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5Presently at Apple, Inc., Cupertino, California.12

6Neural Information Processing Group, Faculty of Science, Eberhard Karls Universität13
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ABSTRACT20

We subjectively perceive our visual field with high fidelity, yet large peripheral distortions can go unnoticed

and peripheral objects can be difficult to identify (crowding). A recent paper proposed a model of the

mid-level ventral visual stream in which neural responses were averaged over an area of space that

increased as a function of eccentricity (scaling). Human participants could not discriminate synthesised

model images from each other (they were metamers) when scaling was about half the retinal eccentricity.

This result implicated ventral visual area V2 and approximated “Bouma’s Law” of crowding. It has

subsequently been interpreted as a link between crowding zones, receptive field scaling, and our rich

perceptual experience. However, participants in this experiment never saw the original images. We find

that participants can easily discriminate real and model-generated images at V2 scaling. Lower scale

factors than even V1 receptive fields may be required to generate metamers. Efficiently explaining why

scenes look as they do may require incorporating segmentation processes and global organisational

constraints in addition to local pooling.
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INTRODUCTION33

Vision science seeks to understand why things look as they do (Koffka 1935). Typically, our entire34

visual field looks subjectively crisp and clear. Yet our perception of the scene falling onto the peripheral35

retina is actually limited by at least three distinct sources: the optics of the eye, retinal sampling, and the36

mechanism(s) giving rise to crowding, in which our ability to identify and discriminate objects in the37

periphery is limited by the presence of nearby items (Bouma 1970; Pelli and Tillman 2008).1 Thus we38

can be insensitive to significant changes in the world despite our rich subjective experience.39

Visual crowding has been characterised as compulsory texture perception (Parkes et al. 2001; Lettvin40

1976) and compression (Balas, Nakano, and Rosenholtz 2009; Rosenholtz, Huang, and Ehinger 2012).41

This idea entails that we cannot perceive the precise structure of the visual world in the periphery. Rather,42

we are aware only of the summary statistics or ensemble properties of visual displays, such as the average43

1Many other phenomena also demonstrate striking “failures” of peripheral vision, for example change blindness (Rensink,
O’Regan, and Clark 1997; O’Regan, Rensink, and Clark 1999) and inattentional blindness (Mack and Rock 1998), though there is
some discussion as to what extent these are distinct from crowding (Rosenholtz 2016).
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2.2.1.2 Stimuli
We used 400 images (two additional images for authors, see below) from the MIT 1003 database (Judd,
Durand, and Torralba 2012; Judd et al. 2009). One of the participants (TW) was familiar with the images in
this database due to previous experiments. New images were synthesised using the multiscaled (512 px, 256
px, 128 px) foveated model described above, for four pooling region complexities (4, 8, 16 and 32). An image
was synthesised for each of the 400 original images from each model (giving a total stimulus set including
originals of 2000).

2.2.1.3 Procedure
Participants viewed the display from 60 cm; at this distance, pixels subtended approximately 0.024 degrees
on average (approximately 41 pixels per degree of visual angle) – note that this is slightly further away than
the experiment reported in the primary paper (changed to match the angular subtense used by Freeman and
Simoncelli). Images therefore subtended ¥ 12.5¶ at the eye. As in the main paper, the stimuli were presented
for 200 ms, with an inter-stimulus interval of 1000 ms, followed by a 1200 ms response window. Feedback was
provided by a 100 ms change in fixation cross brightness. Gaze position was recorded during the trial. If the
participant moved the eye more than 1.5 degrees away from the fixation spot, feedback signifying a fixation
break appeared for 200~ms after the response feedback. Prior to the next trial, the state of the participant’s
eye position was monitored for 50 ms; if the eye position was reported as more than 1.5 degrees away from
the fixation spot a recalibration was triggered. The inter-trial interval was 400 ms.

Each unique image was assigned to one of the four models for each participant (counterbalanced). That is, a
given image might be paired with a CNN 4 synthesis for one participant and a CNN 8 synthesis for another.
Showing each unique image only once ensures that the participants cannot become familiar with the images.
For authors, images were divided into only CNN 8, CNN 16 and CNN 32 (making 134 images for each model
and 402 trials in total for these participants). To ensure that the task was not too hard for naïve participants
we added the easier CNN 4 model (making 100 images for each model version and 400 trials in total). The
experiment was divided into six blocks consisting of 67 trials (65 trials for the last block). After each block a
break screen was presented telling the participant their mean performance on the previous trials. During the
breaks the participants were free to leave the testing room to take a break and to rest their eyes. At the
beginning of each block the eyetracker was recalibrated. Naïve participants were trained to do the task, first
using a slower practice of 6 trials and second a correct-speed practice of 30 trials (using five images not part
of the stimulus set for the main experiment).

2.2.1.4 Data analysis
We discarded trials for which participants made no response (N = 81) or broke fixation (N = 440), leaving a
total of 4685 trials for further analysis.

Performance at each level of CNN model complexity was quantified using a logistic mixed-e�ects model.
Correct responses were assumed to arise from a fixed e�ect factor of CNN model (with four levels) plus the
random e�ects of participant and image. The model (in lme4-style notation) was
correct ~ model + (model | subj) + (model | im_code)

with family = Bernoulli(“logit”), and using contr.sdif coding for the CNN model factor (Venables
and Ripley 2002).

The posterior distribution over model parameters was estimated using weakly-informative priors, which
provide scale information about the setting of the model but do not bias e�ect estimates above or below zero.
Specifically, fixed e�ect coe�cients were given Cauchy priors with mean zero and SD 1, random e�ect standard
deviations were given bounded Cauchy priors with mean 0.2 (indicating that we expect some variance between
the random e�ect levels) and SD 1, with a lower-bound of 0 (variances cannot be negative), and correlation
matrices were given LKJ(2) priors, reflecting a weak bias against strong correlations (Stan Development
Team 2015). The model posterior was estimated using MCMC implemented in the Stan language (version
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Figure S8: The CNN model comes close to matching appearance on average. Oddity performance as a
function of the CNN image model. Points show mean over participants (error bars ±2 SEM), coloured lines
link the mean performance of each participant for each pooling model. For most participants, performance
falls to approximately chance (dashed horizontal line) for the CNN 32 model. Black line and shaded regions
show the mean and 95% credible intervals on the population mean derived from a mixed-e�ects model.

2.16.2, Stan Development Team 2017; Ho�man and Gelman 2014), with the model wrapper package brms
(version 1.10.2, Bürkner 2017) in the R statistical environment. We computed four chains of 15,000 steps, of
which the first 5000 steps were used to tune the sampler; to save disk space we only saved every 5th sample.

2.2.2 Results and discussion

The CNN 32 model came close to matching appearance on average for a set of 400 images. Discrimination
performance for ten naïve participants and three authors is shown in Figure S8 (lines link individual
participant means, based on at least 64 trials, median 94). All participants achieve above-chance performance
for the simplest model (CNN 4), indicating that they understood and could perform the task. Performance
deteriorates as models match the structure of the original image more precisely.

To quantify the data, we estimated the posterior distribution of a logistic mixed-e�ects model with a
population-level (fixed-e�ect) factor of CNN model, whose e�ect was nested within participants and image
(i.e. random e�ects of participant and image). Regression coe�cients coded the di�erence between successive
CNN models, expressed using sequential di�erence coding from the MASS package (Venables and Ripley
2002), and are presented below as the values of the linear predictor (corresponding to log odds in a logistic
model). Mean performance had a greater than 0.99 posterior probability of being lower for CNN 8 than
CNN 4 (-0.48, 95% CI [-0.74, -0.23], p(— < 0) > 0.999), and for CNN 16 being lower than CNN 8 (-0.44, 95%
CI [-0.68, -0.18], p(— < 0) = 0.999); whereas the di�erence between the 16 and 32 models was somewhat
smaller (-0.17, 95% CI [-0.37, 0.03], p(— < 0) = 0.951). Most participants performed close to chance for the
CNN 32 model (excluding authors, the population mean estimate had a 0.88 probability of being greater
than chance; including authors this value was 0.96). Therefore, the model is capable of synthesising images
that are indiscriminable from a large set of arbitrary scenes in our experimental conditions, on average, for
naïve participants. However, one participant (author AE) performs noticably better than the others, even for
the CNN 32 model. AE had substantial experience with the type of distortions produced by the model but
had never seen this set of original images before. Therefore, the images produced by the model are not true
metamers, because they do not encapsulate the limits of visible structure for all humans.
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2.3 Experiment 2: Image familiarity and learning tested by repeated presenta-
tion

It is plausible that familiarity with the images played a role in the results above. That is, the finding that
images become di�cult on average to discriminate with the CNN 32 model may depend in part on participants
having never seen the images before. To investigate the role that familiarity with the source images might
play, the same participants as in the experiment above performed a second experiment in which five of the
original images from the first experiment were presented 60 times, using 15 unique syntheses per image
generated with the CNN 32 model (Figure S9A).

2.3.1 Methods

2.3.1.1 Participants
The same thirteen participants participated as in Experiment 1.

2.3.1.2 Stimuli
We selected five images from the set of 400 and generated 15 new syntheses for each of these images from the
CNN 32 model (yielding a stimulus set of 80 images).

2.3.1.3 Procedure
Each pairing of unique image (5) and synthesis (15) was shown in one block of 75 trials (pseudo-random order
with the restriction that trials from the same source image could never follow one another). Participants
performed four such blocks, yielding 300 trials in total (60 repetitions of each original image).

2.3.1.4 Data analysis
We discarded trials for which participants made no response (N = 63) or broke fixation (N = 294), leaving a
total of 3543 trials for further analysis. Model fitting was as for Experiment 1 above, except that the final
posterior was based on four chains of 16,000 steps, of which the first 8000 steps were used to tune the sampler;
to save disk space we only saved every 4th sample.

The intercept-only model (assuming only random e�ects variation but no learning) was specified as
correct ~ 1 + (1 | subj) + (1 | im_name)

and the learning model was specified as
correct ~ session + (session | subj) + (session | im_name)

We compare models using an information criterion (LOOIC, Vehtari et al (2016); see also (Gelman, Hwang,
and Vehtari 2014; McElreath 2016)) that estimates of out-of-sample prediction error on the deviance scale.

2.3.2 Results and discussion

While some images (e.g. House) could be discriminated quite well by most participants (Figure S9B), others
(e.g. Gra�ti) were almost indiscriminable from the model image for all participants (posterior probability
that the population mean was above chance performance was 0.61 for Gra�ti, 0.93 for Market, and greater
than 0.99 for all other images). This image dependence shows that even the CNN 32 model is insu�cient to
produce metamers for arbitrary scenes.

Furthermore, there was little evidence that participants learned over the course of sessions (Figure S9C).
The population-level linear slope of session number was 0.03, 95% CI [-0.1, 0.15], p(— < 0) = 0.326, and the
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Figure S9: A: Five original images (top) were repeated 60 times (interleaved over 4 blocks), and observers
discriminated them from CNN 32 model syntheses (bottom). B: Proportion of correct responses for each
image from A. Some images are easier than others, even for the CNN 32 model. C: Performance as a function
of each 75-trial session reveals little evidence that performance improves with repeated exposure. Points show
grand mean (error bars show bootstrapped 95% confidence intervals), lines link the mean performance of each
observer for each pooling model (based on at least 5 trials; median 14). Black line and shaded region shows
the posterior mean and 95% credible intervals of a logistic mixed-e�ects model predicting the population
mean performance for each image.
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LOOIC comparison between the intercept-only model and the model containing a learning term indicated
equivocal evidence if random-e�ects variance was included (LOOIC di�erence 3.3 in favour of the learning
model, SE = 6.1) but strongly favoured the intercept model if only fixed-e�ects were considered (LOOIC
di�erence -23.3 in favour of the intercept model, SE = 1.7). The two images with the most evidence for
learning were Children (median slope 0.04, 95% CI [-0.08, 0.17], p(— < 0) = 0.247) and Sailboat (0.04, 95%
CI [-0.08, 0.17], p(— < 0) = 0.269). Two authors showed some evidence of learning: AE (0.17, 95% CI [-0.03,
0.37], p(— < 0) = 0.047), and CF (0.22, 95% CI [0.03, 0.44], p(— < 0) = 0.008). Overall, these results show
that repeated image exposures with response feedback did not noticably improve performance.

2.4 Experiment 3: Spatial cueing of attention

The experiment presented in the primary paper showed that the discriminability of model syntheses depended
on the source images, with scene-like images being easier to discriminate from model syntheses than texture-
like images for a given image model. This finding was replicated in an ABX paradigm (above) and the
general finding of source-image-dependence was corroborated by the data with repeated images (Figure
S8). One possible reason for this image-dependence could be that participants found it easier to know
where to attend in some images than in others, creating an image-dependence not due to the summary
statistics per se. Relatedly, Cohen and co-authors (2016) suggest that the limits imposed by an ensemble
statistic representation can be mitigated by the deployment of spatial attention to areas of interest. Can the
discriminability of images generated by our model be influenced by focused spatial attention?

To probe this possibility we cued participants to a spatial region of the scene before the trial commenced. We
computed the mean squared error (MSE) between the original and synthesised images within 12 partially-
overlapping wedge-like regions subtending 60¶. We computed MSE in both the pixel space (representing
the physical di�erence between the two images) and in the feature space of the fifth convolutional layer
(conv5_1) of the VGG-19 network, with the hypothesis that this might represent more perceptually relevant
information, and thus be a more informative cue.

We pre-registered the following hypotheses for this experiment (available at http://dx.doi.org/10.17605/OSF.
IO/MBGSQ; click on “View Registration Form”). For the overall e�ect of cueing (the primary outcome of
interest), we hypothesised that

• performance in the Valid:Conv5 condition would be higher than the Uncued condition and
• performance in the Invalid condition would be lower than the Uncued condition

These findings would be consistent with the account that spatial attention can be used to overcome ensemble
statistics in the periphery, providing that it is directed to an informative location. This outcome also assumes
that our positive cues (Conv5 and Pixels) identify informative locations.

Alternative possibilities are

• if focussed spatial attention cannot influence the “resolution” of the periphery in this task, then
performance in the Valid:Conv5 and Invalid conditions will be equal to the Uncued condition.

• if observers use a global signal (“gist”) to perform the task, performance in the Uncued condition would
be higher than the Valid:Conv5 and Invalid conditions. That is, directing spatial attention interferes
with a gist cue.

Our secondary hypothesis concerns the di�erence between Valid:Conv5 and Valid:Pixel cues. A previous
analysis at the image level (see below) found that conv5 predicted image di�cultly slightly better than the
pixel space. We therefore predicted that Valid spatial cues based on Conv5 features (Valid:Conv5) should be
more e�ective cues, evoking higher performance, than Valid:Pixel cues.

2.4.1 Methods

2.4.1.1 Participants
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Figure S10: Parameter precision as a function of number of participants. A: Width of the 95% credible
interval on three model parameters as a function of the number of participants tested. Points show model fit
runs (the model was not re-estimated after every participant due to computation time required). We aimed
to achieve a width of 0.3 (dashed horizontal line) on the linear predictor scale, or stop after 30 participants.
The Uncued - Invalid parameter failed to reach the desired precision after 30 participants. Lines show fits of
a quadratic polynomial as a visual guide.

We pre-registered (http://dx.doi.org/10.17605/OSF.IO/MBGSQ) the following data collection plan with a
stopping rule that depended on the precision (Kruschke 2015). Specifically, we collected data from a minimum
of 10 and a maximum of 30 participants, planning to stop in the intermediate range if the 95% credible
intervals for the two parameters of interest (population fixed-e�ect di�erence between Valid and Uncued, and
population fixed-e�ect di�erence between Invalid and Uncued) spanned a width of 0.3 or less on the linear
predictor scale.

This value was determined as 75% of the width of our “Region of Practical Equivalence” to zero e�ect
(ROPE), pre-registered as [-0.2, 0.2] on the linear predictor scale (this corresponds to odds ratios of [0.82,
1.22]). We deemed any di�erence smaller than this value as being too small to be practically important.
As an example, if the performance in one condition is 0.5, then an increase of 0.2 in the linear predictor
corresponds to a performance of 0.55. The target for precision was then determined as 75% of the ROPE
width, in order to give a reasonable chance for the estimate to lie within the ROPE (Kruschke 2015).

We tested these conditions by fitting the data model (see below) after every participant after the 10th,
stopping if the above conditions were met. However, as shown in Figure S10, this precision was not met with
our maximum of 30 participants, and so we ceased data collection at 30, deeming further data collection
beyond our resources for the experiment. Thus our data should be interpreted with the caveat that the
desired precision was not reached (though we got close).

An additional five participants were recruited but showed insu�cient eyetracking accuracy or training
performance (criteria pre-registered). Of the 30, three were lab members unfamiliar with the purpose of the
study, the other 27 were recruited online; all were paid 15 Euro for the 1.5 hour testing session. Of these,
three participants did not complete the full session due to late arrival, and eyetracking calibration failed in
the second last trial block for an additional participant.

2.4.1.2 Stimuli
This experiment used the same 400 source images and CNN 8 model syntheses as Experiment 1.

2.4.1.3 Procedure
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The procedure for this experiment was as in Experiment 1 with the following exceptions. The same 400
original images were used as in Experiment 1, all with syntheses from the CNN 8 model. A trial began with
the presentation of a bright wedge (60 degree angle, Weber contrast 0.25) or circle (radius 2 dva) for 400~ms,
indicating a spatial cue (85% of trials) or Uncued trial (15%) respectively (Figure S11A). A blank screen
with fixation spot was presented for 800 ms before the oddity paradigm proceeded as above. On spatial
cue trials, participants were cued to the wedge region containing either the largest pixel MSE between the
original and synthesised images (35% of all trials), the largest conv5 MSE (35%), or the smallest pixel MSE
(an invalid cue, shown on 15% of all trials). Thus, 70% of all trials were valid cues, encouraging participants
to make use of the cues rather than learning to ignore them. Participants were also instructed to attend to
the cued region on trials where a wedge was shown. For Uncued trials they were instructed to attend globally
over the image. Cueing conditions were interleaved and randomly assigned to each unique image for each
participant. The experiment was divided into eight blocks of 50 trials. Before the experiment we introduced
participants to the task and fixation control with repeated practice sessions of 30 trials (using 30 images not
used in the main experiment and with the CNN 4 model syntheses). Participants saw at least 60 and up to
150 practice trials, until they were able to get at least 50% correct and with 20% or fewer trials containing
broken fixations or blinks.

2.4.1.4 Data analysis
We discarded trials for which participants made no response (N = 141) or broke fixation (N = 1398), leaving
a total of 10261 trials for further analysis.

This analysis plan was pre-registered and is available at http://dx.doi.org/10.17605/OSF.IO/MBGSQ (click
on “view registration form”). We seek to estimate three performance di�erences:

1. The di�erence between Invalid and Uncued
2. The di�erence between Valid:Conv5 and Uncued
3. The di�erence between Valid:Conv5 and Valid:Pixels

The model formula (in lme4-style formula notation) is
correct ~ cue + (cue | subj) + (cue | im_code)

with family = Bernoulli(“logit”). The “cue” factor uses custom contrast coding (design matrix) to test
the hypotheses of interest. Specifically, the design matrix for the model above was specified as

—0 —1 —2 —3

Invalid 1 -1 0 0
Uncued 1 1 -1 0
Valid:Conv5 1 0 1 1
Valid:Pixels 1 0 0 -1

Therefore, —1 codes Uncued - Invalid, —2 codes Valid:Conv5 - Uncued, —3 codes Valid:Conv5 - Valid:Pixels
and —0 codes the Intercept (average performance). Note that the generalised inverse of this matrix was passed
to brms (Venables and Ripley 2002).

Each of these population fixed-e�ects is o�set by the random e�ects of participant (subj) and image (im_code).
We also assume that the o�sets for each fixed e�ect can be correlated (denoted by the single pipe character |).
The model thus estimates:

1. Four fixed-e�ect coe�cients. The coe�cients coding Valid:Conv5 – Uncued and Uncued – Invalid
constitute the key outcome measures of the study. The final coe�cient is the analysis of secondary
interest.

2. Eight random-e�ects standard-deviations (four for each fixed-e�ect, times two for the two random
e�ects).
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Figure S11: Cueing spatial attention has little e�ect on performance. A: Covert spatial attention was cued
to the area of the largest di�erence between the images (70% of trials; half from conv5 feature MSE; half
from pixel MSE) via a wedge stimulus presented before the trial. On 15% of trials the wedge cued an invalid
location (smallest pixel MSE), and on 15% of trials no cue was provided (circle stimulus). B: Performance
as a function of cueing condition for 30 participants. Points show grand mean (error bars show ±2 SE),
lines link the mean performance of each observer for each pooling model (based on at least 30 trials; median
65). Blue lines and shaded area show the population mean estimate and 95% credible intervals from the
mixed-e�ects model. Triangle in the Uncued condition replots the average performance from CNN 8 in Figure
S8 for comparison.

3. Twelve correlations (six for each pairwise relationship between the fixed-e�ects, times two for the two
random e�ects).

These parameters were given weakly-informative prior distributions as for Experiment 1 (above): fixed-e�ects
had Cauchy(0, 1) priors, random e�ect SDs had bounded Cauchy(0.2, 1) priors, and correlation matrices had
LKJ(2) priors.

To judge the study outcome we pre-defined a region of practical equivalence (ROPE) around zero e�ect (0) of
[-0.2, 0.2] on the linear predictor scale. This corresponds to odds ratios of [0.82, 1.22]. Our decision rules
were then:

• If the 95% credible interval of the parameter value falls outside the ROPE, we consider there to be a
credible di�erence between the conditions.

• If the 95% credible interval of the parameter value falls fully within the ROPE, we consider there to be
no practical di�erence between the conditions. This does not mean that there is no e�ect, but only
that it is unlikely to be large.

• If the 95% credible interval overlaps the ROPE, the data are ambiguous as to the conclusion for our
hypothesis. This does not mean that the data give no insight into the direction and magnitude of any
e�ect, but only that they are ambiguous with respect to our decision criteria.

For more discussion of this approach to hypothesis testing, see (Kruschke 2015).

2.4.2 Results and discussion

The results of this experiment are shown in Figure S11B. While mean performance across conditions was in
the expected direction for all e�ects, no large di�erences were observed. Specifically, the population-level
coe�cient estimate on the linear predictor scale for the di�erence between the Valid:Conv5 cueing condition
and the uncued condition was 0.09, 95% CI [-0.05, 0.22], p(— < 0) = 0.1. Given our decision rules above,
the coe�cient does not fall wholely within the ROPE and therefore this result is somewhat inconclusive; in
general the di�erence is rather small and so large “true” e�ects of spatial cueing are quite unlikely. Similarly,
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Figure S12: Performance depends strongly on the image within the CNN 8 model (data from Experiment 3).
Solid black line links model estimates of each image’s di�culty (the posterior mean of the image-specific
model intercept, plotted on the performance scale). Shaded region shows 95% credible intervals. Dashed
horizontal line shows chance performance; solid blue horizontal line shows mean performance.

we find no large di�erence between uncued performance and the invalid cues (0.09, 95% CI [-0.07, 0.25],
p(— < 0) = 0.141). Based on our pre-registered cuto� for a meaningful e�ect size we conclude that cueing
spatial attention in this paradigm results in e�ectively no performance change.

We further hypothesised that the conv5 cue would be more informative (resulting in a larger performance
improvement) than the pixel MSE cue. Note that for 269 of 400 images the conv5 and pixel MSE cued the
same or neighbouring wedges, meaning that the power of this experiment to detect di�erences between these
conditions is limited. Consistent with this and contrary to our hypothesis, we find no practical di�erence
between the Valid:Conv5 and Valid:Pixels conditions, 0.04, 95% CI [-0.07, 0.14], p(— < 0) = 0.253. Note that
for this comparison, the 95% credible intervals for the parameter fall entirely within the ROPE, leading us to
conclude that there is no practical di�erence between these conditions in our experiment.

In an additional (exploratory) analysis we assessed whether this experiment also produced evidence for
source-image-dependence, consistent with the main experiment (scene-like vs texture-like) and Experiment 2
above. To do so, we plot the image-specific intercepts estimated by the model above. We examine this rather
than the raw data because cueing conditions were randomly assigned to each image for each subject, meaning
that the mean performance of the images will depend on this randomisation (though, given our results, the
e�ects are likely to be small). The image-specific intercept from the model estimates the di�culty of each
image, holding cueing condition constant. While the posterior means for some images were close to chance, and
the 95% credible intervals associated with about 100 images overlapped chance performance, approximately
30 images were easily discriminable from their model syntheses, lying above the mean performance for all
images with the CNN 8 model (Figure S12). These results again corroborate the evidence above, that the
fidelity of appearance matching by the CNN scene appearance model depends substantially on the source
image.

To conclude, our results here suggest that if cueing spatial attention improves the “resolution” of the periphery,
then the e�ect is very small. Cohen and colleages (2016) have suggested that an ensemble representation
serves to create phenomenal experience of a rich visual world, and that spatial attention can be used to gain
more information about the environment beyond simple summary statistics. The results here are contrary to
this idea, at least for the specific task and setting we measure here.

Note however that other experimental paradigms may in general be more suitable for assessing the influence
of spatial attention than a temporal oddity paradigm. For example, in temporal oddity participants may
choose to reallocate spatial attention after the first interval is presented (e.g. on invalid trials pointing at
regions of sky). In this respect a single-interval yes-no design (indicating original / synthesis) might be
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preferable. However, analysis of such data with standard signal detection theory would need to assume that
the participants’ decision criteria remain constant over trials, whereas it seems likely that decision criteria
would depend strongly on the image. To remain consistent with our earlier experiments we nevertheless
employed a three-alternative temporal oddity task here; future work could assess whether our finding of
minimal influence of spatial cueing depends on this choice.

2.5 Predicting the di�culty of individual images

As shown above, some images are easier than others. We assessed whether an image-based metric considering
the di�erence between original and synthesised images could predict di�culty at the image level. Specifically,
we asked whether the mean squared-error (MSE) between the original and synthesised images in two feature
spaces (conv5 and pixels) could predict the relative di�culty of the source images. Note that we performed
this analysis first on the results of Experiment 1 (Figure S8), and that these results were used to inform the
hypothesis regarding the usefulness of conv5 vs pixel cues presented in Experiment 3, above. We subsequently
performed the same analysis on the data from Experiment 3. We present both analyses concurrently here for
ease of reading, but the reader should be aware of the chronological order.

2.5.1 Methods

We computed the mean squared error between the original and synthesised images in two feature spaces.
First, the MSE in the pixel space was used to represent the physical di�erence at all spatial scales. Second,
the di�erence in feature activations in the conv5 layer of the VGG network was used as an abstracted feature
space which may correspond to aspects of human perception (e.g. Kubilius, Bracci, and Op de Beeck 2016).
Both are also correlated with the final value of the loss function from our synthesis procedure. As a baseline
we fit a mixed-e�ects logistic regression containing fixed-e�ects for the levels of the CNN model and a random
e�ect of observer on all fixed e�ect terms. As a “saturated” model (a weak upper bound) we added a
random e�ect for image to the baseline model (that is, each image is uniquely predicted given the available
data). Using the scale defined by the baseline and saturated models, we then compared models in which the
image-level predictor (pixel or conv5 MSE, standardised to have zero mean and unit variance within each
CNN model level) was added as an additional linear covariate to the baseline model. That is, each image was
associated with a scalar value of pixel / conv5 MSE with each synthesis. Additional image-level predictors
were compared but are not reported here because they performed similarly or worse than the conv5 or pixel
MSE.

As above, we compared the models using the LOOIC information criterion that estimates out-of-sample
prediction error on the deviance scale. Qualitatively similar results were found using ten-fold crossvalidation
for models fit with penalised maximum-likelihood in lme4.

2.5.2 Results

For the dataset from Experiment 1, the LOOIC favoured the model containing conv5 MSE over the pixel
MSE (LOOIC di�erence 18.2, SE = 8.3) and the pixel MSE over the baseline model (LOOIC di�erence 25.3,
SE = 10.9)—see Figure S13A. The regression weight of the standardised pixel MSE feature fit to all the
data was 0.04 (95% credible interval = 0.15–0.07), and the weight of the standardised conv5 feature was 0.04
(0.2–0.11; presented as odds ratios in Figure S13C). Therefore, a one standard deviation increase in the conv5
feature produced a slightly larger increase in the linear predictor (and thus the expected probability) than
the pixel MSE, in agreement with the model comparison.

Applying this analysis to the data from Experiment 3 lead to similar results (Figure S13B, d). The LOOIC
favoured the model containing conv5 MSE over the pixel MSE (LOOIC di�erence 49.9, SE = 13.3) and the
pixel MSE over the baseline model (LOOIC di�erence 62.4, SE = 16.2). Note that the worse performance of
the image metric models relative to the saturated model (compared to Figure S13A) is because the larger
data mass in this experiment provides a better constraint for the random e�ects estimates of image. The
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Figure S13: Predicting image di�culty using image-based metrics. A: Expected prediction improvement
over a baseline model for models fit to the data from Experiment 1 (Figure S8), as estimated by the LOOIC
(Vehtari et al., 2016). Values in deviance units (-2 * log likelihood; higher is better). Error bars show ±2 1
SE. Percentages are expected prediction improvement relative to the saturated model. B: Same as A but for
the data from Experiment 3 (Figure S11). C: Odds of a success for a one SD increase in the image predictor
for data from Experiment 1. Points show mean and 95% credible intervals on odds ratio (exponentiated
logistic regression weight). D: As for C for Experiment 3.

regression weight of the standardised pixel MSE feature fit to all the data was 0.03 (95% credible interval =
0.14–0.08), and the weight of the standardised conv5 feature was 0.03 (0.21–0.15).

These results show that the di�culty of a given image can be to some extent predicted from the pixel
di�erences or conv5 di�erences, suggesting these might prove useful full-reference metrics, at least with respect
to the distortions produced by our CNN model.
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