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Abstract	

The	brain	is	a	complex	system	that	operates	based	on	coordinated	neuronal	activities.	Brain-

wide	cellular	calcium	imaging	techniques	have	quickly	advanced	in	recent	years	and	become	

powerful	tools	for	understanding	the	neuronal	activities	of	small	animal	models.	The	whole	brain	

imaging	generally	requires	to	extract	the	neuronal	activities	from	three-dimensional	(3D)	image	

series.	Unfortunately,	the	3D	image	series	are	obtained	under	imaging	conditions	different	among	

laboratories	and	extracting	neuronal	activities	from	the	data	requires	multiple	processes.	Therefore	

researchers	need	to	develop	their	own	software,	which	has	prevented	the	application	of	whole-

brain	imaging	experiments	in	more	laboratories.	Here,	we	combined	traditional	image	processing	

techniques	with	the	powerful	deep-learning	method	which	can	be	flexibly	modified	to	fit	3D	image	

data	in	the	nematode	Caenorhabditis	elegans	obtained	under	different	conditions.	We	first	trained	

the	3D	U-net	deep	network	to	classify	each	pixel	into	cell	and	non-cell	categories.	Cells	merged	as	a	

whole	region	were	further	separated	into	individual	cells	by	watershed	segmentation.	The	cells	were	

then	tracked	in	3D	space	over	time	with	the	combination	of	a	feedforward	network	and	a	point	set	

registration	method	to	use	local	and	global	relative	positions	of	the	cells,	respectively.	Remarkably,	

one	manually	annotated	3D	image	combined	with	data	augmentation	was	sufficient	for	training	the	

deep	networks	to	obtain	satisfactory	tracking	results.	Our	method	correctly	tracked	more	than	98%	

of	neurons	in	three	different	image	datasets	and	successfully	extracted	brain-wide	neuronal	

activities.	Our	method	worked	well	even	when	the	sampling	rate	was	reduced:	86%	correct	in	case	

4/5	frames	were	removed,	and	when	artificial	noise	was	added	into	the	raw	images:	91%	correct	in	

case	35	times	of	background-level	noise	was	added.	Our	results	proved	that	deep	learning	is	widely	

applicable	to	different	datasets	and	can	help	us	in	establishing	a	flexible	pipeline	for	extracting	

whole	brain	activities.	
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1.	Introduction	

The	brain	is	a	complex	system	consisting	of	thousands	of	millions	of	neurons	that	interact	with	

each	other	in	a	highly	organized	way	[1–4].	To	understand	how	this	complex	system	works,	we	need	

to	monitor	whole-brain	neuronal	activity	on	living	animals	[5,6].	Traditional	electrophysiological	

techniques	such	as	multichannel	extracellular	recording	can	only	measure	the	simultaneous	

activities	of	a	small	proportion	of	neurons.	While	these	types	of	studies	can	be	used	to	elucidate	

local	features	of	specific	neurons,	they	cannot	help	us	understand	the	brain	as	a	whole.	Other	

techniques	such	as	electroencephalography	(EEG),	magnetoencephalography	(MEG),	and	functional	

magnetic	resonance	imaging	(fMRI)	can	monitor	whole	brain	activities.	However,	those	recorded	

signals	reflect	activities	from	a	mass	of	neurons	but	not	individual	neuronal	activity	[7,	8].	On	the	

other	hand,	recent	whole-brain	calcium	imaging	techniques	have	achieved	cellular	level	resolution.	

These	techniques	have	been	used	in	small	animals	with	transparent	brains,	such	as	larval	zebrafish	

[9–13]	and	the	nematode	Caenorhabditis	elegans	[14–18].		

Although	multiple	studies	have	been	reported,	extracting	neuronal	activities	from	whole-brain	

images	is	still	challenging.	Because	a	whole-brain	image	time-series	could	contain	a	large	number	of	

neurons	across	hundreds	or	thousands	of	frames,	manually	marking	and	tracking	the	neurons	would	

be	impossible.	Thus,	automatic	methods	for	processing	such	3D	images	are	required.	In	previous	

studies	[15,16,18,19],	however,	different	labs	have	used	different	strains,	different	microscopy	

systems,	different	imaging	parameters,	and	different	constraint	conditions;	consequently,	each	lab	

needed	to	develop	different	methods	to	process	their	whole-brain	3D	images,	which	is	time-

consuming	and	labor	intensive.	Thus,	a	flexible	method	that	can	be	applied	for	different	imaging	

conditions	is	highly	desired.	There	are	several	benefits	of	using	a	flexible	method:	1.	Easy	

modification	will	allow	researchers	to	quickly	start	a	whole-brain	imaging	experiment;	2.	Imaging	

conditions	can	be	freely	changed	without	requiring	scientists	to	develop	a	new	method;	3.	Datasets	

obtained	from	different	labs	can	be	uniformly	analyzed;	and	4.	Researchers	do	not	need	to	learn	

multiple	methods	for	image	processing.		
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Traditionally,	image	processing	algorithms	are	designed	for	appropriate	features	of	the	image	to	

solve	a	specific	task	[20].	However,	such	manually	designed	methods	cannot	be	easily	applied	to	

images	generated	in	very	different	conditions.	In	recent	years,	deep-learning	techniques	have	

become	popular	in	image	processing	tasks.	Deep-learning	methods	have	out-performed	traditional	

methods	in	some	image	processing	tasks	such	as	image	classification	[21],	thus	demonstrating	the	

power	of	this	technique.	Moreover,	deep-learning	methods	can	be	flexibly	modified	to	perform	with	

very	different	image	conditions.		

Deep-learning	methods	use	an	artificial	neural	network	with	multiple	layers,	i.e.,	a	deep	network,	

to	process	data	such	as	images.	Each	basic	unit	in	the	deep	network	computes	the	weighted	sum	of	

its	inputs	from	previous	layer	and	passes	the	result	to	a	non-linear	function	[22].	By	connecting	such	

basic	units	into	a	large	network,	we	can	approximate	a	variety	of	complex	functions	[23],	such	as	

transforming	an	image	to	a	different	style.	Deeper	networks	with	more	layers	can	recognize	more	

complex/global	features	(e.g.,	person,	car,	cell)	by	combining	simple/local	features	(e.g.,	corners,	

contours)	[24];	thus,	deeper	networks	can	solve	difficult	image	processing	tasks.	Even	though	these	

complex	features	are	rather	difficult	to	design	using	traditional	methods,	deep	networks	can	learn	

these	features	automatically	from	data.	Despite	these	advantages,	deep-learning	methods	have	not	

been	used	for	processing	3D	whole-brain	images	in	previous	studies.	

In	this	study,	we	developed	a	flexible	method	for	extracting	neuronal	activities	from	whole-brain	

images	of	C.	elegans.	In	the	proposed	method,	powerful	and	flexible	deep-learning	techniques	are	

combined	with	traditional	image	processing	techniques	to	process	3D	whole-brain	image	time-series.	

The	deep-learning	parameters	can	be	automatically	learned,	and	the	traditional	techniques	in	our	

method	have	significantly	fewer	parameters	compared	to	previously	reported	methods	[16]	(Table	

1).	In	this	way,	our	proposed	method	can	be	more	easily	modified	to	fit	different	imaging	conditions.	

We	used	two	specific	deep	networks:	the	3D	U-net	[25],	and	a	fully	connected	feedforward	network.	

Both	networks	can	be	efficiently	trained	using	only	one	manually	annotated	3D	image	frame,	which	

reduces	annotation	time.	Using	our	new	method,	we	successfully	extracted	activities	from	three	
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types	of	datasets,	which	were	obtained	under	different	imaging	conditions.	Our	method	also	

successfully	extracted	neuronal	activities	from	more	difficult	image	time-series	that	were	generated	

by	adding	noise	or	by	removing	intermediate	frames	from	a	dataset.	Our	results	demonstrated	that	

deep	learning	could	be	used	to	establish	a	flexible	method	for	extracting	neuronal	activities;	thus,	

such	algorithms	could	be	used	by	more	laboratories	performing	whole-brain	calcium	imaging	

without	considerable	modification.	

	

2.	Results	

2.1	Objective	for	the	proposed	algorithm	

Our	primary	objective	was	to	extract	neuronal	activities	from	whole	brain	3D	images.	A	C.	

elegans	brain	(Fig.	1A)	was	scanned	under	the	microscope	from	the	lowest	layer	to	the	highest	layer	

(Fig.	1B),	and	the	head	neurons	were	marked	by	a	fluorescent	protein.	Each	set	of	the	scanned	2D	

images	from	bottom	to	top	formed	one	frame	of	the	3D	image.	Multiple	cycles	of	scanning	formed	

the	3D	image	time-series	(Fig.	1B;	1C	top).	The	size	of	a	typical	3D	image	(see	type	1	dataset)	was	

around	80	μm	in	width,	170	μm	in	length,	and	40	μm	in	depth,	covering	the	entire	head	region	of	a	

young	adult	worm.	The	time	interval	between	two	successive	3D	images	was	1	s	or	less,	and	the	

time	series	usually	lasted	for	several	hundreds	of	seconds.	Two	types	of	3D	images	were	

simultaneously	scanned:	1.	the	neuron	nucleus	markers,	and	2	the	calcium	indicators,	which	

measured	the	concentration	of	the	calcium	in	each	neuron,	thus	reflecting	neuronal	activities.	To	

extract	the	neuronal	activities	at	each	frame,	we	needed	to	solve	two	major	problems:	1.	Each	

neuron	must	be	assigned	a	specific	label,	and	2.	Each	neuron	must	be	tracked	over	time.	The	process	

of	assigning	a	label	to	each	neuron	is	called	segmentation	(Fig.	1C,	bottom	left).	Note	that	a	single	

neuron	can	span	different	layers	or	different	neurons	can	merge,	forming	a	connected	region,	

because	of	their	close	proximity.	These	factors	can	complicate	the	segmentation	process.	Moreover,	

due	to	the	slight	movement	of	the	worms	under	the	anesthetized/constraint	condition,	the	position	

of	each	neuron	changed	during	the	imaging,	and	the	positions	of	those	neurons	must	be	updated	in	
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a	process	known	as	tracking	(Fig.	1C,	bottom	right).	Both	the	segmentation	and	tracking	processes	

were	performed	using	the	nucleus	marker	images.	Then,	the	neuronal	activities	could	be	easily	

extracted	by	calculating	the	mean	intensity	of	the	calcium	indicator	at	the	regions	corresponding	to	

each	neuron.	To	avoid	movement	artifacts,	the	extracted	calcium	signals	were	usually	normalized,	

e.g.,	divided	by	the	mean	intensity	of	the	nucleus	marker.	

	

2.2	Overall	procedure	for	the	proposed	method	

Fig.	2	illustrates	the	overall	procedure	for	the	proposed	method.	After	pre-processing	(see	

Methods),	we	performed	automatic	segmentation	in	all	3D	images	using	the	3D	U-net	+	watershed	

(see	texts	below),	and	we	only	manually	corrected	mistakes	in	the	first	frame	of	the	resulting	

segmented	image.	The	manually	confirmed	cells	were	tracked,	i.e.,	their	positions	were	updated	

successively	in	following	frames.	To	update	their	positions,	we	inferred	a	transformation	function	

from	each	previous	frame	to	its	subsequent	frame	using	a	feedforward	network	+	point	set	

registration	+	accurate	correction	(see	texts	below).		

	

2.3	Segmentation	

2.3.1	Segmentation	procedure		

The	raw	image	consisted	of	neurons	with	different	intensities,	sizes,	shapes,	and	textures.	Using	

the	3D	U-net,	we	obtained	cell-like	regions	that	were	close	to	those	identified	visually.	Some	cell-like	

regions	included	multiple	neurons,	so	they	were	further	separated	into	individual	neurons	using	the	

watershed	method	[26].	We	manually	corrected	the	segmentation	for	the	first	frame	of	the	image.		

	

2.3.2	3D	U-net	

Cell	segmentation	in	2D	images	using	deep	networks	has	been	previously	reported	[27,28].	

Instead	of	the	more	traditional	convolutional	neural	network,	which	predicts	only	one	pixel	in	one	

implementation	of	the	network	[27],	we	utilized	a	new	structure	called	U-net,	which	can	more-
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efficiently	generate	cell-like	regions	in	the	entire	image	using	a	single	implementation	of	the	

network	[28].	In	real	experiments,	image	series	usually	consist	of	hundreds	or	even	thousands	of	

images;	thus,	efficiency	is	essential.	Both	2D	and	3D	versions	of	U-net	have	been	proposed;	however,	

only	the	2D	version	has	been	previously	tested	in	cell	segmentation	[25,28].	In	this	study,	we	utilized	

the	3D	version	of	U-net	for	cell	segmentation	[25].	We	modified	the	size	of	the	input,	output,	and	

individual	layers	to	suit	images	with	different	resolutions	(Fig	3A,	Fig.	S1).	The	modification	was	

performed	because,	depending	on	the	resolution	of	the	3D	image,	each	unit	of	the	same	U-net	will	

have	a	different	receptive	fields.	Using	these	modified	structures,	our	method	appropriately	

detected	cell-like	regions	in	all	three	test	datasets	as	well	as	the	generated	datasets	(see	below).		

The	cell-like	regions	detected	using	the	3D	U-net	required	a	secondary	step	to	separate	the	

connected	cells	with	the	watershed	method	(see	Method).	The	primary	merit	of	using	the	3D	U-net	

is	its	transformation	of	different	qualities	of	3D	images	into	images	of	the	same	form,	which	

distinguished	cell-like	regions	and	background	regions,	thus	making	the	proposed	algorithm	more	

robust	to	various	imaging	conditions.	In	next	section,	we	explain	how	these	segmented	neurons	in	

the	3D	image	time	series	are	tracked	over	time.	

	

2.4	Tracking	

2.4.1	Tracking	procedure		

There	are	multiple	possible	strategies	for	tracking	neurons.	One	method	is	to	utilize	intensity	or	

textural	information	of	each	neuron.	Based	on	such	information,	we	could	update	position	of	each	

neuron	by	searching	for	its	new	position	one	by	one	in	an	adjacent	region	in	next	frame.	However,	

the	problem	with	this	strategy	is	also	apparent:	neurons	cannot	be	tracked	if	their	movements	are	

greater	than	a	certain	threshold.		

Another	strategy	is	to	use	point	set	registration	methods	[29–31].	In	these	methods,	the	

intensity	and	textural	information	of	the	neurons	are	ignored,	and	the	neurons	are	represented	only	

by	their	center	points.	The	center	points	of	all	neurons	in	one	frame	constitute	a	point	set.	Point	set	
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registration	methods	can	be	used	to	transform	the	positions	of	a	point	set	from	one	frame	to	the	

next,	even	when	large	movements	arise.	The	problem	with	this	strategy	is	that	the	transformations	

are	not	always	accurate	because	the	intensity	and	textural	information	identifying	each	neuron	are	

ignored.	

In	this	study,	we	combined	the	abovementioned	strategies	to	obtain	more	consistent	results	(Fig.	

4A).	We	applied	a	recently	reported	point	set	registration	method	that	considers	both	global	and	

local	structures	(PR-GLS)	[31]	to	obtain	a	rough	transformation	from	frame	t	to	frame	t+1.	The	PR-

GLS	method	requires	an	initial	match	as	a	starting	point,	which	we	obtained	using	our	feedforward	

network	(see	text	below).	The	transformation	function	generated	by	PR-GLS	was	then	corrected	by	

utilizing	the	intensity/texture	information	contained	in	the	3D	U-net	output.		

	

2.4.2	Initial	matching	performed	by	the	feedforward	network	

The	PR-GLS	method	requires	an	initial	match,	i.e.,	a	set	of	correspondences	between	neurons	in	

two	frames.	The	correspondences	can	be	estimated	based	on	the	positions	of	each	neuron	relative	

to	other	neurons,	assuming	that	these	relative	positions	do	not	significantly	change	even	during	the	

worm’s	movement.	By	comparing	the	similarity	of	the	relative	positions	of	two	neurons,	we	can	

determine	whether	they	are	the	same	neurons.	

One	traditional	representation	of	relative	positions	is	fast	point	feature	histograms	(FPFH)	[32].	

A	previous	study	[31]	successfully	used	the	FPFH	method	for	matching	artificial	point	set	datasets.	

However,	we	found	that	FPFH	gave	a	poor	initial	match	for	the	datasets	considered	in	this	study,	

perhaps	because	of	the	sparse	distribution	of	the	worm’s	neurons	(Fig.	S2).	

We	thus	designed	a	three-layer	feedforward	network	to	improve	the	initial	match	(Fig.	4B).	The	

feedforward	network	is	a	basic	but	quintessential	structure	in	deep-learning	methods.	In	fact,	both	

the	convolutional	neural	network	and	U-net	are	specialized	kinds	of	feedforward	networks	[24].	Our	

feedforward	network	successfully	learned	the	appropriate	representations	of	the	relative	neuron	

positions.	By	comparing	the	representations	between	two	points,	the	network	generated	a	similarity	
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score	between	two	neurons.	We	obtained	better	initial	matching	based	on	the	similarity	score	than	

the	matching	by	FPFH	method	(Fig.	S2);	however,	a	few	incorrect	matches	were	observed	(Fig.	4A).		

	

2.4.3	Coherent	non-rigid	transformation	by	PR-GLS	

The	initial	match	obtained	by	the	feedforward	network	usually	had	some	incorrect	matches	(Fig.	

4A),	mainly	because	of	problems	in	the	automatic	segmentation.	In	reality,	the	head	of	the	worm	

cannot	be	deformed	in	an	arbitrary	way;	therefore,	nearby	points	should	have	coherent	motions.	By	

constraining	the	motions	to	be	coherent,	we	can	correct	the	initial	match	and	obtain	a	more	reliable	

transformation	function.	By	applying	the	PR-GLS	method	[31]	to	the	initial	match,	we	obtained	a	

more	reliable	transformation	function	in	which	all	obvious	incorrect	matches	were	corrected	(Fig.	

4A).		

	

2.4.4	Accurate	correction	

The	PR-GLS	method	usually	generates	coherent	transformation	functions	very	close	to	the	real	

transformation.	However,	small	differences	still	occur.	Without	correction,	these	small	differences	

can	cumulate	over	time	to	become	large	differences.	Thus,	we	added	one	more	correction	step	in	

which	the	center	positions	of	each	cell	were	moved	slightly	to	the	centers	of	each	3D	U-net	detected	

region	(for	details,	see	Fig.	S3).	This	correction	step	completed	the	segmentation	and	tracking	of	

neurons	in	3D	space,	and	the	information	from	the	tracked	neurons’	position	was	used	to	extract	the	

activity	of	each	neuron.		

	

2.5	Results	of	extracting	neuronal	activities	from	three	different	test	datasets	

To	evaluate	the	general	applicability	of	our	proposed	method	to	3D	time-series	images,	we	

performed	the	segmentation	and	tracking	using	the	3D	image	series	datasets	from	our	original	strain	

and	from	a	previously	published	strain	[19],	both	of	which	were	obtained	by	using	our	own	3D	

imaging	microscope	system	(dataset	#1	and	#2,	respectively).	We	also	analyzed	a	previously	
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published	3D	image	series	dataset	[16]	(dataset	#3),	which	is	different	from	dataset	#1	and	#2	in	

terms	of	strains,	microscope	system,	and	multiple	aspects	of	image	parameters	(for	details,	compare	

panels	A	in	Fig.	5,	6,	S4,	and	S5).	All	worms	were	immobilized	either	by	an	anesthetizing	drug	or	by	

constraining	apparatus	[16];	however,	they	still	exhibited	some	movements	that	were	solved	using	

the	tracking	method.	The	neurons	in	these	worms	expressed	red	fluorescent	protein	(tdTomato	[33],	

tagRFP	[34],	and	mCherry	[35]	for	datasets	#1,	2,	and	3,	respectively)	for	a	positional	nucleus	marker	

and	genetically-encoded	calcium	indicator	protein	(GECI:	GCaMP5G	[36],	GCaMP6s	[37],	and	YC2.60	

[38],	respectively)	in	the	nuclei	for	neuronal	activity.	

	

We	applied	the	above	methods	(Sections	2.1–2.4)	on	a	test	dataset	of	type	1	from	the	KDK54165	

strain,	which	express	tdTomato	and	GCaMP5G	in	most	of	the	neurons.	After	segmentation,	we	

manually	confirmed	137	neurons	in	the	head	in	the	first	frame	of	the	3D	image	series	(Fig.	5B).	We	

then	applied	the	tracking	method	and	successfully	tracked	all	neurons,	except	for	those	that	moved	

out	of	the	field	of	view	due	to	the	worm’s	motion	(Fig.	5C,	Movie	S1).	Interestingly,	we	found	that	

many	neurons	showed	dynamic	spontaneous	activities	(Fig.	5D,	Movie	S2).	We	also	found	that	many	

activities	were	synchronized	with	each	other,	e.g.,	N38	and	N45	showed	synchronized	activities.	This	

test	dataset	contained	the	fewest	neurons	of	the	type	1	datasets.	We	tested	another	type	1	dataset	

with	more	neurons	(=164;	KDK54165);	however,	that	worm	showed	fewer	neuronal	responses	(Fig.	

S4).	

	

The	same	method	was	applied	on	a	test	dataset	of	type	2	from	the	AML14	strain	[17].	Although	

this	strain	was	very	different	than	the	KDK54165	strain	in	terms	the	nucleus	marker	intensity	(268	vs.	

3563)	and	inconsistent/vibrating	movement	(see	Fig.	S5A,	5A,	and	text	below),	our	method	still	

worked	well	(Fig.	S5C,	Movie	S3)—We	confirmed	101	neurons	and	successfully	extracted	activities	

for	all	neurons	(Fig.	S5D,	Movie	S4).	It	should	be	noted	that	fewer	neurons	were	detected	in	the	

original	report	(about	90	or	less)	[17].	
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We	applied	the	same	method	on	a	test	dataset	of	type	3	using	the	JN2101	strain	[16].	This	

dataset	was	obtained	using	a	different	strain,	a	different	microscopy	system,	and	under	different	

experimental	conditions	than	the	type	1	and	type	2	datasets	(See	Fig.	5A,	6A,	S5A,	and	text	below).	

As	a	consequence,	this	dataset	had	a	lower	resolution	(half	the	resolution	in	the	x	and	y	directions)	

and	larger	displacements	(about	three	times	larger)	between	frames	compared	to	datasets	1	and	2.	

However,	our	method	worked	well	with	a	few	modifications	(see	Method)—We	confirmed	and	

tracked	175	neurons	in	this	dataset	(marked	by	mCherry).	Manual	checking	confirmed	that	only	four	

neurons	(N54,	N62,	N117,	N122)	had	tracking	errors	(Fig.	6C,	6D,	Movie	S5),	i.e.	we	correctly	tracked	

171/175	=	98%	of	the	neurons.	Our	result	was	comparable	to	the	original	report	in	which	27	out	of	

198	neurons	had	tracking	errors	[16].	We	extracted	the	neuronal	activities	from	19	neurons	that	

expressed	the	GECI	(Fig.	6D).	We	observed	that	neuron	N108	showed	a	large	response,	and	the	

response	pattern	was	consistent	with	the	previous	report	[16].		

	

2.6	Challenging	test	conditions	

To	determine	whether	our	method	could	be	applied	to	even	more	difficult	conditions,	we	tested	

our	method	using	a	series	of	generated	datasets	with	increased	difficulties	by	modifying	the	type	3	

dataset.	In	all	tests,	we	applied	the	3D	U-net	as	described	before	using	a	single	training	image	from	

the	original	type	3	dataset.	We	also	used	the	same	manually	corrected	segmentation	of	the	first	

frame	based	on	the	original	image.		

	

In	the	tracking	task,	one	difficulty	comes	from	large	displacements	of	neurons	between	frames,	

and	we	increased	this	difficulty	by	removing	intermediate	frames	in	the	image	time-series.	We	

generated	and	tested	three	datasets	with	1/2	of	the	frames,	1/3	of	the	frames,	and	1/5	of	the	

frames	as	the	original	dataset.	As	expected,	the	number	of	tracking	errors	increased	when	more	

frames	were	removed	(Fig.	7A,	7B).	Even	though	the	error	rate	in	the	1/5	frame	condition	was	rather	
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high	(25/175=14%,	i.e.	86%	correct),	the	error	rate	in	the	1/3	frame	condition	was	acceptable	

(14/175=8%),	suggesting	that	our	method	could	be	applied	to	image	time-series	with	much	larger	

displacements	than	the	type	3	dataset.	

	

Another	difficulty	comes	from	the	low	signal-to-noise	ratio	in	images.	Large	noise	can	obscure	

the	real	cell	signal,	thus	leading	to	incorrect	segmentation	and	tracking.	We	tested	three	modified	

datasets	by	adding	different	levels	of	Poisson	noise	into	the	original	images.	We	added	noise	with	

levels	of	sd	=	60,	sd	=	100,	and	sd	=	140	(Fig.	8A,	8B),	which	was	much	larger	than	the	noise	level	in	

the	original	images	(sd	=	4.05	in	non-cell	regions).	In	the	sd	=	60	condition,	the	image	quality	was	

obviously	poorer	than	the	original	image,	but	our	method	still	achieved	a	low	error	rate	(6/175=3%).	

Even	in	the	sd	=	140	condition,	where	the	image	quality	seemed	to	be	very	poor,	our	method	

achieved	an	acceptable	error	rate	(16/175=9%,	i.e.	91%	correct).	These	results	suggest	that	our	

method	can	be	applied	to	datasets	with	very	poor	image	quality	when	compared	to	the	type	3	

dataset.	However,	note	that	the	segmentation	in	the	first	frame	is	manually	corrected,	and	the	

manual	process	can	also	generate	errors	if	the	image	quality	is	too	low.	Therefore,	even	though	our	

tracking	method	was	rather	robust	for	low	quality	images,	the	image	quality	must	be	sufficient	that	

we	can	correctly	discriminate	cells	during	the	manual	correction	process.		

	

3.	Discussion	

We	showed	that	our	method	was	successfully	applied	to	three	different	real	datasets	and	to	a	

series	of	more	difficult	generated	datasets.	We	tested	a	variety	of	different	conditions,	including	

different	nucleus	marker	fluorescence,	cell	level	intensity,	noise	level,	numbers	of	cells	in	each	image,	

imaging	rates,	resolution	or	image	sizes,	and	worm	constraint	conditions.	Our	method	worked	well	

in	all	of	these	different	conditions	with	only	slight	modifications.	

We	also	showed	that	our	method	can	be	easily	modified	to	fit	different	conditions.	When	the	

resolution	of	the	images	was	the	same	(datasets	of	type	1	and	type	2),	our	method	can	be	directly	
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re-used	without	modification.	When	the	resolution	changed,	we	need	to	perform	the	following	

modifications:	1.	Modify	the	structure	of	the	3D	U-net;	2.	Re-train	the	3D	U-net;	and	3.	Modify	

parameters	in	the	program	related	to	the	resolution.	Still,	we	only	need	to	make	a	few	modifications	

to	the	structure	of	the	3D	U-net.	For	the	re-training,	the	manual	annotation	usually	take	one	day,	

and	the	network	can	be	automatically	trained	in	1	or	2	h	on	our	machine	with	a	single	GPU.	Finally,	

several	parameters	related	to	the	resolution,	such	as	the	minimum	distance	between	cells	and	the	

minimum	size	of	cells	used	in	watershed,	and	the	level	of	coherence	in	PR-GLS,	should	be	modified	

accordingly	(see	Table	1).	Thus,	even	when	the	imaging	conditions	are	different	and	our	method	

need	to	be	adjusted,	the	number	of	parameters	to	be	optimized	are	much	smaller	with	our	method	

than	ones	with	the	conventional	methods	(Table	1)	due	to	the	use	of	deep	learning.	

Because	our	tracking	method	tracked	cells	sequentially	from	the	first	frame	to	the	subsequent	

frames,	mistakes	that	occurred	in	one	step	will	be	maintained	in	all	following	frames.	When	the	

movement	is	small,	the	error	rate	is	very	low,	so	this	is	not	problematic.	However,	with	freely	

moving	worms,	the	error	rate	was	much	higher,	and	a	non-sequential	strategy	may	be	more	robust.	

One	possible	approach	to	resolve	this	issue	is	to	combine	deep	learning	with	ensemble	methods,	

which	construct	a	set	of	predictions	(for	segmentation	and	tracking)	and	vote	based	on	all	

predictions.	A	previous	study	has	applied	a	similar	idea,	but	it	did	not	use	deep	learning	techniques	

[19].	One	shortcoming	of	ensemble	methods	is	that	the	correctness	of	segmentations	and	tracking	

cannot	be	guaranteed	by	the	method	itself.	Therefore,	the	method	will	still	need	manual	

confirmation,	which	can	be	problematic	when	image	quality	is	low,	as	we	have	described.	

To	further	simplify	the	entire	procedure,	we	may	develop	new	network	structures	that	combine	

more	steps.	This	development	may	not	be	easy,	but	some	recent	studies	have	suggested	possible	

directions.	The	U-net	and	3D	U-net	are	networks	for	semantic	segmentation.	Such	networks	classify	

each	pixel	as	a	specific	category,	such	as	human,	animal,	cell,	or	background.	In	contrast,	there	are	

networks	designed	for	object	segmentation	(also	called	instance	segmentation)	that	further	

separate	objects	in	the	same	category	into	individuals:	cell	#1,	cell	#2,	cell	#3	and	so	on.	Compared	
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with	semantic	segmentation,	object	segmentation	requires	one	more	step	and	is	thus	more	difficult	

to	design	the	method,	but	this	type	of	network	would	be	suitable	for	our	case.	This	field	has	also	

significantly	advanced	in	recent	years,	and	many	methods	have	been	developed	[39–41].	These	

methods	have	been	tested	on	public	datasets	such	as	common	objects	in	context	(COCO),	but	they	

have	not	been	tested	in	cell	segmentation.	Furthermore,	there	is	no	current	object	segmentation	

method	designed	for	3D	image	segmentation.	However,	object	segmentation	may	be	one	possible	

approach	for	improving	cell	segmentation	in	future	studies.	Another	possible	improvement	could	

occur	in	the	feedforward	network—By	designing	a	more	appropriate	structure	and	by	using	more	

training	data,	the	feedforward	network	should	give	a	better	initial	match	that	can	be	directly	used	

for	tracking	all	neurons.	

In	this	study,	we	designed	a	new	method	to	solve	the	segmentation	and	tracking	problem	for	

extracting	whole-brain	activities	from	3D	images.	We	used	deep-learning	techniques	including	the	

3D	U-net	and	a	feedforward	network,	which	can	be	flexibly	modified	for	processing	images	taken	

under	different	conditions.	By	combining	these	deep-learning	techniques	with	traditional	image	

processing	methods	such	as	watershed	and	point	set	registration,	we	successfully	segmented	and	

tracked	neurons	from	three	different	types	of	imaging	datasets	as	well	as	from	more	difficult	

generated	datasets.	These	results	proved	that	our	proposed	method	could	be	flexibly	and	widely	

applied	to	3D	whole-brain	images	obtained	under	different	conditions.	

	

4.	Methods	

4.1	Strains	

The	techniques	used	to	culture	and	handle	C.	elegans	were	essentially	the	same	as	those	

described	previously	[42].	Both	TQ1101	lite-1(xu7)	and	AML14	were	obtained	from	the	

Caenorhabditis	Genetics	Center	(University	of	Minnesota,	USA).	Young	adult	hermaphrodites	were	

used	in	the	imaging	experiments.	
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4.2	Molecular	biology	and	germline	transformation		

For	pan-neuronal	expression,	NLS::tdTomato::NLS	[43]	and	NLS::GCaMP5G::NLS	(in	which	

GCaMP5G	[36]	was	codon-optimized	for	C.	elegans	and	attached	with	NLS	at	N-	and	C-termini)	were	

fused	with	rab-3	promoter	[44]	using	a	GATEWAY	system®	(Thermo	Fisher	Scientific).	Germline	

transformation	into	lite-1(xu7)	[45]	was	performed	using	a	microinjection	[46]	with	a	solution	

containing	pYFU251	rab-3p::NLS::GCaMP5G::NLS	(25	ng/µl),	pYFU258	rab-3p::NLS::tdTomato::NLS	

(20	ng/µl),	and	OP50	genome	(55	ng/µl)	in	order	to	obtain	the	strain	KDK54165.	The	strain	lite-1(xu7)	

was	used	to	reduce	the	blue	light-induced	activation	of	the	worm’s	sensory	system	[45].	

Independent	transgenic	lines	obtained	from	the	injection	produced	similar	results.		

	

4.3	Datasets	

In	this	study,	we	used	three	dataset	types.	The	3D	images	in	the	type	1	and	type	2	datasets	were	

obtained	using	our	custom-made	microscope	system,	OSB3D	(see	Section	4.4).	The	type	1	worm	

strain	was	KDK54165,	while	the	type	2	worm	strain	was	AML14	[17,19]	(wtfEx4[Prab-

3::NLS::GCaMP6s:	Prab-3::NLS::tagRFP]).	The	3D	images	in	the	type	3	dataset	were	published	in	a	

previous	report	[16]	and	used	worm	strain	JN2101	(Is[H20p::NLS4::mCherry];	Ex[tax-4p::nls-YC2.60,	

lin-44p::GFP]).		

	

4.4	OSB3D	microscope	system	for	the	type	1	and	type	2	datasets	

We	upgraded	our	robotic	microscope	system	to	3D	version	[47].	For	the	3D	imaging,	we	used	a	

custom-made	microscope	system	that	integrated	the	Nikon	Eclipse	Ti-U	inverted	microscope	system	

with	an	LV	Focusing	Module	and	a	FN1	Epi-fl	attachment	(Flovel,	Japan).	The	excitation	light	was	a	

488-nm	laser	from	OBIS	488-60	LS	(Coherent)	that	was	introduced	into	a	confocal	unit	(CSU-X1)	with	

a	filter	wheel	controller	(CSU-X1CU)	to	increase	the	rotation	speed	to	5,000	rpm	(Yokogawa,	Japan).	

The	CSU-X1	was	equipped	with	a	dichroic	mirror	(Di01-T-405/488/561,	Semrock)	to	reflect	the	488-

nm	light	to	an	objective	lens	(CFI	S	Fluor	40X	Oil,	Nikon,	Japan),	which	passed	through	the	GCaMP	
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indicator	used	for	calcium	imaging	and	the	red	fluorescent	protein	used	for	cell	positional	markers.	

The	laser	power	was	set	at	60	mW	(100%).	The	fluorescence	was	introduced	through	the	CSU-X1	

into	an	image	splitting	optic	(W-VIEW	GEMINI,	Hamamatsu,	Japan)	with	a	dichroic	mirror	(FF560-

FDi01,	Opto-line,	Japan)	and	two	bandpass	filters	(BA495-540	and	BA570-625HQ,	Olympus,	Japan).	

The	two	fluorescent	images	were	captured	side-by-side	on	an	sCMOS	camera	(ORCA	Flash	4.0v3,	

Hamamatsu,	Japan),	which	was	controlled	by	a	Precision	T5810	(Dell)	computer	with	128-GB	RAM	

using	HC	Image	Live	software	(Hamamatsu)	for	Windows	10	Pro.	A	series	of	images	for	one	

experiment	(about	1–4	min)	required	about	4–15	GB	of	space,	which	were	stored	on	the	128-GB	

RAM	during	the	experiment	and	transferred	to	a	1-TB	USB	3.0	external	solid	state	drive	

(TS1TESD400K,	Transcend,	Taiwan)	for	further	processing.	

For	3D	imaging,	the	z-position	of	the	objective	lens	was	regulated	by	a	piezo	objective	positioner	

(P-721)	with	a	piezo	controller	(E665)	and	PIMikroMove	software	(PI,	Germany).	The	timings	of	the	

piezo	movement	and	the	image	capture	were	regulated	by	synchronized	external	edge	triggers	from	

an	Arduino	Uno	(Arduino,	Italy)	using	35-ms	intervals	for	each	step,	in	which	the	image	capture	was	

29.9	ms.	For	each	step,	the	piezo	moved	1.5	µm,	and	one	cycle	consisted	of	29	steps.	We	discarded	

the	top-most	step	because	it	frequently	drifted	off	the	correct	position,	and	we	used	the	remaining	

28	steps.	Note	that	one	3D	image	was	42	µm	in	length	along	the	z-axis,	which	was	determined	based	

on	the	typical	diameters	of	neuronal	cell	bodies	(2–3	µm)	and	of	a	young	adult	worm’s	body	(30-40	

µm).	Each	cycle	took	1015	ms;	thus,	one	3D	image	was	obtained	per	second.	This	condition	was	

reasonable	for	monitoring	neuronal	activities	because	the	worm’s	neurons	do	not	generate	action	

potentials	[48]	and	because	many	neuronal	responses	change	on	the	order	of	seconds	[49].	We	also	

tested	a	condition	using	10	ms	for	each	step	and	4.9	ms	for	an	exposure	using	the	same	step	size	

and	step	number	per	cycle	(i.e.,	2.3	frames	of	3D	images	per	second),	which	resulted	in	a	

comparable	result	(data	not	shown).	For	cyclic	regulation	of	the	piezo	position,	we	used	a	sawtooth	

wave	to	assign	positional	information,	instead	of	a	triangle	wave,	because	the	sawtooth	wave	

produced	more	accurate	z	positions	with	less	variance	among	cycles.	
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4.5	Computational	environment	

Our	image	processing	task	was	performed	on	a	personal	computer	with	an	intel○R 	CoreTM	i7-

6800K	CPU	@	3.40	GHz	x	12	processor,	15.5	GB	of	memory,	and	an	Ubuntu	16.04	LTS	64-bit	

operating	system.	We	trained	and	implemented	the	neural	networks	on	a	NVIDIA	GeForce	GTX	1080	

GPU	(8GB).	The	neural	networks	were	constructed	and	implemented	through	the	Keras	high-level	

neural	network	API	(https://keras.io),	running	on	top	of	the	Tensorflow	machine-learning	framework	

(Google,	USA).	All	programs	were	implemented	in	python,	except	for	the	image	alignment,	which	

was	implemented	in	ImageJ	(NIH),	and	the	image	annotation	and	manual	correction,	which	were	

implemented	in	ITK-SNAP	(http://www.itksnap.org).	

	

4.6	Pre-processing	

Due	to	the	movement	of	the	worms,	there	could	be	small	or	large	displacements	between	

different	layers	of	the	same	frame,	which	needed	to	be	compensated	for	before	the	segmentation	

procedure.	Using	the	StackReg	plugin	[50]	in	ImageJ	(NIH),	we	compensated	for	the	displacements	

by	using	rigid-body	transformations	to	align	each	layer	with	the	center	layer.		

Neurons	in	the	same	worm	can	have	very	different	intensities,	which	made	it	difficult	to	detect	

weak	neurons.	To	solve	this	problem,	we	applied	local	contrast	normalization	[24]	through	a	sliding	

window	(27	x	27	x	3	pixels)	so	that	all	neurons	had	similar	intensities.	This	normalization	was	applied	

only	to	the	nucleus	marker	images	and	did	not	affect	to	calculate	the	signal	intensities	for	calcium	

imaging.	

	

4.7	3D	U-net	

We	used	a	3D	U-net	structure	similar	to	that	shown	in	the	original	study	[25].	The	network	

received	a	3D	image	as	input	and	generated	a	3D	image	of	the	same	size	with	values	between	0	and	

1,	indicating	the	probability	that	each	pixel	belonged	to	a	cell	region.	The	3D	U-net	structure	shown	
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in	Fig.	3A	was	used	on	our	type	1	and	type	2	datasets,	which	have	the	same	resolution.	For	the	type	

3	dataset,	which	had	a	lower	resolution	and	smaller	size,	we	reduced	the	number	of	pooling	

operations	and	the	sizes	of	the	input,	output,	and	intermediate	layers.	The	smaller	structure	

occupied	less	GPU	memory,	so	we	increased	the	number	of	convolutional	filters	on	each	layer	to	

increase	the	capacity	of	the	network	(see	Fig.	S1).		

The	U-net	can	be	trained	using	very	few	annotated	images	[28].	In	this	study,	we	trained	two	3D	

U-nets:	one	for	the	type	1	and	2	datasets	and	one	for	the	type	3	dataset.	Each	3D	U-net	used	one	3D	

image	for	training.	The	image	was	manually	annotated	into	cell	regions	and	background	regions	

using	the	ITK-SNAP	software.	We	used	the	binary	cross-entropy	as	the	loss	function	to	train	the	3D	

U-net.	Because	the	raw	image	sizes	were	too	large	(512	x	1024	x	28	or	256	x	512	x20),	we	divided	

the	raw	images	into	small	sub-images	that	fit	the	input	sizes	of	the	two	3D	U-nets	(160	x	160	x	16	or	

96	x	96	x	8).	To	improve	the	3D	U-net	performance,	we	used	dataset	augmentation	to	increase	the	

training	data	by	applying	random	affine	transformations	to	the	annotated	3D	images.	The	affine	

transformation	was	restricted	on	the	x-y	plane	but	not	in	z-direction	because	the	resolution	in	the	z-

direction	is	much	lower	than	that	in	the	x-y	plane	(see	Fig.	5A,	6A,	and	S5A).	To	verify	the	

generalization	of	our	3D	U-net,	we	used	test	datasets	that	were	independent	of	the	type1	and	type	2	

training	datasets.	Because	we	had	only	one	type	3	dataset,	we	trained	the	3D	U-net	using	the	frame	

#1	image	and	applied	the	3D	U-net	to	all	frames	of	the	dataset.	

	

4.8	Watershed	

The	3D	U-net	generated	probability	outputs	between	0	and	1	that	indicated	the	probability	a	

pixel	belonged	to	a	cell-like	region.	By	setting	the	threshold	to	0.5,	we	could	divide	the	3D	image	into	

cell-like	regions	(>0.5)	and	background	regions	(≤0.5).	The	cell-like	regions	in	the	binary	images	were	

further	transformed	into	distance	maps,	where	each	value	indicated	the	distance	from	the	current	

pixel	to	the	nearest	background	region	pixel.	We	applied	a	Gaussian	blur	to	the	distance	map	and	

searched	for	local	peaks,	which	were	assumed	to	be	cell	centers.	We	then	applied	watershed	
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segmentation	[26]	using	these	centers	as	seeds.	Watershed	segmentation	was	applied	twice;	the	

first	application	was	2D	watershed	segmentation	in	each	x-y	plane,	and	the	second	application	was	

3D	watershed	segmentation	of	the	whole	image.	Two	segmentations	were	used	because	the	

resolution	in	the	x-y	plane	and	z-direction	differed,	and	we	needed	to	establish	different	minimal	

distances	between	local	peaks.			

	

4.9	Feedforward	network	

As	Fig.	4B	illustrates,	the	input	of	the	network	contained	the	position	information	for	two	points.	

Each	point	was	represented	by	the	normalized	positions	of	the	20	nearest	neighboring	points.	The	

20	nearest	neighbor	positions	(𝒅𝟏, 𝒅𝟐, … , 𝒅𝟐𝟎)	were	given	by	3D	vectors	because	they	were	

extracted	from	the	3D	image.	To	normalize	the	points,	each	of	the	20	positions	was	divided	by	the	

mean	distance	d	(𝒅 = 𝟏
𝟐𝟎

𝒅𝒌𝟐𝟎
𝒌)𝟏 ).	The	normalized	positions	were	then	sorted	by	their	absolute	

values,	from	shortest	to	longest.	Finally,	the	mean	distance	d	was	included	as	the	last	value,	so	each	

point	was	represented	by	a	61D	vector.	

We	used	the	first	fully	connected	layer	to	calculate	the	learned	representation	of	the	relative	

positions	of	each	point	as	a	512D	vector	(Fig.	4B,	the	first	hidden	layer	after	input).	The	vectors	for	

the	two	input	points	were	concatenated	to	become	a	1024D	vector.	We	then	applied	a	second	fully	

connected	layer	on	this	1024D	vector	to	compare	the	representations	of	the	two	points.	The	

resulting	512D	vectors	were	processed	by	a	third	fully	connected	layer	to	obtain	a	single	similarity	

score	between	0	and	1,	which	indicated	how	likely	that	two	points	came	from	the	same	neuron.		

We	performed	segmentation	on	a	single	frame	of	the	type	3	dataset	and	obtained	a	point	set	for	

the	centers	of	all	neurons.	Because	we	needed	a	large	number	of	matched	point	sets	for	training	and	

manually	matching	point	sets	is	time-consuming	and	impractical,	we	created	an	artificial	training	

dataset	by	applying	random	affine	transformations	to	the	point	set	described	above	and	adding	

small	random	movements	to	each	point.	The	correspondence	between	the	generated	point	sets	was	

completely	known,	so	we	could	train	the	feedforward	network	with	the	artificially	generated	dataset.	
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We	used	binary	cross-entropy	as	the	loss	function	to	train	the	feedforward	network.		

	

4.10	PR-GLS	method	

The	PR-GLS	method	requires	an	initial	match	to	start	the	tracking	process	[31].	This	initial	match	

was	calculated	using	the	similarity	scores	from	the	feedforward	network.	In	this	procedure,	we	

matched	the	two	points	from	two	different	frames	with	the	highest	scores,	deleted	these	two	points,	

and	matched	the	next	set	of	two	points	with	the	highest	scores.	By	repeating	this	process,	we	

obtained	an	initial	match	(Fig.	4A).	This	initial	match	was	corrected	using	the	expectation-

maximization	(EM)	algorithm	in	the	PR-GLS	method	as	described	in	the	original	paper	[31].	We	set	

the	maximum	number	of	EM	iteration	steps	to	be	20	and	obtained	satisfactory	results	in	all	test	

datasets.	In	the	original	paper	[31],	the	initial	match	(by	FPFH)	was	re-calculated	during	the	EM	

iterations,	but	we	only	calculated	the	initial	match	once	(by	feedforward	network)	before	the	EM	

steps	were	performed	without	problems.	After	the	PR-GLS	corrections,	we	obtained	coherent	

transformations	from	the	points	of	each	frame	to	the	subsequent	frame	(Fig.	4A).	

	

4.11	Extracting	activities	

After	we	tracked	the	manually	confirmed	neurons	from	the	first	frame	to	the	last	frame,	we	

could	easily	extract	activities	from	the	regions	corresponding	to	each	neuron.	We	measured	the	

intensities	in	both	channels	corresponding	to	the	Ca2+	indictor	and	the	nucleus	marker.	The	activity	

was	computed	as	GCaMP5G/tdTomato	in	the	type	1	dataset,	GCaMP6s/tagRFP	in	the	type	2	dataset,	

and	CFP/YFP	in	the	type	3	dataset.		

	

4.12	Manual	check	and	correction	

We	manually	checked	the	results	of	segmentation	and	tracking.	For	segmentation,	we	

superimposed	the	automatically	segmented	regions	of	frame	#1	onto	the	raw	3D	image	using	the	

ITK-SNAP	software.	By	careful	observation,	we	discarded	artifact	regions,	such	as	autofluorescence	
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regions	and	neuronal	processes.	Over-segmentation	and	under-segmentation	regions	were	

corrected	according	to	the	size	and	shape	of	normal	neurons.	For	cell	tracking,	we	combined	two	4D	

images,	namely	the	tracked	labels	and	the	raw	image	time	series,	in	a	top-bottom	arrangement	in	

the	ImageJ	software	in	order	to	compare	the	images	at	each	time	point.	By	observing	the	

correspondence	between	the	tracked	labels	and	the	raw	images	at	different	time	points,	we	could	

identify	mistakes	in	the	tracking	result.		
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Figure	1.	Extraction	of	neuronal	activity	from	3D	data	sets.	A)	Photograph	of	C.	elegans	taken	using	

our	microscopy	system	at	a	low	amplification.	B)	Right:	Schematic	of	the	3D	imaging	experiment.	The	

plane	parallel	with	the	slide	glass	is	the	x-y	plane,	whose	orthogonal	direction	is	the	z	direction.	Left:	

an	illustration	of	head	neurons	(white	circles)	projected	onto	the	x-z	plane.	C)	Top:	An	schematic	of	

3D	images	received	from	the	microscope.	Each	3D	image	consists	of	a	series	of	2D	images	at	

different	z	levels.	The	microscope	takes	3D	images	at	different	times	and	forms	a	3D	image	time	

series.	Bottom:	Example	of	segmentation	and	tracking.	We	segmented	the	cell-like	regions	of	a	3D	

image	into	individual	cells,	and	then	those	cells	are	tracked	over	time	to	update	their	positions	due	

to	movements	of	the	worm.		
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Figure	2.	Overall	procedure	of	our	segmentation	and	tracking	method.	Pre-processed	3D	images	

were	automatically	segmented	into	discrete	regions.	The	first	frame	of	the	segmentation	was	

manually	corrected.	In	following	frames,	the	positions	of	the	manually	confirmed	cells	were	

successively	updated	by	inferred	transformation	functions.	The	circled	numbers	indicate	the	five	

different	procedure	steps:	1.	Pre-processed	3D	images;	2.	Automatic	segmentation;	3.	Manual	

correction	of	the	segmentation	in	the	first	frame;	4.	Inferred	transformation	functions;	and	5.	

Tracking	results.	 	
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Figure	3.	Procedure	for	segmentation	with	3D	U-net	and	post-processing.	A)	Structure	of	the	3D	U-

net.	Numbers	on	each	intermediate	layer	indicate	the	number	of	convolutional	filters,	while	

numbers	at	left	of	each	row	indicate	the	size	of	the	3D	input,	output,	and	intermediate	layers.	B)	

Schematic	of	the	segmentation	steps	using	one	layer	of	a	3D	image.	The	circled	numbers	correspond	

to	the	numbers	in	Figure	2.	 	
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Figure	4.	Tracking	method.	A)	Procedures	for	the	tracking	method.	The	circled	numbers	correspond	

to	those	in	Figure	2	and	Figure	3.	In	4-1	and	4-2,	the	red	circles	are	the	centers	of	segmented	

neurons	at	t=1;	blue	crosses	are	the	centers	at	t=2;	and	the	red	lines	are	the	inferred	

matching/transformation	from	t=1	to	t=2.	B)	Left:	Definition	of	the	position	of	each	point.	Right:	

Structure	of	the	feedforward	network	for	calculating	the	similarity	score	between	two	points.	

Numbers	on	each	layer	indicate	the	shape	of	the	layer.	 	
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Figure	5.	Results	for	an	example	type	1	dataset.	A)	Experimental	conditions	for	this	dataset.	B)	3D	

image	and	its	segmentation	result	in	frame	#1.	Top	left:	Some	of	the	layers	of	the	3D	image.	Top	

right:	Cell-like	regions	corresponding	to	the	figures	at	left,	detected	by	the	3D	U-net.	Middle:	Cell-
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like	regions	of	the	3D	view	including	all	layers.	Bottom:	Final	segmentations	using	watershed	plus	

manual	correction.	C)	Tracking	results.	Tracked	cells	in	frame	#120	and	frame	#240	are	shown,	which	

are	transformations	from	the	segmentation	in	frame	#1.	In	each	sub-figure,	the	top	shows	the	

tracked	cells,	and	the	bottom	shows	cell-like	regions	detected	by	3D	U-net.	D)	Extracted	activities	in	

137	manually	confirmed	neurons.	To	eliminate	movement	artifacts,	the	activities	are	defined	as	the	

mean	intensity	of	the	GCaMP5G	signal	divided	by	the	mean	intensity	of	the	tdTomato	signal	in	each	

tracked	cell	region.	The	horizontal	axis	in	each	subfigure	indicates	the	frame	number,	while	the	

vertical	axis	indicates	the	activity.	No	neurons	were	mistracked;	however,	some	neurons	were	lost	

because	they	moved	out	of	the	visual	field	of	the	camera.	 	
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Figure	6.	Results	for	a	type	3	dataset.	A)	Experimental	conditions	for	this	dataset.	B)	3D	image	and	its	

segmentation	result	in	frame	#1.	C)	Tracking	results.	Tracked	cells	in	frame	#275	and	frame	#591	are	

shown.	D)	Extracted	activities	in	19	neurons	(marked	by	yellow),	expressing	the	calcium	indicator	

YC2.60,	which	is	driven	by	the	tax-4	promoter.	Signals	in	the	other	156	neurons	that	do	not	express	

YC2.60	are	artifacts.	Only	four	neurons	(N52,	N62,	N117,	N122)	were	mistracked.		 	
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Figure	7.	Testing	the	robustness	of	our	method	by	removing	intermediate	frames	from	the	type	3	

dataset.	A)	Tracking	results	in	the	last	frame	at	four	different	sampling	rates.	B)	Bar	graph	showing	

the	numbers	of	incorrectly	tracked	and	correctly	tracked	neurons	for	the	four	sampling	rates.	
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Figure	8.	Testing	the	robustness	of	our	method	by	adding	Poisson	noise	into	the	type	3	dataset.	A)	

Tracking	results	in	the	last	frame	for	four	different	noise	levels.	B)	Bar	graph	showing	the	numbers	of	

incorrectly	tracked	and	correctly	tracked	neurons	for	the	four	noise	levels.		
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Figure	S1.	Structure	of	the	3D	U-net	used	for	the	type	3	dataset.		
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Figure	S2.	Examples	of	initial	matchings	by	FPFH	and	our	feedforward	network.	In	each	subfigure,	

there	are	two	point	sets	(blue	points	at	top	and	bottom)	from	two	different	frames	of	the	same	

worm.	Red	lines	indicate	the	estimated	matchings	between	these	two	sets.	 	
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Figure	S3.	Accurate	correction	of	the	coherent	transformation.	A)	Correction	method	in	the	single	

neuron	case.	The	large	black	ellipse	is	the	region	of	a	cell	predicted	by	PR-GLS,	while	the	small	black	

circle	is	the	center	of	the	PR-GLS	predicted	region.	The	dashed	blue	ellipse	is	the	region	detected	by	

3D	U-net.	The	region	filled	with	blue	lines	indicates	the	intersection	of	the	PR-GLS	region	and	the	3D	

U-net	region,	and	the	small	blue	circle	indicates	the	center	of	the	intersection	region.	The	arrow	

shows	the	correction	vector	suggested	by	this	method,	i.e.,	the	center	of	the	cell	should	move	from	

the	small	black	circle	to	the	small	blue	circle.	B)	Correction	method	in	the	case	that	two	predicted	

regions	partially	overlap.	The	method	is	basically	the	same	as	in	A),	except	the	overlapped	region	

between	two	black	ellipses	is	discarded	when	the	intersection	regions	(blue	lines)	are	determined	in	

order	to	prevent	merging	of	the	two	neurons.	 	
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Figure	S4.	Results	for	another	type	1	dataset.	A)	Experimental	conditions	of	the	dataset.	B)	3D	image	

and	its	segmentation	result	in	frame	#1.	C)	Tracking	results.	Tracked	cells	in	frame	#86	and	frame	

#171	are	shown.	D)	Extracted	activities	in	164	manually	confirmed	neurons.	No	neuron	was	

incorrectly	tracked.	
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Figure	S5.	Results	for	the	type	2	dataset.	A)	Experimental	conditions	of	the	dataset.	B)	3D	image	and	

its	segmentation	result	in	frame	#1.	C)	Tracking	results.	Tracked	cells	in	frame	#37	and	frame	#71	are	

shown.	D)	Extracted	activities	in	101	manually	confirmed	neurons.	No	neuron	was	incorrectly	

tracked.		 	
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Table	1.	Comparison	of	the	complexities	between	the	previous	method	[16]	and	our	method.	For	

each	method,	the	procedures	are	listed	along	with	the	number	of	parameters	(red)	utilized.		
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