Modelling cancer immunomodulation using epithelial organoid cultures

Authors

Yotam E. Bar-Ephraim¹,²,⁸, Kai Kretzschmar¹,²,⁸, Priyanca Asra¹,², Evelien de Jongh¹,², Kim E. Boonekamp¹,², Jarno Drost³, Joost van Gorp⁴, Apollo Pronk⁵, Niels Smakman⁵, Inez J. Gan⁶, Zsolt Sebestyén⁶, Jürgen Kuball⁶, Robert G.J. Vries⁷, Hans Clevers¹,²,³*

¹Oncode Institute, Hubrecht Institute, Royal Netherlands Academy for Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, the Netherlands
²UMC Utrecht, Cancer Genomics Netherlands, Utrecht, the Netherlands
³Princess Máxima Centre for Paediatric Oncology, Utrecht, the Netherlands
⁴Department of Pathology, Diakonessenhuis hospital, Utrecht, the Netherlands
⁵Department of Surgery, Diakonessenhuis hospital, Utrecht, the Netherlands
⁶Laboratory of Translational Immunology, Department of Immunology, UMC, Utrecht, the Netherlands
⁷Foundation Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
⁸These authors contributed equally: Yotam E. Bar-Ephraim, Kai Kretzschmar

*Corresponding author, e-mail: h.clevers@hubrecht.eu

Introduction

Colorectal cancer (CRC) is among the most common cancers worldwide¹. While early CRC stages are highly treatable by surgical removal, later stages are usually incurable². CRC arises through a multi-step process from small lesions of the epithelium of the large intestine. These lesions grow into adenomas with low grade dysplasia that progress into high grade dysplasia, eventually giving rise to infiltrating carcinomas³. Genetic mutations in signalling pathways such as the canonical Wnt signalling are the molecular basis of CRC⁴. However, the interaction of the tumour with its microenvironment is another critical hallmark⁵. Cancer cells remodel their microenvironment (e.g. fibroblasts, the vasculature and immune cells) to support tumour growth⁶. Infiltrating immune cells (ICs) such as cytotoxic T cells (CTLs) or macrophages play a crucial role by generating different
immune responses such as anti-tumour cytotoxicity (the former) or tumour-promoting chronic inflammation (the latter)\(^7\). As such, escape from the surveilling immune system has been recognised as one of the hallmarks of cancer\(^5\). Cancer cells undergo a process called immunoediting and silence anti-tumour responses, for example, by preventing T-cell activation through stimulation of inhibitory cell surface receptors such as CTL-associated antigen (CTLA)-4 or programmed death (PD)\(^{16,8}\). Overcoming this active immunomodulation by tumour cells has become a major therapeutic target\(^9\). However, tumour heterogeneity, such as differential CTL infiltration, could influence therapeutic efficiency of anti-tumour drugs by mediating drug resistance\(^6\). Developing \textit{ex vivo} model systems to characterise the communication of the tumour with its environment is therefore of great importance. Organoid cultures grown from different epithelial tissues serve as an excellent tool to study tissue homeostasis and disease\(^10\). Furthermore, organoid biobanks of multiple epithelial organ systems have been established and tumor-derived organoids have successfully been used as platforms for screenings of different drugs to predict patient response\(^11\). Here we describe the establishment of a method to model antigen-specific epithelial-cell killing and cancer immunomodulation and \textit{in vitro} using CRC organoids co-cultured with CTLs.

\section*{Results}

\textbf{CRC organoids express immunomodulatory molecules}

We first assessed whether CRC organoids expressed immunomodulatory molecules in established long-term expanded cultures. Therefore, we compared gene expression of T-cell-specific immunomodulators in CRC organoids to the expression levels found in normal colon organoids using a transcriptome dataset generated using our ‘living organoid biobank’ of CRC patients\(^12\). On average, transcription of genes associated with T-cell stimulation such as \textit{TNFSF4} or \textit{TNFSF9} was not altered in CRC organoids compared to normal colon organoids (Fig. 1a). However, expression of human leukocyte antigen (HLA) genes \textit{HLA-A} and \textit{HLA-C}, encoding major histocompatibility complex class (MHC)-I molecules that present antigens to T cells, were significantly downregulated in CRC organoids (Fig. 1a), a well-described phenomenon found in cancers\(^13\). Expression of genes associated with inhibition of T-cell function was either significantly upregulated such as \textit{BTLA}, significantly downregulated such as \textit{CD80}, \textit{CD86} or \textit{LGALS9} or not altered at all such as \textit{CD274} (encoding PD-L1), \textit{PDCD1LG2} (encoding PD-L2) (Fig. 1a). When
assessing expression levels of immunomodulatory molecules on individual organoids, CRC organoids largely clustered together showing heterogeneous down regulation of HLA-A, HLA-C and LGALS9 compared to healthy colon organoids (Fig. 1b). However, expression of immunoinhibitory genes CD274 and PDCD1LG2, for instance, was highly upregulated in some CRC organoids in comparison to the matched normal colon organoid cultures, reflecting previously reported preservation of tumour heterogeneity in organoids12 (Fig. 1b). These molecular signatures provide a basis for further investigation of tumour immunogenicity and its association with other characteristics of the tumour.

Four of the most commonly mutated genes in CRC are APC, P53, KRAS and SMAD4, reflecting the stepwise progression of the normal intestinal epithelium into a metastatic carcinoma14. Introduction of these cancer mutations into human intestinal organoid cultures using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 demonstrated that this process can be mimicked in vitro and upon xenotransplantation into mice15,16. Using colon organoids carrying one or more of these cancer mutations, we investigated whether up-regulation of PD-L1 was associated with a certain mutational status. Additionally, we exposed mutant organoids and their wild-type control organoid line to Interferon (IFN)-γ, which is secreted by T cells and can trigger increased expression of immunomodulatory molecules such as PD-L117. Subsequently, we assessed PD-L1 expression by quantitative polymerase chain reaction (qPCR) and flow cytometry (Fig. 1 c,d). In the absence of IFN-γ, organoids carrying triple (APC^KO/KO, P53^KO/KO, KRAS^G12D+/+) and quadruple mutations (APC^KO/KO, P53^KO/KO, KRAS^G12D+/+ and SMAD4^KO/KO) showed lower CD274 gene expression in comparison to control wild-type organoids (Fig. 1 c). Overall, PD-L1 expression was low in untreated organoid lines (Fig. 1 c,d). However, PD-L1 expression was dramatically upregulated in IFN-γ-treated organoids both on transcript and protein level (Fig. 1 c,d). These data demonstrate that CRC organoids express immunomodulators and that this expression is regulated in a similar way as previously shown for tissue in vivo.

CRC organoids as tools for assessment of antigen specific killing by CD8+ T cells

We next aimed at establishing a co-culture system for CRC organoids and CTLs to model antigen-specific killing of tumour cells in vitro. For this, we used αβ T cells carrying a transgenic T-cell receptor (TCR) recognizing an HLA-A2-restricted Wilms tumour (WT)1-derived peptide18,19. Therefore, we first screened CRC organoids from the ‘living biobank’12 as well as newly generated
Bar-Ephraim, Kretzschmar et al.

CRC organoids for HLA-A2 expression using flow cytometry. Interestingly, we found three CRC organoid lines that showed partial downregulation of HLA-A2 (Supplementary Fig. 1a). We were able to purify HLA-A2+ and HLA-A2− CRC organoids and successfully established cultures from both populations (Fig. 2b). We confirmed stable MHC-I downregulation in HLA-A2− CRC organoids, as IFN-γ stimulation did not trigger HLA-A2 re-expression (Supplementary Fig. 1b). Next, we pulsed these CRC organoid lines with WT1 peptide and, subsequently, co-cultured them for 48 hours with peptide-specific T cells. Following co-culture, we found that HLA-A2− CRC organoids did survive irrespective of whether pulsed with the peptide or not (Fig. 2c). However, only the HLA-A2+ CRC organoids without prior peptide incubation survived co-culture (Fig. 2c). Peptide-pulsed HLA-A2+ CRC organoids were effectively killed by the peptide-specific T cells providing a proof-of-principle that organoids can be utilised to study anti-tumour response by cytotoxic T cells in vitro.

To further confirm antigen-specificity in our ‘killing’ assay system, we improved our co-culture method by transfecting HLA-A2+ CRC organoids with a construct expressing mNeonGreen-tagged histone H2B and staining T cells with CellTracker violet to allow for long-term tracking of both cell types (Methods). We then pulsed HLA-A2+ CRC organoids with either the WT1 peptide or with an EBV-derived peptide (Methods) and co-cultured the organoids with T cells carrying either a WT1- or an EBV-specific TCR. Here, only organoids pulsed with the cognate peptide were efficiently killed by the T cells (Fig. 2d, Supplementary Movies 1 and 2). Testing for IFN-γ production by the T cells in the co-culture using enzyme-linked immunosorbent assay (ELISA) confirmed antigen-specific organoid killing by the T cells (Fig. 2e). In order to better follow the kinetics of the organoid killing, we applied to a fluorescent dye (NucRed Dead 647, Methods), which specifically stains apoptotic cells, and performed live confocal imaging on the co-culture (Fig. 2f). We then quantified organoid killing by assessing co-localization of NucRed Dead dye with H2B-mNeonGreen (Methods). Significant co-localisation of both labels and, hence, organoid killing, was only observed when peptide-pulsed HLA-A2+ CRC organoids were co-culture with the respective peptide-specific T cells (Fig. 2g). Furthermore, T cells infiltrating into the epithelium of the organoids could be readily detected in this co-culture condition (Fig. 2h). In conclusion, T cells efficiently killed co-cultured CRC organoids in an antigen-specific manner.
Discussion

Here we demonstrate that epithelial organoids can be used faithfully to recapitulate the interaction between tumour tissue and the immune system. Also, using our co-culture assay, we set a first step in rebuilding the tumour microenvironment \textit{in vitro}. Further addition of other components of this microenvironment (such as fibroblasts, natural killer cells, myeloid-derived suppressor cells, B cells) may shed light on the complex interactions between the different cell types leading to immune evasion of the tumour. Lastly, this co-culture system can be used as a scaffold for T-cell expansion for cancer immunotherapy or for drug-screens testing applicability of certain immunotherapies, for instance, chimeric antigen receptor (CAR)- or TCR transgenic T cells, antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) inducing antibodies directed at the tumour, to different tumours and different patients.

Methods

Procurement of human material and informed consent

Colonic tissues (both normal colon and tumour tissue) were obtained from the Departments of Surgery and Pathology of the Diakonessenhuis hospital, Utrecht, the Netherlands. All patients included in this study were diagnosed with CRC. Informed consent was signed by all included patients. Collection of tissue was approved by the medical ethical committee (METC) of the Diakonessenhuis hospital, in agreement with the declaration of Helsinki and according to Dutch and European Union legislation.

Organoid generation and cultures

Epithelial organoid lines were derived from healthy colon or tumor tissue as previously described12,20. In brief, healthy colonic crypts were isolated by digestion of the colonic mucosa in chelation solution (5.6 mM Na$_2$HPO$_4$, 8.0 mM KH$_2$PO$_4$, 96.2 mM NaCl, 1.6 mM KCl, 43.4 mM Sucrose, and 54.9 mM D-Sorbitol, Sigma) supplemented with dithiotreitol (0.5 mM, Sigma) and EDTA (2 mM, in-house), for 30 minutes at 4°C. Colon crypts were subsequently plated in basement membrane extract (BME; Cultrex PC BME RGF type 2, Amsbio) and organoids were grown in human intestinal stem cell medium (HISC), which is composed of Advanced Dulbecco’s modified Eagle medium/F12 supplemented with penicillin/streptomycin, 10 mM HEPES and...
Glutamax (all Gibco, Thermo Fisher Scientific) with 50% Wnt3a conditioned medium (in-house), 20% R-Spondin1 conditioned medium (in-house), 10% Noggin conditioned medium (in-house), 1 x B27, 1,25 mM n-acetyl cysteine, 10 mM nicotinamide, 50 ng/mL human EGF, 10 nM Gastrin, 500 nM A83-01, 3 µM SB202190, 10 nM prostaglandine E2 and 100 µg/mL Primocin (Invivogen).

Tumor specimens were digested to single cells in collagenase II (1 mg/mL, Gibco, Thermo Scientific), supplemented with hyaluronidase (10 µg/mL) and LY27632 (10 µM) for 30 minutes at 37°C while shaking. Single tumor cells were plated in BME and organoids were cultured in HICS minus Wnt conditioned medium and supplemented with 10 µM LY27632 at 37°C.

Organoid transfection

CRC organoids were dissociated into small clumps using TrypLE and then transduced with H2B-mNeonGreen (pLV-H2B-mNeonGreen-ires-Puro), as previously described\(^{21}\).

T cells

Generation of αβ T cells carrying a transgenic TCR recognizing an HLA-A2-restricted WT1-derived peptide were described elsewhere\(^{18}\). Briefly, TCRα and β chains were cloned from raised tetramer positive T cell clones. Subsequently, CD8\(^+\) αβ TCR T cells were transduced using retroviral supernatant from Phoenix-Ampho packaging cells that were transfected with gag-pol, env, and pBullet retroviral constructs containing the cloned TCR genes.

Organoid-T cell co-culture and live cell imaging

Organoids stably transfected with H2B-mNeonGreen were split and digested a 5 to 7 days prior to co-culture and seeded at a density of 5000 cells per 10 µL of BME (25,000 cells per well in a 12-well cell culture plate). Two days prior to co-culture, T cells were starved from IL-2. One day prior to co-culture, organoids were stimulated with IFN-γ at indicated concentrations.

Organoids were pulsed with TCR-specific peptide (ProImmune) for 2 hours at 37°C prior to co-culture. Organoids and T cells were harvested and taken up in T cell medium, supplemented with 10% BME, 100 IU/mL IL-2 and NucRed Dead 647 (Thermo Fischer). Where indicated, anti-PD1 blocking antibodies (2 µg/mL) were added to the co-culture. Cells were plated in glass-bottom 96-well plates and co-cultures were imaged using an SP8X confocal microscope (Leica).
Flow cytometry

APC-labelled pentamers to the EBV-derived, HLA-2:02 restricted peptide FLYALALLLL (ProImmune) where used to sort pentamer+ CD8+ CD3+ T cells from PBMCs isolated from buffycoats from healthy individuals. Cells were sorted as single cells into 96-well plates using a BD FACS Aria (BD Biosciences) cytometer. For flow cytometry, the following antibodies were used (all anti-human): CD8–PE (clone RPA-T8), CD45–PerCP-Cy5.5 (2D1), CD274 (PD-L1)–APC (MIH1) (all BD Biosciences), CD279 (PD-1)–PE (EH12.2H7, Biolegend), HLA-A2–PE (BB7.2, Santa Cruz).

Quantitative polymerase chain reaction (qPCR)

For qPCR analysis, RNA was isolated from organoids using the RNAeasy kit (QIAGEN) according to the manufacturer's protocol. PCR analysis was performed using the SYBR Green Reagent (Biorad). PCR reactions were performed in duplicate with a standard curve for every primer. Primers were designed using the NCBI primer design tool. Primers used in this study: GAPDH forward (GTC GGA GTC AAC GGA TT), GAPDH reverse (AAG CTT CCC GTT CTC AG), HPRT forward (GGC GTC GTG ATT AGT GAT), HPRT reverse (AGG GCT ACA ATG TGA TGG), CD274 forward (TGC AGG GCA TTC CAG AAA GAT), CD274 reverse (CCG TGA CAG TAA ATG CGT TCAG).

Transcriptional profiling

Microarray analysis of biobank organoids was performed as described elsewhere12.

Enzyme linked immunosorbent assays (ELISA)

Culture supernatants were kept at –20°C and ELISA was performed for indicated cytokines using ELISA MA Standard (Biolegend) according to manufacturer’s protocol.

Image analysis

Image analysis was done using Imaris software package (Bitplane). In brief, threshold for positive staining was set on negative controls. A co-localization channel was made for H2B-neon and NucRed Dead 647 signals. Cell death was quantified as percentage of H2B-mNeonGreen+ voxels co-localising with NucRed Dead signal.
Bioinformatics analysis

Bioinformatics analysis of gene-expression data from microarray experiments was performed using standard packages (i.e. gplots) in R version 3.4.0 (R Foundation, https://www.r-project.org) and RStudio version 1.0.143 (https://www rstudio.com).

Statistical analysis

All experiments were repeated at least three times unless otherwise indicated. All data were shown as mean ± SEM. Statistical significance was analyzed by either ANOVA or two-tailed Student’s t-test using either Graphpad Prism 6 or Microsoft Excel 2010.

References

Acknowledgements
We thank T. Aarts, S. van den Brink, A. Cleven, T. Mizutani, M. Schiffer, M. van de Wetering for technical assistance and experimental advice, A. de Graaff and the Hubrecht Imaging Facility for help with microscopy, S. van der Elst, R. van den Linden and T. Poplonski for help with flow cytometry. This work was supported by the European Research Council (Advanced Grant ERC-AdG 67013-Organoide to H.C.) and a VENI grant from the Netherlands Organisation for Scientific Research (NWO-ZonMW, 016.166.140 to K.K.). This work is part of the Oncode Institute, which is partly funded by the Dutch Cancer Society. K.K. is a long-term fellow of the Human Frontier Science Program Organization (HFSPO, LT771/2015) and was a long-term fellow of the European Molecular Biology Organisation (EMBO, ALTF 839-2014).

Author contributions
Y.B.E. and K.K. designed, performed and analysed the experiments and wrote the manuscript. Y.B.E. performed image analysis. K.K. performed bioinformatics analysis. P.A., E.d.J. and K.E.B. assisted with experiments. J.D. generated cancer gene-mutant organoid lines. J.v.G. isolated tumour and normal tissue from resected material. A.P. and N.S. performed surgery. I.J.G., Z.S. and J.K. provided WT1 peptide and WT1 peptide-specific transgenic TCR αβ T cells. R.G.J.V. organised tissue collection. K.K. and H.C. acquired funding. H.C. supervised the project and wrote the manuscript. All of the authors commented on the manuscript.
Fig. 1 | CRC organoids express immunomodulatory molecules. a, b, Normal colon and CRC organoid lines were generated in a patient-specific manner and RNA was extracted and analysed using Affymetrix single transcript microarrays. Average gene expression of different immunomodulators in normal colon and CRC organoid lines; n.s., non-significant; *, p < 0.05 (a). Hierarchical clustering of the individual normal colon and CRC organoid lines in the ‘living biobank’ displaying gene expression of selected immunomodulators. Color gradients represent z value of each row (gene transcripts). c–d, Human colon organoid lines genetically engineered to carry one or more mutations found in CRCs. Expression levels of CD274 (PD-L1) in organoid lines (n = 2) at steady state (Ctrl) and upon stimulation with 20 ng/mL recombinant human IFN-γ assessed by quantitative PCR (c) and flow cytometry (d). A, APC^{KO/KO}; N.D., not detected; K, KRAS^{G12D/+}; P, P53^{KO/KO}; S, SMAD4^{KO/KO}, WT, wild-type.
Fig. 2 | CRC organoids as tools for assessment of antigen specific killing by CD8+ T cells. a, Experimental scheme. b, Flow cytometry analysis of HLA-A2 expression in cloned HLA-A2+ and HLA-A2− lines. c, Brightfield images of HLA-A2+ and HLA-A2− CRC organoids co-cultured with transgenic T cells expressing the WT1 peptide specific T-cell receptor for 48 hours; scale bars: 1 mm. d, Images showing HLA-A2+ CRC organoids transfected with H2B-neon and pulsed with indicated peptides at the beginning of co-culture (left panels) and after 18-hour co-culture with indicated peptide-specific T cells (right panels); scale bars: 70 µm. e, IFN-γ production by WT1 (top) and EBV (bottom) peptide-specific T cells as measured by ELISA of supernatants collected after 18-hour co-culture with HLA-A2+ CRC organoids pulsed with indicated peptides. f, Live-cell imaging stills of a co-culture experiment with H2B-mNeonGreen-transfected HLA-A2+ CRC organoids pulsed with EBV peptide and co-cultured for 14 hours with an EBV-specific T-cell clone. Images were taken at the indicated time points. g, Quantification of CRC organoid killing by specific T cells as assessed by co-localization of H2B-mNeonGreen and NucRed Dead dye. Graphs are representative of multiple repeated experiments with either EBV peptide and EBV T-cell- or WT1 peptide and WT1 T-cell co-cultures. h, Representative projection image of T cells
Bar-Ephraim, Kretzschmar et al.

(blue) infiltrating a peptide-pulsed CRC organoid as recorded during the live-cell imaging experiments.