92), with 

duplicates marked, and was followed by library-level merging of BAMs, without marking of 

duplicates. Quality control metrics were used to assess the coverage for BAM files obtained 

from EGA as part of the BRCA dataset, and the reported targeted regions all had sufficient 

coverage, as previously reported23. BAM files as part of the BRCA dataset were not 

realigned prior to recalibration. 

We used GATK (v2.4.9 for PRAD samples, v3.4.0 for HNSC samples and v.3.5.0 for BRCA 

and KIRC samples, the version discrepancy a result of time lapse between sample 

processing) to perform local realignment and base quality recalibration on each realigned 

TCGA tumor/normal BAM pair and BRCA BAM file obtained from EGA. Separate tumor and 

normal sample-level BAM files were extracted, followed by header correction using samtools 

(v0.1.19) and indexing using picard (v1.107) to generate the final realigned and recalibrated 

BAM file per sample. 

Germline SNP Calling	

We used GATK (v2.4.9 for PRAD, v3.4.0 for HNSC and v3.5.0 for BRCA and KIRC) to call 

germline single nucleotide polymorphisms (SNPs). For each PRAD sample, we used 

UnifiedGenotyper, followed by VariantRecalibrator and ApplyRecalibration on the realigned 

and recalibrated tumor/normal pair and removed all insertions/deletions (INDELs), somatic 

SNVs and ambiguous SNVs with more than one alternate base to obtain our final germline 

VCF callset. For BRCA, KIRC and HNSC samples, we used HaplotypeCaller followed by 

VariantFiltration to hard-filter our callset using the following filter expressions: “QD < 10.0 || 

FS > 60.0 || MQ < 40.0 || DP < 50 || SOR > 4.0 || ReadPosRankSum < -8.0 || MQRankSum < 

-12.5” and “MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)” to generate the final germline calls. We 
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referred to the GATK Best Practices recommendations for the development of this 

pipeline24,26. 

Somatic SNV Calling	

First, we predicted somatic SNVs for all tumor types using three callers, MuTect (v1.1.4 for 

PRAD and v1.1.6 for HNSC and v1.1.7 for BRCA and KIRC), SomaticSniper27 (v1.0.2 for 

PRAD, v1.0.4 for HNSC and v1.0.5 for BRCA and KIRC) and Strelka (v1.0.12 for PRAD and 

HNSC and 1.0.14 for BRCA and KIRC) with the tumor/normal pair. All tools were run with 

default options unless otherwise specified. MuTect was given the same target capture region 

file as GATK and executed with dbSNP (v138) and COSMIC (v66). SomaticSniper was run 

with the -q option (mapping quality threshold) set to 1 and then filtered using a series of Perl 

scripts provided by the SomaticSniper package to remove possible false positives 

(http://gmt.genome.wustl.edu/packages/somatic-sniper/documentation.html).  

Following SNV calling, we applied an additional filtering step where we removed SNVs that 

were found in any of the following databases (also referred to as “blacklists”) using tabix to 

produce the final set of somatic calls35: dbSNP14236 (modified to remove somatic and clinical 

variants, with variants with the following flags excluded: SAO = 2/3, PM, CDA, TPA, MUT 

and OM), 1000 Genomes Project (v3)37, Complete Genomics 69 whole genomes38, duplicate 

gene database (v68)39, ENCODE DAC and Duke Mapability Consensus Excludable 

databases40 (comprising poorly mapping reads, repeat regions and mitochondrial and 

ribosomal DNA), invalidated somatic SNVs from 68 human colorectal cancer exomes 

(unpublished data) using the AccuSNP platform (Roche NimbleGen), germline SNPs from 

477 samples in previous work in prostate cancer with an additional 10 WGS from prostate 

cancer patients with high Gleason score41 and the Fuentes database of likely false positive 

variants42; SNVs were “whitelisted” (retained independent of presence in other databases) if 

found in the Catalogue of Somatic Mutations in Cancer (COSMIC)43 database (v71). 

Tumor-only SNV Calling	

To capture the error profiles of SNVs called in situations where a normal sample was not 

used, we also performed somatic SNV calling using only the tumor samples. We used two 

analytical approaches that were most frequently employed in this situation, as seen and 

discussed across various sequencing forums. The first approach was to run variant calling 

with GATK in tumor-only mode and to retain the VCF file at the end of the “VariantFiltration" 

step following hard-filtering as the list of variants for the tumor sample. The second approach 

was to generate a PoN by pooling together a cohort of normal samples using MuTect and to 
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call mutations with the pooled list of germline variants serving as the normal surrogate17. For 

this, we constructed four panels of normal samples, one for each of our tumor types, using 

the normal BAM files. The procedure for creating a PoN has been documented previously 

but in brief, each normal BAM file was passed to the tool separately under the input label of 

‘tumor’ with the “artefact_detection_mode” set on17. The output vcf per sample was merged 

together using CombineVariants from the GATK engine to generate the final normal panel. 

Features	

We hypothesize that true variants will exhibit different underlying sequencing properties, 

genomic background characteristics and population distributions when compared to germline 

variants or sequencing artifacts. Thus to characterize this, we extracted a set of features, 

based on variant positions found in the final callset, from the VCF file, following GATK 

processing with HaplotypeCaller, and the tumor BAM file, and annotated these with minor 

allele and population frequencies from the 1000 Genomes Project and NHLBI44 in addition to 

TCGA recurrences calculated at both the position level and gene level using the latest 

release of TCGA MAF files. This resulted in a total of 59 features for the PRAD models and 

61 features for the BRCA, KIRC and HNSC models. The discrepancy between the total 

number of features across the four models is a result of different versions of GATK used 

during processing (ClippingRankSum and SOR are features missing from the PRAD model). 

The full set of features used is described in Table 1. 

Model Training	

For our classifier, we chose to use a random forest (RF)45 – an ensemble approach that is 

resistant to outliers and can effectively handle highly-correlated variables. We trained our 

models using the randomForest package (v4.6-10) in the R statistical environment (v3.2.3). 

For each tumor type, we set aside 30% of our samples aside as a held-out test set and 

performed a grid search to parameterize our random forest using our 70% training set in a 

10-fold cross-validation scheme (Figure 1A). To split samples into 70% training and 30% 

testing, we rounded 30% of the sample size per tumor type to the nearest integer and set 

this as the number of samples to allocate for each of our test sets. We then used the base 

function “sample” from the “stats” package in the R statistical environment (v3.2.3) with the 

seed 333 to obtain indices to assign alphabetically-sorted sample names to the test set. The 

samples that remained were assigned to training. 
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Random Forest Parameterization	

It has been noted that some parameters of random forest are more sensitive to tuning than 

others31,46. In addition, due to the nature of our dataset, a large class imbalance exists 

between the negative and positive classes (the number of germline SNPs called greatly 

outweigh the number of somatic SNVs called). Thus to improve our predictive power, we 

elected to down-sample the major class as a function of the minor class and performed a 

grid search to tune parameters of random forest using our training set. We assessed the 

performance using a 10-fold cross-validation scheme to obtain the most optimal values to 

use for our full model (Figure 1A). The three parameters we chose to tune were mtry, 

nodesize and ntree. 

For the parameter mtry, we elected to test factor levels of the default value. Since the nature 

of our problem is classification and the default mtry for classification is the square root of the 

number of features – which in our case was 7 – we thus used, in addition to the default value 

of 7, half of the default (4), twice the default (14) and three times the default (21). For ntree, 

we chose to test 1000, 5000 and 10,000 and values of 5, 25, 50 and 100 for the parameter 

nodesize. For all of our datasets, we down-sampled our major class at a ratio of 1:1 with our 

negative class in order to mitigate bias that can arise from class imbalance. 

To split our 70% training set into 10 reasonably equal sets, we took an approach that was 

similar to the splitting of our training and test sets. We truncated what was 10% of the 

number of samples in our training set to the nearest integer and set this as the number of 

samples to allocate per fold. We then used the base function “sample” from the “stats” 

package in the R statistical environment (v3.2.3) with the seed 99 to to obtain array indices 

for our vector of sample names. Each time an index was chosen, that was taken out of the 

pool of indices we may sample from. We repeated this process nine times and used the 

indices to assign each sample to its respective set, with the remaining samples assigned to 

fold 10. The last fold also, on average, contained 1-2 more samples than the rest of the 

folds. For our grid search parameterization, we kept each fold consistent across all 

parameter combinations tested. 

For each parameter combination, we calculated the precision, recall as well as the area 

under the precision-recall curve (AUPRC). We ranked each parameter combination based 

on the average area under the precision-recall curve AUPRC across ten folds (ties were 

broken using the standard deviations where a higher rank was attributed to the lower 
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standard deviation) and chose the set of parameters that generated the highest overall 

AUPRC. We then trained the full models using mtry of 4, nodesize of 5 and 10,000 trees. 

Performance Assessment	

By varying the vote threshold from 0 to 1, we were able to calculate, across a continuous 

range, the number of false positive (FP), false negative (FN), true positive (TP) and true 

negative (TN) calls by using different cutoffs. This was facilitated by the pROC package47 

(v1.8) in the R statistical environment (v3.2.3). We then used these to calculate metrics for 

assessing model performance such as sensitivity, specificity and precision. We also 

constructed a curve using our continuous range of precision and recall values and used the 

area under this precision-recall curve (AUPRC) as the main metric for comparing model 

performance. This was done using the trapezoid method and calculated by: 

   

1
2
∑
k= 1

N

(xk+1− xk)(yk+ 1− yk)
   (1) 

where x is the the recall and y is the precision at cutoff k. The set of parameters with the 

highest average rank of AUPRC across the ten folds was selected for the full model.  

When selecting an operating point for our models based on the AUPRC, we elected to pick a 

threshold that maximized the harmonic mean of precision and recall, also known as the F1 

score, which was calculated by: 

  

2�precision�recall
precision+recall     (2) 

where precision is defined as: 

   

TP
TP+FP      (3) 

and recall is defined as: 

   

TP
TP+FN      (4) 

Cross-tumor and Cross-caller Performance, and Model Convergence	
We took three approaches to gauge the generalizability of each model and assessed the 

effects of both tumor type and SNV calling tool, as well as cohort size on overall 

performance. First, given models trained using the somatic calls from a single SNV caller 

(i.e. MuTect), we applied the model of one tumor to the test sets of the other tumors and 
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evaluated its cross-tumor performance using the AUPRC metric. Due to discrepancies 

between features across models, when testing the BRCA, HNSC or KIRC models on the 

PRAD test set, we manually set the two missing features (ClippingRankSum and SOR) to 0 

for all positions in the test set. Alternatively when testing the PRAD model on the BRCA, 

HNSC or KIRC test set, we omitted those two features from the test data frame when 

predicting using our RF classifier. Similarly, we assessed cross-caller performance by 

applying the model trained using one SNV caller and assessed its performance on the other 

two callers using the AUPRC metric. 

Finally, to determine the effects of training size on model performance, we conducted a 

convergence experiment using reasonably-selected sample sizes in our training set and 

assessed its performance on the same test set by calculating the AUPRC. We tested sample 

sizes of 5, 10, 25, 50 and 100 (as well as additional increments of 50 as sample sizes 

allowed) and compared their AUPRCs to that of the full model.  

Data Visualization	

Visualizations were generated in the R statistical environment (v3.2.3) using the lattice 

(v0.20-33)48, latticeExtra (v0.6-28), BPG49 (v5.6.8) and VennDiagram (1.6.17) packages50. 

Figures were compiled using LaTeX. 

Benchmarking	

To assess how our approach compares to methods developed under similar pretenses, we 

applied three published tools (EBFilter, VNC and VarDict)18,19,30 to each of the held-out test 

sets. We selected these tools based on their proposed functionality and the fact that they 

accepted similar inputs and generated comparable outputs to our method. We used the 

same AUPRC metric to assess performance across the different algorithms. Since each tool 

had its own specific method or score for annotating potential true variants or variants of 

interest, to generate a curve for each, we varied the threshold for each tool across its full 

range of values for the entire cohort. All tools were run with default options or with those 

suggested in the user guidelines for the tool unless otherwise specified. 

VarDict was executable given a VCF file, BAM file and the human genome reference fasta 

as inputs, however, some of the other tools required additional input files. Both EBFilter and 

VNC took an approach that was similar to MuTect in that both required an additional list of 

normal samples to create a surrogate normal. For EBFilter, we used the normal samples 

from the training set of each tumor type to generate this panel in all of the EBFilter runs. For 
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VNC, we downloaded all available (n = 427) variant files of normal samples that were 

processed by Complete Genomics (CG) for the 1000Genomes Project from the FTP site 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/). We used these samples instead of 

TCGA normal samples because the tool was designed to work with CG outputs and only 

accepted the varfile format as input to generate the virtual normal. To generate a range of 

precision and recall values for EBFilter, we varied the score that was outputted by the tool 

from 0 to the maximum score of the cohort. Since VNC implemented two fields for filtering 

calls – both relating to the number of samples out of the total pool of samples used in the 

construction of the virtual normal in which a variant was found – we varied both thresholds 

from 0 to 427 and calculated precision and recall at each combination of thresholds. In 

single-sample mode, VarDict implements a single allele frequency (AF) filter during variant 

identification, so to calculate precision and recall for the PR-curve, we varied the AF from 0 

to 1. When selecting operating points for each tool, we used the same approach as with 

S22S and chose that which maximized the F1-score. All raw and processed files generated 

in benchmarking the three tools can be found in Supplementary Data 1. 

Availability	

Software and models are available at http://labs.oicr.on.ca/Boutros-lab/software/s22s. 
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FEATURE ALIAS FEATURE DESCRIPTION

Population Frequency
AF.1000Genomes Global allele frequency based on AC/AN

AFR AF Allele frequency for the Afriacn population based on AC/AN from 1000 Genomes Project
AMR AF Allele frequency for the American population based on AC/AN from 1000 Genomes Project
ASN AF Allele frequency for the Asian population based on AC/AN from 1000 Genomes Project
EUR AF Allele frequency for the European population based on AC/AN from 1000 Genomes Project

LDAF Allele frequency as inferred from haplotype estimation
NHLBI EA MAF Minor allele frequency in percent for European population from NHLBI
NHLBI AA MAF Minor allele frequency in percent for African American population from NHLBI
NHLBI ALL MAF Overall minor allele frequency from NHLBI

TCGA.fraction.MAF Proportion of recurrence in the TCGA dataset, position-based
TCGA.fraction.RecSNV Proportion of recurrence in the TCGA dataset, gene-based

Sequencing Quality
BaseQRankSum Z-score from Wilcoxon rank sum test of ALT Vs. REF base qualities

BaseQual Mapping quality scores (in phred-scale) for probability of misidentified base
ClippingRankSum Z-score From Wilcoxon rank sum test of Alt vs. Ref number of hard clipped bases

DistanceIndel Distance (in bases) to closest known germline Indel
DistanceSNP Distance (in bases) to closest known germline SNP

FS Phred-scaled p-value using Fisher’s exact test to detect strand bias
MappingQual Mapping quality scores (in phred-scale) for probability of misplaced read

MLEAC Maximum likelihood expectation (MLE) for the allele counts
MLEAF Maximum likelihood expectation (MLE) for the allele frequency

MQ Root Mean-squared (RMS) Mapping Quality
MQRankSum Z-score From Wilcoxon rank sum test of ALT vs. REF read mapping qualities

NonRefForward Quality of at least 13 non-REF bases on forward strand
NonRefReverse Quality of at least 13 non-REF bases on reverse strand

QD Variant Confidence/Quality by Depth
ReadPosRankSum Z-score from Wilcoxon rank sum test of ALT vs. REF read position bias

ReadPosition Position within the read
RefForward Quality of at least 13 REF bases on forward strand
RefReverse Quality of at least 13 REF bases on reverse strand
StrandBias Proportion of reads mapped to forward strand

SOR Symmetric Odds Ratio of 2x2 contingency table to detect strand bias
SumNonRefBase Sum of non-ref base qualities
SumNonRefMap Sum of non-ref mapping qualities

SumRefBase Sum of reference base qualities
SumRefMap Sum of ref mapping qualities

SumSqNonRefBase Sum of squares of non-ref base qualities
SumSqNonRefMap Sum of squares of non-ref mapping qualities

SumSqRefBase Sum of squares of reference base qualities
SumSqRefMap Sum of squares of ref mapping qualities

SumSqTailNonRef Sum of squares of tail distance for non-ref
SumSqTailRef Sum of squares of tail distance for ref bases

SumTailNonRef Sum of tail distance for non-ref bases
SumTailRef Sum of tail distance for ref bases

TumourCoverage Read depth from tumour bam file
VDB Variant distance bias for indication of potential misalignment due to nearby SNP

Genomic Context
homopolymer.rate Frequency of homopolymers within 100 bases up and downstream of position

GC Proportion of bases that are GC within 100 bases up and downstream of position
trinucleotide Trinucleotide context of position

Direct Evidence
AC Allele count for ALT allele
AF Allele frequency for ALT allele

ALT.AD Allelic depth for ALT
ALT.AF Calculated allelic frequency of ALT (ALT.AD/DP)

AN Total number of alleles called in genotype
DP Approximate read depth, VCF-derived

DP.pileup Number of reads covering or bridging position
gatk Presence of call using GATK in tumour-only mode

mutect Presence of call using MuTect with a panel of normals
NonRefAllele Forward non-ref allele

REF.AD Allelic depth for REF
REF.AF Calculated allelic frequency of REF (REF.AD/DP)
RefAllele Forward ref allele
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