




propagation, the likelihood of each feature is 
calculated as a combination of bottom-up inputs from 
the features, and lateral messages from other pools. 
Layers 2 and 3 match the anatomical constraints for 
implementing these computations. They receive feed-
forward inputs from the ‘feature detector’ layer-4 
neurons (Harris & Shepherd, 2015), and send their 
axons across columns covering large distances and 
make patchy connections at their destinations 
(Binzegger et al., 2004).  
 
A few aspects of the specific circuit (Fig 2B) predicted 
by RCN are noteworthy. Neural-RCN has separate 
neurons (green and cyan) within a column for 
receiving messages from a pool and for sending 
messages to that pool. A third neuron (purple) 
integrates the different inputs. The pooling neuron 
(yellow) pools the outputs from the purple neurons in 
multiple feature columns, and sends its output to the 
next level of the hierarchy. Having different neuron 
copies allows for segregation of incoming and 
outgoing messages, which is known to improve the 
accuracy of BP. However, a strict separation might not 
be required for reasonable performance.  
 
The factor between the pools in RCN is a matrix that 
encodes the compatibility between the features in the 
different pools. In neural-RCN, this factor is 
implemented in the dendritic trees of the neurons 
involved. RCN stipulates the specific computations in 
the dendrites of the circuit in Fig 2B. For example, the 
green neuron that is receiving lateral axons from 
neighboring pool will first do a max-like operation over 
those activations and then add it (log domain) with the 
bottom up input it receives from layer 4 neurons. 
 

Feedback computations are similar, and RCN predicts 
that a separate population of neurons in layer 2/3 or 
layer 5 performs this computation for the feedback 
pass. While the lateral connections are the same as in 
Figure 3, neurons in this population will have apical 
dendrites that extend to layer 1 to receive feedback 
from higher levels. Top-down messages act as a 
‘priors’ on the pools at the lower level, and determine 
which pools in the children are ON/OFF. The specific 
feature column that is to be turned ON within a pool is 
then determined as the one most compatible with its 
neighboring pools, based on lateral message passing.  
  
Inter-blob and blob columns in V1 
The use of a factorized contour-surface representation 
enables RCN to generalize to novel combinations of 
shapes and appearances. A similar segregation exists 
in V1 in terms of inter-blobs that represent oriented 
line segments, and the blobs that represent surface 
features like colors or textures (Sincich & Horton, 
2005). RCN makes precise predictions about their 
interactions, based on the PGM in Fig 1E: The 
interactions between blobs (surface features) are 
gated by contour neurons in the inter-blob columns 
(potentially in layer 4). In Figure 3, the green-to-green 
lateral connections are the ones that represent surface 
continuity, and the red-to green lateral connections are 
the ones that represent a surface discontinuity. The 
specific prediction from RCN is that the contour 
neurons, using dendrite level inhibition and 
disinhibition (Stemmler et al., 1995), will select the 
appropriate lateral connections, as part of inference.  
 

Figure 2 A. Computational roles of different laminae in neural-RCN. B. Lateral connections in 
neural-RCN. See text for details. 
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Figure 3: Contour-surface interaction. See 

text for details. 
 
Explaining away and top-down attention via 
the thalamus 
 

 
         Figure 4: Thalamus and explaining away. See 
text for details. 

An integrated functional role of the thalamic pathway 
(Rikhye et al., 2018) is an enduring mystery in 
neuroscience, and RCN makes predictions about this. 
Anatomical data show two feed-forward circuits: a 
direct cortico-cortical connection from from layer 2/3, 
and an indirect cortico-thalamo-cortical connection 
from layer 5. The thalamus also receives feedback 
connections from the higher level. The feedback 
projections from L6 also project back to L4 via an 
inhibitory circuit as shown in Fig 4A. 

To understand RCN mapping, consider the PGM 
fragment in Figure 4B where the nodes a,b,c 
correspond to features at a higher level (V2) and 
nodes e,f,g, correspond to pools at a lower level 
(V1)(or it could represent the top-down connections 
from V1 to LGN.) Explaining away computations, in 
which the feed-forward messages from a child are 
affected by feed-back-messages that it has received, 
happen in child nodes that have more than one parent. 
This basic circuit can act as a template for 
understanding the pathway through the thalamus. 

In neural-RCN, the direct cortical-cortical pathway 
provides fast feed-forward messages without 
explaining away. In the PGM of Figure 4B, The first 
feed-forward pass will assign equal strength the 
different competing hypotheses that have the same 
top-down prior. The pathway that goes through the 
thalamus includes explaining away and attention 
control. Maintaining these two pathways is 
advantageous because a fast feedforward pathway 
can alert the animal to novel situations that might be 
out of context. The inhibitory projection from L6 to L4 
is an approximate version of this explaining away 
circuit as well, which provides faster but approximate 
explaining away mechanism. Figure 4C shows the 
detailed circuitry within the thalamus for explaining 
away computations.  
 

Discussion 
Advances in neural imaging and recording 
technologies have led to a dense amount of data, but 
neuroscience as a field remains theory-sparse. How 
can we understand the cortex at a functional level? 
Our approach could offer a path forward. First build 
models whose representational choices are guided by 
neurobiology and real-world performance. Then work 
back from the model to make detailed connections to 
neurobiology. Through this cycle we hope to build 
better real-world models while simultaneously 
improving the precision and falsifiability of our 
neurobiological predictions. 
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