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Abstract  35	  
A major challenge in genomics is the knowledge gap between sequence and its 36	  
encoded function. Gain-of-function methods based on gene overexpression are 37	  
attractive avenues for phenotype-based functional screens, but are not easily applied in 38	  
high-throughput across many experimental conditions. Here, we present Dual Barcoded 39	  
Shotgun Expression Library Sequencing (Dub-seq), a method that greatly increases the 40	  
throughput of genome-wide overexpression assays. In Dub-seq, a shotgun expression 41	  
library is cloned between dual random DNA barcodes and the precise breakpoints of 42	  
DNA fragments are associated to the barcode sequences prior to performing assays. To 43	  
assess the fitness of individual strains carrying these plasmids, we use DNA barcode 44	  
sequencing (BarSeq), which is amenable to large-scale sample multiplexing. As a 45	  
demonstration of this approach, we constructed a Dub-seq library with total Escherichia 46	  
coli genomic DNA, performed 155 genome-wide fitness assays in 52 experimental 47	  
conditions, and identified 813 genes with high-confidence overexpression phenotypes 48	  
across 4,151 genes assayed. We show that Dub-seq data is reproducible, accurately 49	  
recapitulates known biology, and identifies hundreds of novel gain-of-function 50	  
phenotypes for E. coli genes, a subset of which we verified with assays of individual 51	  
strains. Dub-seq provides complementary information to loss-of-function approaches 52	  
such as transposon site sequencing or CRISPRi and will facilitate rapid and systematic 53	  
functional characterization of microbial genomes. 54	  
 55	  
 56	  
Importance  57	  
Measuring the phenotypic consequences of overexpressing genes is a classic genetic 58	  
approach for understanding protein function; for identifying drug targets, antibiotic and 59	  
metal resistance mechanisms; and for optimizing strains for metabolic engineering. In 60	  
microorganisms, these gain-of-function assays are typically done using laborious 61	  
protocols with individually archived strains or in low-throughput following qualitative 62	  
selection for a phenotype of interest, such as antibiotic resistance. However, many 63	  
microbial genes are poorly characterized and the importance of a given gene may only 64	  
be apparent under certain conditions. Therefore, more scalable approaches for gain-of-65	  
function assays are needed. Here, we present Dual Barcoded Shotgun Expression 66	  
Library Sequencing (Dub-seq), a strategy that couples systematic gene overexpression 67	  
with DNA barcode sequencing for large-scale interrogation of gene fitness under many 68	  
experimental conditions at low cost. Dub-seq can be applied to many microorganisms 69	  
and is a valuable new tool for large-scale gene function characterization. 70	  

71	  
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INTRODUCTION 72	  
 73	  
Advances in DNA sequencing have had a tremendous impact on microbial genomics, 74	  
as thousands of genomes have now been sequenced1. However, only a small fraction 75	  
of these microorganisms have been experimentally studied and as such, our predictions 76	  
of gene function, metabolic capability, and community function for these 77	  
microorganisms are based largely on automated computational approaches2. 78	  
Unfortunately, many of these computational predictions are incomplete or erroneous, 79	  
especially in instances where the homology of a sequenced gene is too distant from any 80	  
experimentally characterized relative3. To bridge this gap between sequencing and 81	  
functional characterization, it is imperative that large-scale, inexpensive, and organism-82	  
agnostic tools are developed and applied4. 83	  
  84	  
A number of large-scale approaches based on loss-of-function genetics have been 85	  
developed for microorganisms including gene-knockout libraries5-9, recombineering 86	  
based methods10,11, transposon mutagenesis coupled to next-generation sequencing 87	  
(TnSeq)12,13, and CRISPR interference (CRISPRi)14. Collectively, these strategies all 88	  
rely on measuring the phenotypic consequences of removing a gene from a 89	  
microorganism and inferring protein function based on these phenotypes.  An 90	  
adaptation of TnSeq that incorporates and uses random DNA barcodes (RB-TnSeq) to 91	  
measure strain abundance in a competitive growth assay13 has recently been applied 92	  
on a larger scale to identify mutant phenotypes for thousands of genes across 32 93	  
bacteria15. Despite their utility, these loss-of-function approaches suffer some 94	  
limitations: only CRISPRi is effective for interrogating essential genes under multiple 95	  
conditions, it is challenging to identify phenotypes for genes with redundant functions 96	  
using single mutants, and these approaches require some degree of genetic tractability 97	  
in the target microorganism. 98	  
  99	  
A complimentary approach for studying gene and organism function is to generate gain-100	  
of-function overexpression libraries and analyze the phenotypic consequences of 101	  
increased gene dosage. Indeed, the impact of enhanced gene dosage on adaptation 102	  
and evolution are well documented across all three kingdoms of life and have been 103	  
shown to be an important contributor to numerous diseases and drug-resistance 104	  
phenotypes16-18. Overexpression as a genetic tool has a rich history of connecting 105	  
genes to cellular functions and has been exploited as a versatile screening technique to 106	  
identify drug targets16,19,20, antibiotic and metal resistance genes17,21,22, virus-resistance 107	  
genes23, genetic suppressors24,25, as well as for a number of chemical genomics8,9 and 108	  
biotechnology applications26-28. While a number of technologies have been developed 109	  
for overexpression screens including defined open reading frame (ORF) libraries6,20,29 110	  
and activation modes of recombineering30,31, transposon insertions32 or CRISPR 111	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2018. ; https://doi.org/10.1101/387399doi: bioRxiv preprint 

https://doi.org/10.1101/387399
http://creativecommons.org/licenses/by-nd/4.0/


	   4	  

systems33, these strategies are limited, either due to the need for expensive and 112	  
laborious generation of archived strains or the need for organism-specific genetic tools. 113	  
 114	  
A simpler alternative for overexpression screens is a shotgun library-based approach in 115	  
which random DNA is introduced into a host organism for phenotyping and functional 116	  
assessment. This approach has been widely used for studying increased-copy number 117	  
effects on a desired phenotype26,27 and for activity-based screening of metagenomic 118	  
samples34,35. Nevertheless, most shotgun expression libraries have only been assayed 119	  
in a small number of conditions looking for a specific gene-function, and are often 120	  
performed as qualitative selections on a plate34-36. Furthermore, current shotgun-based 121	  
approaches typically require tedious and expensive sequencing and sample preparation 122	  
protocols for identifying the selected gene(s)26,27,37,38. With arrival of next-generation 123	  
sequencing technologies, all positive candidates can be pooled, and cloned regions can 124	  
be amplified and sequenced in parallel39,40. Unfortunately, sequencing the cloned 125	  
regions (to identify the genes conferring the phenotype) is labor intensive and may 126	  
become cost-prohibitive if the overexpression library is being assayed in many 127	  
conditions. As such, there is a need for high-throughput gain-of-function technology that 128	  
is simple, quantitative, agnostic to source DNA, and which facilitates multiplexed 129	  
quantification of fitness under hundreds of experimental conditions. 130	  
  131	  
Here we present a new method termed Dub-seq, or dual barcoded shotgun expression 132	  
library sequencing, for performing high-throughput and quantitative gain-of-function 133	  
screens. Dub-seq requires an initial characterization of the overexpression library by 134	  
linking the genomic breakpoints of each clone to a pair of random DNA barcodes. 135	  
Subsequent screens are performed using a competitive fitness assay with a simple 136	  
DNA barcode sequencing and quantification assay (BarSeq41). As a demonstration of 137	  
this approach, we generated an E. coli Dub-seq library and assayed the phenotypic 138	  
consequences of overexpressing nearly all genes on E. coli fitness under dozens of 139	  
experimental conditions. We show that Dub-seq yields gene fitness data that is 140	  
consistent with known biology and also provides novel gene-function insights. We 141	  
validate some of these new findings by overexpressing individual genes and quantifying 142	  
these strains’ fitness. Given that only DNA and a suitable host organism for assaying 143	  
fitness are necessary, Dub-seq can be readily extended to diverse functional genomics 144	  
and biotechnology applications. 145	  
  146	  
 147	  
 148	  
 149	  
 150	  
 151	  
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RESULTS 152	  
 153	  
Overview of Dub-seq 154	  
The Dub-seq approach is summarized in Figure 1 and can separated into four different 155	  
steps. First, a plasmid library is generated with pairs of random 20 nucleotide DNA 156	  
sequences, termed the UP and DOWN barcodes. To link the identities of the two-157	  
barcode sequences on each plasmid, Barcode-Pair sequencing (BPseq) is performed 158	  
(Fig. 1a, Methods). Second, sheared genomic DNA from an organism under 159	  
investigation is cloned between the previously associated UP and DOWN barcodes 160	  
(Fig. 1b).  Third, the genomic fragment endpoints are mapped and associated with the 161	  
two-barcode sequences using a TnSeq-like protocol13. We term this step Barcode-162	  
Association-with Genome fragment by sequencing or BAGseq and the resulting plasmid 163	  
library as the “Dub-seq” library (Fig. 1c). The BAGseq step requires two sample 164	  
preparations to separately map genomic fragment junctions to the UP and DOWN 165	  
barcodes. The BAGseq characterization generates a table of barcode sequences and 166	  
the cloned chromosomal breakpoints at single-nucleotide resolution. Because the two 167	  
random DNA barcodes have been previously associated, we can infer the exact 168	  
sequence of each plasmid in the Dub-seq library if the sequence of the source DNA is 169	  
known. Lastly, we introduce the Dub-seq plasmid library into a host bacterium and 170	  
monitor the fitness of strains carrying these plasmids in a competitive fitness assay 171	  
under a particular condition by PCR amplifying and quantifying the abundance of the 172	  
DNA barcode sequences (BarSeq41, Fig. 1d).  In these pooled fitness experiments, the 173	  
barcode abundance changes depending upon the fitness phenotype imparted by the 174	  
barcode-associated-genome fragments. A data analysis pipeline yields fitness scores 175	  
for individual strains (or “fragments”) and for each gene. These gene scores provide an 176	  
assessment of the phenotypic consequence of overexpressing nearly all of the genes 177	  
represented in the cloned DNA fragments. The advantage of Dub-seq is that it 178	  
decouples the characterization of a shotgun overexpression library (which is more 179	  
laborious) from the cheaper and simpler fitness determination step using BarSeq.  As 180	  
such, a Dub-seq library can be readily assayed in hundreds of different experimental 181	  
conditions. Dub-seq can be viewed as an overexpression-based, gain-of-function 182	  
version of our previously described method for random barcode transposon-site 183	  
sequencing (RB-TnSeq)13.  184	  
 185	  
Generation of E. coli Dub-seq library 186	  
To generate a Dub-seq library, we used a broad host range vector with a pBBR1 187	  
replication origin. We used standard molecular biology techniques to insert two random 188	  
20 nucleotide barcode sequences on the plasmid, the UP and DOWN barcodes, that 189	  
juxtapose a unique PmiI restriction enzyme site on the plasmid. Both the UP barcodes 190	  
and DOWN barcodes contain common PCR priming sites for rapid amplification of all 191	  
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barcodes from a pooled sample. We generated a dual barcoded vector library with 192	  
~250,000 clones in E. coli and characterized this library by associating the barcode 193	  
pairs using BPseq. The vector library of ~250,000 clones was sufficient to map unique 194	  
barcode-pairs with confidence and also to yield a Dub-seq library in which each 195	  
fragment will have a unique barcode (see below).  196	  
 197	  
To generate the E. coli Dub-seq library, we extracted E. coli (BW25113) genomic DNA, 198	  
sheared to 3 kb fragment size, and cloned the fragments into the dual barcoded 199	  
backbone vector digested with PmiI. The E. coli Dub-seq library encompasses ~40,000 200	  
vectors, corresponding to about 8X coverage of the E. coli genome. In this study, we 201	  
used the endogenous E. coli transcription and translation apparatus to drive the 202	  
expression of the encoded gene(s) within each genomic fragment, although future 203	  
studies could use inducible systems (for example, when the source of the cloned Dub-204	  
seq DNA differs from the host bacterium for assaying fitness42). 205	  
 206	  
We next characterized the E. coli Dub-seq library using BAGseq, which identifies the 207	  
cloned genome fragment and its pairings with the neighboring dual barcodes. As there 208	  
are two barcodes for each Dub-seq library, we performed two separate BAGseq sample 209	  
preparation steps, one for the UP barcodes and one for the DOWN barcodes. Briefly, 210	  
BAGseq involves shearing of the Dub-seq plasmid library, end repair, Illumina adaptor 211	  
ligation, PCR amplification of the junction between the barcode and genomic insert 212	  
using primers that are complementary to one of the barcode-specific primer binding 213	  
sites, and deep sequencing of these samples (modified from reference 11). After 214	  
filtering out barcodes that mapped to more than one genomic fragment, we identified 215	  
30,558 unique barcode pairs that we could confidently associate with a genomic 216	  
fragment.  217	  
 218	  
In the E. coli Dub-seq library, the fragments are evenly distributed across the 219	  
chromosome (Fig. 2a), the average fragment size is 2.6 kB (Fig. 2b), and the majority 220	  
of fragments covered 2-3 genes in their entirety (Fig. 2c). 80% of genes in the E. coli 221	  
genome are covered (from start to stop codon) by at least 5 independent genomic 222	  
fragments in the Dub-seq library (Fig. 2d) and 97% of all genes are covered by at least 223	  
one fragment. Just 135 genes are not covered in their entirety by any Dub-seq fragment 224	  
(Supplementary Table 1). Many of these unmapped or uncovered genes encode 225	  
membrane and ribosomal proteins and probably reflect the lethality of overexpressing 226	  
these genes43. Other genes could not be confidently mapped because they are 227	  
associated with repetitive regions. For example, we could not confidently map 228	  
fragments covering ETT2 type III secretion system pathogenicity island and its regulator 229	  
gene ygeH which has tetratricopeptide repeat motifs, while the neighboring protein-230	  
coding genes are well mapped (Fig. 2a). Similarly, we could not map genes within 231	  
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ribosomal RNA operons (example, rrlD, Fig. 2a), as E. coli encodes multiple nearly-232	  
identical copies of these loci. Some large genes with length more than 3.5 Kb, such as 233	  
rpoB, are not entirely covered by any fragments in our library, while other large genes 234	  
such as acrB are covered by only one fragment (Fig. 2a).   235	  
 236	  
Of the E. coli protein-coding genes that are essential for viability when deleted5, 95% 237	  
are completely covered by at least one fragment in the Dub-seq library (Supplementary 238	  
Table 2). This demonstrates that the Dub-seq approach can interrogate genes that are 239	  
not typically assayed for conditional phenotypes in loss-of-function approaches. There 240	  
are only 17 protein-coding genes that are both essential for viability when deleted and 241	  
absent from our Dub-seq library (Supplementary Table 2).  242	  
 243	  
Strain and gene fitness profiling using BarSeq 244	  
The key advantage of Dub-seq is the ease of assessing the relative fitness contributions 245	  
of all genes contained in the cloned genomic fragments using pooled, competitive 246	  
growth assays. Depending on the assay condition and the gene(s) encoded by a 247	  
genomic fragment, the relative abundance of a strain carrying that fragment can change 248	  
due to its fitness advantage or disadvantage relative to strains carrying other fragments. 249	  
Because the DNA barcodes have been previously associated to each genomic 250	  
fragment, we can simply compare the relative abundance of each barcode before and 251	  
after selective growth using DNA barcode sequencing or BarSeq41. 252	  
 253	  
As a demonstration of Dub-seq fitness assays and to illustrate our approach for 254	  
calculating strain (fragment) and gene fitness scores, we recovered an aliquot of the E. 255	  
coli Dub-seq library in LB to mid-log phase, collected a cell pellet for the “start” (or time-256	  
zero sample), and used the remaining cells to inoculate an LB culture supplemented 257	  
with 1.2 mM nickel. After growth in the presence of nickel, we collected a second cell 258	  
pellet for the “condition” sample. We extracted plasmid DNA from the start and condition 259	  
samples, PCR amplified the UP and DOWN DNA barcodes from each, and sequenced 260	  
the DNA barcodes with Illumina. We calculate the fragment fitness score for each strain 261	  
by taking the normalized log2 ratio of the number of reads for each barcode in condition 262	  
sample versus the start sample (Fig. 1). Positive scores indicate that the gene(s) 263	  
contained on that fragment lead to an increase in relative fitness, while negative values 264	  
mean the gene(s) on the fragment reduced relative fitness. Scores near zero indicate no 265	  
fitness reduction or benefit for the gene(s) under the assayed condition. As in previous 266	  
work44, we find that fitness scores calculated with either UP barcodes or DOWN 267	  
barcodes yield very similar results (r = 0.94, Supplementary Fig. 1ab). Therefore, we 268	  
only sequenced the UP barcodes for all additional experiments in this study. 269	  
 270	  
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Given that multiple, causative and non-causative genes can be contained on a single 271	  
fragment, to assign a fitness score to a particular gene it is necessary to examine the 272	  
score of all fragments containing the gene. Here, we considered two different ways to 273	  
estimate fitness score of a gene. The first approach was to simply take the average of 274	  
all fitness scores for fragments that contained the gene in its entirety (the “mean” score). 275	  
The second approach was to use a regression method for estimating gene fitness score 276	  
so as to prevent genes from having artifactually high fitness scores if they were located 277	  
near other causative genes. Specifically, we adopted non-negative least squares 278	  
regression (the “regression” score) (see Methods). To illustrate how the mean and 279	  
regression scores differ in practice, consider the gene fitness scores for two adjacent 280	  
genes under elevated nickel stress, rcnA and rcnR (Fig. 3a and 3b). RcnA is a nickel 281	  
efflux protein whose overexpression is known to lead to increased nickel tolerance45. 282	  
Conversely, rcnR encodes a transcriptional repressor that weakly represses its own 283	  
expression and that of rcnA, and the overexpression of rcnR alone is not expected to 284	  
increase nickel tolerance45. While the mean and regression approaches both result in 285	  
similar (and correct) high Dub-seq scores for rcnA (Fig. 3a), only the regression 286	  
approach results in the correct, neutral fitness score for the rcnR (Fig. 3b). The mean 287	  
score calculation approach leads to an artifactually high fitness score for rcnR because 288	  
many of the fragments that contain this gene also contain the neighboring rcnA (Fig. 3b, 289	  
Supplementary Figs. 2ab and 3ab). Based on these results and other examples 290	  
(Supplementary Fig. 4) that we examined, we concluded that the optimal strategy was 291	  
to use the regression method for calculating Dub-seq gene fitness scores (Methods).  292	  
 293	  
To assess the reproducibility of Dub-seq fitness assays, we compared the results 294	  
obtained from independent samples. First, the number of sequencing read counts for 295	  
each UP barcodes from the Dub-seq library from different start samples were highly 296	  
correlated (Supplementary Fig. 1c). Likewise, between two biological replicates of the 297	  
nickel stress experiment, we found a strong correlation for fragment fitness (r = 0.80; 298	  
Fig. 3c) and for regression-based gene fitness (r =0.89; Fig. 3d). 299	  
 300	  
Fitness profiling across dozens of experimental conditions 301	  
To demonstrate the scalability of Dub-seq, we performed 155 genome-wide pooled 302	  
fitness experiments representing 52 different chemicals: 23 compounds as the sole 303	  
source of carbon in a defined growth media and varying concentrations of 29 inhibitory 304	  
compounds in rich media (Fig. 4). The inhibitory compounds included metals, salts, and 305	  
antibiotics. For each of these assays, we compared the abundance of the UP barcodes 306	  
before and after growth selection. We multiplexed 48 or 96 BarSeq PCR samples per 307	  
lane of Illumina sequencing, at a sequencing cost of about $20 per genome-wide assay. 308	  
In the typical condition sample, we obtained ~4.2 million BarSeq reads, representing 309	  
~100 reads on an average for each clone in the Dub-seq plasmid library. We computed 310	  
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gene fitness scores (using the regression approach) for 4,027 protein-coding genes and 311	  
for 124 RNA genes. The gene fitness scores were reproducible, with a median pairwise 312	  
correlation of 0.80 across 64 biological replicates.  313	  
 314	  
We focused on the genes with positive fitness scores, as the overexpression of a gene 315	  
that is important for a given process is usually expected to lead to a fitness 316	  
advantage17,46, but we also examined the negative scores. To identify a subset of the 317	  
effects that were likely to be reliable, we used three filters: the fitness effect was large 318	  
relative to the variation between start samples (|score| >= 2); the fragments containing 319	  
the gene showed consistent fitness across replicate experiments (using a t test); and 320	  
the number of reads for those fragments was sufficient for the gene score to have little 321	  
noise (see Methods). Effects that passed these filters were more likely to be consistent 322	  
in replicate experiments (for example, see Fig. 3d). We considered an effect that 323	  
passed these filters to be of high confidence if it was based on more than one fragment 324	  
or if the gene had a large effect in another experiment for the compound. Overall, we 325	  
identified 4,051 high-confidence effects, representing 813 of the 4,151 genes assayed 326	  
(Supplementary Table 3). 400 different genes had a high-confidence fitness benefit 327	  
when overexpressed in at least one condition, while the overexpression of 571 different 328	  
genes led to a decrease in fitness in at least one condition. Nearly all experiments (153 329	  
of 155) had at least one gene with a high-confidence effect. By shuffling the 330	  
measurements for each fragment in each experiment, we estimated a false discovery 331	  
rate of less than 2% (Methods). Among the E. coli genes essential for viability when 332	  
deleted5, 46 have a high-confidence benefit in at least in one experiment, demonstrating 333	  
that gain-of-function approaches like Dub-seq can identify conditional phenotypes for 334	  
genes that are not typically interrogated by loss-of-function approaches such as Tn-seq. 335	  
 336	  
Some genes had positive fitness benefits across many conditions. In particular, five 337	  
genes (recA, galE, dgt, rcnA, fabB) had high-confidence benefits in 10 or more different 338	  
conditions. The most frequent benefits were found for recA and galE, which are 339	  
disrupted in the DH10B derivative host strain we used47 (Methods). Even for pleiotropic 340	  
genes, we find that they confer a more extreme beneficial phenotype in some 341	  
conditions. For example, UDP-glucose 4-epimerase (galE) is highly beneficial to 342	  
overexpress in the presence of 0.1 mM benzethonium chloride, with gene scores of +12 343	  
or +14 in two replicate experiments. All of galE’s other scores were under +5. Similarly, 344	  
strand exchange and recombination gene recA shows high fitness scores of +6 in the 345	  
presence of cisplatin, lomefloxacin and sodium chloride. In addition to these examples, 346	  
we found that 32 genes provide growth advantage in 5 or more antibiotics, metals or 347	  
other stress conditions, as compared to 241 genes showing growth benefit in just one 348	  
condition (Supplementary Table 3).  349	  
 350	  
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Some of the Dub-seq experiments identified dozens of putatively beneficial genes. For 351	  
example, with potassium acetate as the carbon source, we identified 56 genes that had 352	  
high-confidence benefits in both of two replicate experiments (Supplementary Table 353	  
3). The two highest-scoring genes encode isozymes of aconitase (acnA and acnB), 354	  
which are part of the tricarboxylic acid cycle for oxidizing acetate48. But the relationship 355	  
between the other beneficial genes and acetate catabolism is not obvious. As another 356	  
example, in copper (II) chloride stress at 2 mM, 120 genes had high-confidence 357	  
benefits. The genes with the highest scores were envZ, mltD, citB/dpiA, mepM, mepS, 358	  
cutC, and other high-scoring genes encode outer membrane porins (ompX, ompC, 359	  
ompF) or lipoprotein nlpE (Supplementary Table 3). Overexpression of most these 360	  
genes is known to activate the complex regulatory network of envelope stress response 361	  
via cpxAR and sigma-E49,50. Specifically, it is known that the copper tolerance 362	  
phenotype observed in the case of nlpE overexpression is due to activation of Cpx 363	  
pathway51. In the case of cutC overexpression, sigma-E driven small RNA micL 364	  
encoded within cutC is overproduced, leads to targeted downregulation of lpp and 365	  
sufficient for copper tolerance phenotype52. Finally, dozens of genes show growth 366	  
benefits in the presence of the membrane-disrupting cationic surfactants benzethonium 367	  
and benzalkonium. Most of these genes are involved in membrane lipid homeostasis, 368	  
envelope stress response pathways and drug efflux systems (Fig. 4, Supplementary 369	  
Table 3).  370	  
 371	  
In total, we identified 41 instances where the Dub-seq fitness data is consistent with the 372	  
known growth benefit imparted by the gene (Supplementary Table 4). These high 373	  
confidence, known hits include genes encoding diverse functions such as efflux pumps, 374	  
transporters, and regulators, as well as biosynthetic enzymes and small RNAs, each 375	  
yielding enhanced fitness via diverse mechanisms. For example, overexpression of 376	  
cysE (which encodes serine acetyltransferase) probably increases nickel tolerance 377	  
through increased glutathione biosynthesis53, while overexpression of rnc (which 378	  
encodes RNase III) yields a growth benefit in nickel and cobalt stress, as it down-379	  
regulates the expression of corA, which encodes a transporter that mediates the influx 380	  
of nickel and cobalt ions into the cell54. 381	  
 382	  
In addition to the known cases, we also identified hundreds of genes that had not been 383	  
previously associated with a tolerance phenotype in a specific condition, including pssA, 384	  
dcrA/sdaC, dcrB in sisomicin; pmrD in aluminum; treA, treB and phnM in phosphomycin; 385	  
sRNAs chiX in nickel and ryhB in zinc; and many genes of unknown function (Fig. 4, 386	  
Supplementary Table 3). To follow up some of the novel observations, we assayed the 387	  
growth of strains overexpressing the genes individually with and without added stress. 388	  
We used murA overexpression as a test case, as this is known to confer resistance to 389	  
phosphomycin55 (Supplementary Fig. 5). Growth curves confirmed that the 390	  
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overexpression of either pssA or dcrB confers resistance to the aminoglycoside 391	  
antibiotic sisomicin, although the mechanism(s) by which this resistance is conferred 392	  
remains unclear. The gene pssA encodes an essential phosphatidylserine synthase, 393	  
while dcrB is a periplasmic protein with a role in phage infection48. Growth curves also 394	  
confirm that the overexpression of the outer membrane protein MipA confers strong 395	  
resistance to benzethonium chloride (Supplementary Fig. 5). mipA has previously 396	  
been implicated in the resistance to other antibiotics56. 397	  
 398	  
Gene overexpression can also decrease host fitness16,17,46 and may indicate important 399	  
function for those gene products. We identified 570 genes with a high-confidence 400	  
negative effect on fitness in at least one experiment (Supplementary Table 3). Some of 401	  
these genes appear to be more generally toxic when overexpressed or have a global 402	  
regulatory role and compromise host fitness in multiple conditions. 24 genes had 403	  
detrimental effects on fitness in 10 or more different conditions (ampH, arcZ, aroK, crr, 404	  
gadY, hfq, hha, htpX, hupB, iraP, metJ, mtlA, nupG, rpoS, ruvA, tsx, wecA, ybjT, yceG, 405	  
ydgA, ydjN, yibN, yjdC, and zinT). Conversely, some genes have negative gene scores 406	  
in only one or a handful of conditions. For example, consistent with earlier studies we 407	  
found that overexpression of glpT or uhpT increases susceptibility to phosphomycin57. 408	  
These results also agree with clinical data, which shows that the main cause of 409	  
phosphomycin resistance in patients is the down-regulation of GlpT via down-regulation 410	  
of cAMP57. Accordingly, we also found that overexpression of cpdA (which encodes an 411	  
enzyme that hydrolyzes cAMP) enhances fitness under phosphomycin stress (Fig. 4).  412	  
 413	  
Finally, we analyzed our data for ‘epistatic’ instances where multiple genes on a 414	  
fragment are necessary for the observed phenotype. Specifically, we searched for 415	  
evidence of synergy between genes by analyzing scores for fragments containing more 416	  
than one gene that are significantly greater than the inferred sum of score of the 417	  
constituent genes (Methods). In total, we found 6 high scoring epistatic-effect cases 418	  
across 52 conditions in our Dub-seq dataset (fetA-fetB on nickel, ampD-ampE on 419	  
benzethonium, ackA-pta on D-lactate, arcA-yjjY on sisomicin, hns-tdk on phosphomycin 420	  
and yfiF-trxC on potassium acetate (Supplementary Fig.6abc)). Among these, 3 gene-421	  
pairs have related functions (fetA-fetB form a complex, pta-ackA encode enzymes that 422	  
catalyze adjacent reactions in the catabolism of lactate, and ampD-ampE are thought to 423	  
be a signaling pathway48) and our data indicates, together they provide a larger growth 424	  
benefit. Specifically, overexpression of fetAB together has been shown to improve 425	  
survival during nickel stress58. 426	  
 427	  
Comparison to loss-of-function fitness data 428	  
Integrating large-scale genetic gain and loss of function can provide added specificity to 429	  
biological insights. For instance, genes with resistance phenotypes when 430	  
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overexpressed and sensitivity phenotypes when deleted are often specifically involved 431	  
in the condition of interest, as demonstrated by studies identifying drug targets in 432	  
yeast59 or identifying small RNA regulators60 or antibiotic resistance factors in bacteria61. 433	  
Furthermore, genes with opposing loss and gain-of-function phenotypes for stress 434	  
compounds are more likely to be true resistance determinants as opposed to genes that 435	  
have indirect effects when overexpressed16.  For 45 of the conditions that we profiled in 436	  
this study with Dub-seq, we can systematically compare these phenotypic 437	  
consequences of overexpression to loss-of-function mutations as determined by 438	  
random barcode transposon site mutagenesis15. The two data sets studied the same 439	  
growth media and compounds, but not necessarily at the same concentrations, and they 440	  
used different strains of E. coli (DH10B or BW25113). Across these 45 conditions, we 441	  
identified 625 high-confidence benefits of overexpression (or 0.3% of gene-condition 442	  
pairs). Of the 625 high-confidence benefits, 480 are for genes with RB-TnSeq data, and 443	  
in 62 cases (12%), that loss of function led to a significant disadvantage (RB-TnSeq 444	  
fitness < -1 and t < -4, where t is a t-like test statistic13). By chance, we would expect 445	  
just 2.5% agreement, which is significantly less (P < 10-15, chi-squared test of 446	  
proportions). Overall, we found moderate overlap between genes that are beneficial 447	  
when overexpressed and important for fitness when disrupted (Supplementary Table 448	  
3).  449	  
 450	  
To illustrate the biological insights that can be derived by systematically comparing gain 451	  
and loss-of-function data on a genomic scale, we present 3 examples: growth in the 452	  
presence of elevated nickel, cobalt, or sodium chloride (Fig. 5abc). Under each 453	  
condition, we find that a number of genes that are both necessary for resisting the 454	  
stress when knocked-out and sufficient for a resistance phenotype when singly 455	  
overexpressed. These instances include known examples such as the aforementioned 456	  
metal exporter RcnA45 and RNase III for cobalt and nickel tolerance54, as well as the 457	  
osmolyte transporter ProP62 and envelope biogenesis factor YcbC (ElyC)63 for tolerance 458	  
to osmotic stress imposed by sodium chloride. (In our Dub-seq data, proP and ycbC 459	  
failed to pass the filters for high-confidence effects). In addition to these known 460	  
examples, there are more novel observations (Fig. 5abc). Under nickel and cobalt 461	  
stress, the uncharacterized protein YfgG (DUF2633) is important for tolerance, a finding 462	  
that is supported by RB-Tnseq data15 and by individual growth curve analysis of an yfgG 463	  
overexpression strain (Fig. 5d). While the precise biochemical function of YfgG is 464	  
unclear, a close homolog of this protein in Klebsiella michiganensis is also important for 465	  
fitness under nickel and cobalt stress15. As a second example, we find that ProY is 466	  
important for nickel resistance. A ProY homolog in the related bacterium K. 467	  
michiganensis is also important for nickel resistance15. Using individual strain growth 468	  
curve analysis, we confirmed that overexpression of proY alone can confer nickel 469	  
resistance to E. coli (Fig. 5e). While ProY is currently annotated as a cryptic proline 470	  
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transporter, we suspect that its function is to transport histidine as it can suppress 471	  
histidine auxotrophy25 and homologs of this protein are required for histidine utilization 472	  
in other bacteria15. In light of this, we speculate that the nickel resistance phenotype of 473	  
ProY is due to increased sequestration of nickel ions by a higher intracellular 474	  
concentration of histidine. As a final example, we found that the porphyrogen oxidase 475	  
YfeX confers sodium chloride resistance in E. coli, a finding confirmed by an individual 476	  
growth curve analysis (Fig. 5f). While we are unsure how this protein manifests this 477	  
phenotype, we note that yfeX homologs are important for resisting sodium chloride in 478	  
multiple bacteria15.  We have provided a general working hypothesis for many of other 479	  
genes with high fitness scores in Supplementary Table 5. 480	  
 481	  
DISCUSSION 482	  
 483	  
Here we describe Dub-seq, a technology for performing parallelized gain-of-function 484	  
fitness assays across diverse conditions. Dub-seq couples shotgun cloning of random 485	  
DNA fragments with competitive fitness assays to assess the phenotypic importance of 486	  
the genes contained on those fragments in a single tube assay. We demonstrate that 487	  
Dub-seq is reproducible, economical, scalable, and identifies both known and novel 488	  
gain-of-function phenotypes. By decoupling the library creation and characterization 489	  
step from the screening step with BarSeq, Dub-seq provides a quantitative and rapid 490	  
tool for experimentally assessing gene function via overexpression phenotypes of DNA 491	  
cloned into an expression vector. This approach can improve overall repeatability and 492	  
reproducibility of genome-wide gain-of-function experiments, and facilitate open 493	  
distribution of libraries among researchers64. 494	  
 495	  
In this proof-of-concept study, we generated a Dub-seq library of E. coli genomic DNA 496	  
in a broad-range expression vector and assayed the phenotypic importance of 497	  
overexpressing cloned genes using E. coli as the host bacterium. From 152 genome-498	  
wide assays, we identified 400 different genes with a high-confidence fitness benefit 499	  
when overexpressed in at least one experimental condition. The majority of these gene-500	  
phenotype associations have not previously been reported including, as far as we know, 501	  
for yfgG, proY, and yfeX (Supplementary Table 3). We found 241 genes confer a 502	  
fitness benefit in just one condition, indicating a condition-specific phenotype. Overall, 503	  
32 genes enhanced fitness in 5 or more conditions, suggesting their broader role in host 504	  
fitness and importance in cross-resistance phenotypes observed between metals, 505	  
antibiotics, antiseptics and other stresses65. Dub-seq recapitulated 41 known instances 506	  
of positive fitness effects, wherein the fitness phenotypes stem from diverse 507	  
mechanisms, including overexpression of a compound target, active efflux of heavy 508	  
metals, decreased uptake of metals and antibiotics, increased uptake of nutrients, and 509	  
the regulatory effects of both protein-coding genes and small RNAs. We also identified 510	  
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enhanced susceptibility due to overexpression. Finally, we show that systematically 511	  
comparing gain and loss-of-function datasets provide additional insights into those 512	  
genes that are both necessary and sufficient for stress tolerance phenotypes.  513	  
 514	  
Dub-seq can be readily extended to DNA from other sources and many cultured 515	  
bacteria could be adapted as hosts for the genome-wide fitness assays. In particular, 516	  
our vectors should be suitable to build Dub-seq libraries of microbial isolates and can be 517	  
mobilized to new bacteria via conjugation because of its broad-host range replication 518	  
origin. By using other hosts, we can overcome gene expression and toxicity issues 519	  
associated with expressing heterologous DNA in model hosts34-36. To extend the Dub-520	  
seq methodology for functional profiling of DNA isolated from the environment, we 521	  
would need to generate a higher diversity of barcoded vectors so that we would have a 522	  
large library of unique barcode pairs and the largest percentage of metagenomic 523	  
diversity can be captured and mapped confidently. In addition, to ensure reliable 524	  
expression of heterologous genes, a number of approaches can be used to activate 525	  
transcription or translation of genes encoded within foreign DNA34,42,66.  526	  
 527	  
In this work, we generated a Dub-seq library with a ~2.6 kb insert size and therefore by 528	  
design, the library only covers fragments encoding 2-3 genes on an average. Therefore, 529	  
phenotypes that are only conferred by the activity of a larger group of genes (such as 530	  
multisubunit complexes) will not be detected. Nevertheless, we did detect 6 instances of 531	  
‘epistatic’ interactions in which two neighboring genes show greater fitness score as 532	  
gene-pairs than the inferred sum of score of the individual genes. By adapting the Dub-533	  
seq strategy to fosmids, cosmids and bacterial-artificial-chromosomes, future efforts can 534	  
clone larger size genomic fragments to create Dub-seq libraries for the discovery of 535	  
activities encoded by multiple genes, including secondary metabolites.  536	  
 537	  
Given the increasing knowledge gap between genomic sequence and function, and the 538	  
limited ability of computational approaches to accurately predict gene function from 539	  
sequence, high-throughput experimental methods are needed to assign gene function 540	  
and resolve roles of uncharacterized genes. Recently, a number of loss-of-function 541	  
methods have been developed5-8,10-14, but only a fraction of genes from genetically 542	  
tractable microbes can be readily annotated with a specific function using these 543	  
approaches. We envision that multiple, complementary experimental approaches that 544	  
can be applied en masse are ultimately necessary to uncover the roles of most poorly 545	  
annotated genes from microbial isolates and microbiomes. The Dub-seq approach we 546	  
presented here is another valuable tool in this toolkit.  547	  
 548	  
 549	  
 550	  
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 570	  
FIGURES 571	  
 572	  
 573	  

 574	  
 575	  
Figure 1. Schematic overview of the Dub-seq approach. (a) A pair of random 20 576	  
nucleotide DNA sequences, the UP and DOWN (DN) barcodes are cloned into an 577	  
expression vector. Deep sequencing of the dual barcoded vector (BPseq) associates 578	  
UP and DOWN barcode sequences. (b) Target genomic DNA is randomly sheared and 579	  
cloned between the UP and DOWN barcodes to create the Dub-seq plasmid library. (c) 580	  
To characterize the Dub-seq library, a “Tn-seq” like protocol is performed to precisely 581	  
map the two genomic breakpoints of each insert and to associate each breakpoint with 582	  
its random DNA barcode sequence. If the source genome(s) has been sequenced, then 583	  
BAGseq can be used to define the exact sequence of each plasmid in the library. (d) 584	  
The fitness of bacteria carrying different plasmids can be measured with pooled growth 585	  
assays and deep sequencing of the DNA barcodes (BarSeq). Strain (or fragment) 586	  
fitness is defined as the log2 ratio of barcode abundance after selection (end) versus 587	  
before (start). Gene fitness is estimated from the fragments’ fitness by a constrained 588	  
regression. 589	  

590	  
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 591	  

 592	  
 593	  
Figure 2. E. coli Dub-seq library characterization. (a) Center: genomic coverage of 594	  
the E. coli BW25113 Dub-seq library in 10 kB windows (blue track). Black and red line-595	  
tracks represent genes essential for viability when deleted5 that are encoded on the 596	  
negative and positive strands, respectively and are covered in the Dub-seq library. Left 597	  
and right: regions of the E. coli chromosome covering acrB, ompF, yfgG, ygeH, rrlD and 598	  
rpoB. Each purple line represents a Dub-seq genomic fragment (the y-axis is random). 599	  
(b) The fragment insert size distribution in the E. coli Dub-seq library. (c) The distribution 600	  
of number of genes that are completely covered (start to stop codon) per genomic 601	  
fragment in the E. coli Dub-seq library. (d) Cumulative distribution plot showing the 602	  
percentage of genes in the E. coli genome (y-axis) covered by a number of independent 603	  
genomic fragments (x-axis).  604	  
 605	  
 606	  
 607	  
 608	  
 609	  
 610	  
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 611	  
 612	  
Figure 3. Fragment and gene fitness Dub-seq scores. (a) Dub-seq fragment (strain) 613	  
data for region surrounding rcnA under elevated nickel stress (y-axis). Each line shows 614	  
a Dub-seq fragment. Those that completely cover rcnA are in red. Both the mean and 615	  
regression scores reflect the known biology of rcnA as a nickel resistance 616	  
determinant45. (b) Same as (a) for the neighboring rcnR, which encodes a 617	  
transcriptional repressor of rcnA. Fragments that cover rcnR are in red. (c) Comparison 618	  
of fragment fitness scores for two biological replicates of 1.2 mM nickel stress. (d) Same 619	  
as (c) for gene fitness scores calculated using the regression approach. Genes are 620	  
highlighted if their data passed our statistical filters for reliable effects (see Methods); 621	  
we also show whether the gene score is based on just one fragment.  622	  

623	  
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 624	  
 625	  
 626	  

 627	  
 628	  
Figure 4. Heatmap of Dub-seq fitness data for 53 conditions and for 67 genes with 629	  
large benefits. Only genes with a high-confidence effect and gene fitness score >= 6 in 630	  
at least one condition are shown. Gene scores from replicate experiments were 631	  
averaged. 632	  
 633	  
 634	  
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 635	  
 636	  
Figure 5. Comparing genome-wide loss and gain-of-function phenotype 637	  
data.  Comparison of RB-TnSeq fitness data15 (x-axis) and Dub-seq gene fitness data 638	  
for E. coli genes under growth with inhibitory concentrations of cobalt (a), nickel (b), and 639	  
sodium chloride (c). Selected genes are highlighted. (d) Growth of E. coli 640	  
overexpressing yfgG under cobalt stress; pssA is a control. (e) Growth of E. coli 641	  
overexpressing proY under nickel stress; ybjE is a control. (f) Growth of E. coli 642	  
overexpressing yfeX under sodium chloride stress; yfgG is used as a control. 643	  
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METHODS: 644	  
 645	  
Strains and growth conditions 646	  
Escherichia coli BW25113 was purchased from the E. coli Genetic Stock Center.  All 647	  
plasmid manipulations were performed using standard molecular biology techniques67. 648	  
All enzymes were obtained from New England Biolabs (NEB) and oligonucleotides were 649	  
received from Integrated DNA Technologies (IDT). Escherichia coli strain DH10B 650	  
(DH10B derivative, NEB 10-Beta) was used for plasmid construction and as host for 651	  
Dub-seq fitness assays. Unless noted, all strains were grown in LB supplemented with 652	  
30 µg/ml chloramphenicol at 37ºC and shaking at 200 rpm. The primers, plasmids and 653	  
strains used in this study are listed in Supplementary Tables 6, 7 and 8 respectively. 654	  
 655	  
Construction of dual barcoded Dub-seq vector 656	  
To construct a double barcoded vector, we used pFAB5477 an in-house plasmid with 657	  
pBBR1 replication origin and a chloramphenicol resistance marker68. pBBR1 based 658	  
broad-host plasmids are relatively small, mobilizable and have been widely used for a 659	  
variety of genetic engineering applications in diverse microbes69. To insert a pair of DNA 660	  
barcodes on the plasmid we used phosphorylated oFAB2853 and oFAB2854 primers to 661	  
amplify the entire plasmid pFAB5477, removed the plasmid backbone using DpnI (as 662	  
per manufacturing instructions, NEB), and ligated the amplified and pure product using 663	  
T4 ligase (as per manufacturing instructions, NEB). The random N’s in oFAB2853 and 664	  
oFAB2854 (Supplementary Table 6) represent the UP and DOWN barcode 665	  
sequences. The ligated product, pFAB5491, was column purified using the Qiagen PCR 666	  
purification kit, transformed into DH10B electro-competent cells (NEB 10-Beta E. coli 667	  
cells, as per manufacturing instructions, NEB) and transformants were selected on LB-668	  
agar plates supplemented with 30 ug/ml chloramphenicol.  The next day, ~250,000 669	  
colony forming units (CFU) were estimated and scraped together into 20 ml LB with 30 670	  
ug/ml chloramphenicol. The culture library was diluted to an optical density at 600 nm 671	  
(OD600) of 0.2 in fresh LB medium supplemented with 30 ug/ml chloramphenicol and 672	  
grown to a final OD600 of ~1.2. We added glycerol to a final concentration of 15%, 673	  
made multiple 1 ml glycerol stocks, and stored them at -80ºC. We also collected cell 674	  
pellets to prepare plasmid DNA of pFAB5491 for further characterization of the library 675	  
(BPseq).  676	  
 677	  
BPseq to characterize dual barcoded Dub-seq vector 678	  
To associate the pair of DNA barcodes, we performed Barcode-Pair sequencing 679	  
(BPseq) of the plasmid pFAB5491 library. For deep coverage of the library, we 680	  
performed 10 different PCR reactions using primers VM_barseq_P1 and VM_Barseq-681	  
P2. The forward primers VM_Barseq-P2 contains different 6-bp TruSeq indexes, and 682	  
were automatically demultiplexed by the Illumina software.    683	  
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 684	  
We performed PCR in a 100-ul total volume with 5 ul common reverse primer 685	  
VM_barseq_P1 (4 uM), 5 ul forward primer VM_Barseq-P2 _IT001 to IT010 (4 uM), 38 686	  
ul of sterile water, 2 ul template pFAB5491, and 50 ul of 2X stock of Q5 DNA 687	  
Polymerase mix (500 ul of 2X stock of Q5 DNA Polymerase mix consists of 200 ul Q5 688	  
buffer, 20 ul dNTP, 50 ul DMSO, 10 ul Q5 DNA Polymerase enzyme and 220 ul water) 689	  
under following PCR conditions: 98ºC for 4 minutes, followed by 15 cycles of 30 sec at 690	  
98ºC, 30 sec at 55ºC, 30 sec at 72ºC and final extension at 72ºC for 5 minutes. Finally, 691	  
we ran the PCR products on an analytical gel to confirm amplification. We pooled equal 692	  
volumes (10 ul) of BarSeq PCR products, purified the combined product using Qiagen 693	  
PCR purification kit, and eluted in 40 ul of sterile water. We quantified the DNA product 694	  
with a Qubit double-stranded DNA (dsDNA) high-sensitivity (HS) assay kit (Invitrogen). 695	  
The BPseq samples were sequenced first on Illumina MiSeq and then HiSeq 2500: both 696	  
with 150 bp single-end runs. 697	  
 698	  
BPseq data analysis 699	  
BPseq reads were analyzed with bpseq script from the Dub-seq python library with 700	  
default parameters (code available at https://github.com/psnovichkov/DubSeq). The 701	  
script looks for the common flanking sequences around each barcode (UP and DOWN) 702	  
and requires an exact match of 9 nucleotides on both sides.  By default, these flanking 703	  
sequences may be up to 2 nucleotides away from their expected positions. The script 704	  
also requires that each position in each barcode have a quality score of at least 20 (that 705	  
is, an estimated error rate of under 1%). This gives an initial list of pairs of barcodes 706	  
with the correct length and reliable sequence quality.  707	  
 708	  
We applied two additional filters to minimize the number of erroneous barcode pairs that 709	  
can be caused by PCR artifacts or sequencing errors.  First, we check whether a given 710	  
barcode can be a result of a single nucleotide substitution introduced in a real barcode 711	  
and filter out all such barcodes. We perform a pairwise sequence comparison of all 712	  
extracted barcodes (UP and DOWN barcodes are treated separately) and search for 713	  
“similar” barcodes. Two barcodes are considered to be similar if they are different by 714	  
only one nucleotide. A given barcode passes the filter if it does not have similar 715	  
barcodes or it is at least two times more frequent than the most abundant similar 716	  
barcode. 717	  
 718	  
Second, we check whether a given barcode pair can be a result of chimeric PCR and 719	  
filter out all such pairs. As the region between and around UP and DOWN barcodes are 720	  
identical in all plasmids in our library, we expected artifacts from formation of chimeric 721	  
BPseq PCR products13. We perform a pairwise comparison of all barcode pairs and 722	  
search for “related” pairs. Two barcode pairs are considered to be related if they have 723	  
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either the same UP or DOWN barcodes. The presence of the same UP (or DOWN) 724	  
barcode in multiple barcode pairs is potentially a sign of chimeric PCR. To distinguish 725	  
the true barcode pair from the chimeric one, we check the frequency of all the related 726	  
barcode pairs.  A given barcode pair passes the filter and is considered to be non-727	  
chimeric if it does not have related pairs or it is at least two times more frequent than the 728	  
most abundant related barcode pair. As a result, the ‘reference set’ of barcode pairs is 729	  
created. From the BPseq step we obtained 5,436,798 total reads. Among these, total 730	  
usable reads (reads that support barcode pairs from the reference set) were 2,933,702 731	  
and represent about 54% of total reads. 732	  
 733	  
Dub-seq vector preparation for cloning genomic fragments 734	  
To prepare the Dub-seq vector pFAB5491 for cloning, we made 900 ul or about 100 ug 735	  
of plasmid preparation (Qiagen plasmid miniprep kit), and performed two rounds of PmiI 736	  
digestion. Restriction digestion reaction included 900 ul (total 100 ug) of pFAB5491 737	  
plasmid, 100 ul PmiI enzyme, 400 ul 10X cutsmart buffer, and water to make up the 738	  
volume of 4000 ul. We incubated the reaction at 37ºC on a heating block for 4 hours 739	  
and then checked the reaction progress on an analytical 1% agarose gel. To 740	  
dephosphorylate the restriction-digested vector, we added 1 unit of rSAP for every 1 741	  
pmol of DNA ends (about 1 µg of a 3 kb plasmid), and incubated at 37ºC for 2 hours in 742	  
a PCR machine. We stopped the reaction by heat-inactivation of rSAP and restriction 743	  
enzyme at 70ºC for 20 minutes. The cut and dephosphorylated vector library was then 744	  
gel purified (Qiagen gel extraction kit). To remove any uncut vector, we repeated the 745	  
entire process of restriction digestion, dephosphorylation, and purification. The final 746	  
concentration of cut and pure barcoded vector library used for cloning genome 747	  
fragments was about ~30 ng/ul.   748	  
 749	  
Construction of E. coli Dub-seq library 750	  
To construct Dub-seq library of E. coli genomic fragments, we extracted E. coli 751	  
BW25113 genomic DNA and 1 ug was fragmented by ultrasonication to an average size 752	  
of 3000 bp with a Covaris S220 focused ultrasonicator. The sheared genomic DNA was 753	  
then gel purified and end-repaired using End-IT kit (Epicentre, as per manufacturer 754	  
instruction). Briefly the 50 ul reaction included: 34 ul sheared DNA (1.0 ug total), 5 ul 755	  
ATP 10 mM, 5 ul dNTP mix (10 mM), 5 ul EndIt buffer 10X and 1-2 ul EndIT enzyme.  756	  
We incubated the reaction at room temperature for 45 mins, and inactivated the enzyme 757	  
by incubating the reaction at 70ºC for 10 minutes. The end-repaired genome fragments 758	  
were purified with PCR clean-up kit (Qiagen), and quantified on Nanodrop. 759	  
 760	  
The end-repaired genomic fragments were then ligated to the restriction-digested, 761	  
sequence-characterized dual barcoded backbone vector (pFAB5491) at 8:1 762	  
insert:vector ratio using Fast-link Ligase enzyme (Epicentre, as per manufacturer 763	  
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instruction). The total 60 ul ligation reaction consists of 4 ul of restriction-digested 764	  
pFAB5491, 20 ul End-repaired DNA, 3 ul ATP (10 mM), 6 ul 10X ligase buffer, 19 ul 765	  
water and 8 ul Fast-link-ligase. The ligation was incubated overnight (18 hrs) at 16ºC, 766	  
inactivated at 75ºC for 15 minutes, and purified using PCR purification kit (Qiagen).  767	  
  768	  
For transforming the ligation reaction, 60 ul of column-purified ligation reaction was 769	  
mixed gently with 1500 ul of NEB DH10B electrocompetent cells on ice and then the 770	  
mix was dispensed 60 ul per cuvette. Electroporation was done using parameters 771	  
supplied by NEB. Transformed cells were recovered by adding 1 ml SOC recovery 772	  
media (as per competent cell manufacturer instruction, NEB). We pooled all recoveries 773	  
and added additional 10 ml of fresh SOC. Transformants were then incubated at 37ºC 774	  
with shaking for 90 minutes. We spun down the pellets and resuspended the pellet in 6 775	  
ml SOC. Different volumes of 6 ml resuspended pellets were then plated on overnight-776	  
dried bioassay plates (Thermo Scientific # 240835) of LB agar supplemented with 30 777	  
ug/ml chloramphenicol. We also did dilution series for estimating CFUs.  778	  
 779	  
We determined the number of colonies required for 99% coverage of E. coli genome 780	  
using the formula N = ln(1-0.99)/ln(1-(Insert size/Genome Size)) to ensure that genome 781	  
fragments are present in the cloned library70. For example, to cover the E. coli genome 782	  
(of size 4.7 Mb) with fragments of 3 kb, we need about 4,610 strains for 99% coverage. 783	  
We collected ~40,000 colonies by scraping the colonies using a sterile spatula into 20 784	  
ml LB supplemented with 30 ug/ml chloramphenicol in a 50 ml Falcon tube and mixed 785	  
well. This E. coli Dub-seq library was then diluted to an optical density at 600 nm 786	  
(OD600) of 0.2 in fresh LB supplemented with 30 ug/ml chloramphenicol and grown to a 787	  
final OD600 of ~1.2 at 37ºC. We added glycerol to a final concentration of 15%, made 788	  
multiple stocks of 1 ml volume, and stored the aliquots at -80C. We also made cell 789	  
pellets to store at -80ºC and to make large plasmid preparation (Qiagen) for BAGseq 790	  
library preparation.  791	  
 792	  
BAGseq to characterize barcoded genomic fragment junctions 793	  
We characterized the final plasmid library pFAB5516 using a TnSeq-like protocol13, 794	  
which we call Barcode-Association-with Genome fragment sequencing or BAGseq. 795	  
BAGseq identifies the cloned genome fragment and its pairings with neighboring dual 796	  
barcodes. This step of associating the dual barcodes with each library of genomic 797	  
fragments is only done once (by deep sequencing) and used as a reference table to 798	  
derive connections between observed functional/fitness traits with specific cloned 799	  
genomic fragment (Fig. 1).  800	  
 801	  
To generate Illumina-compatible sequencing libraries to link both UP and DOWN 802	  
random DNA barcodes to the ends of the cloned genome fragments, we processed two 803	  
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samples per library. The plasmid library (1 ug) samples were fragmented by 804	  
ultrasonication to an average size of 300 bp with a Covaris S220 focused ultrasonicator. 805	  
To remove DNA fragments of unwanted size, we performed a double size selection 806	  
using AMPure XP beads (Beckman Coulter) according to the manufacturer’s 807	  
instructions. The final fragmented and size-selected plasmid DNA was quality assessed 808	  
with a DNA 1000 chip on an Agilent Bioanalyzer. Illumina library preparation involves a 809	  
cascade of enzymatic reactions, each followed by a cleanup step with AMPure XP 810	  
beads. Fragmentation generates plasmid DNA library with a mixture of blunt ends and 811	  
5’ and 3’ overhangs. End repair, A-tailing, and adapter ligation reactions were 812	  
performed on the fragmented DNA using the NEBNext DNA Library preparation kit for 813	  
Illumina (New England Biolabs), according to the manufacturer’s recommended 814	  
protocols. For the adapter ligation, we used 0.5 ul of a 15uM double-stranded Y 815	  
adapter, prepared by annealing Mod2_TS_Univ (ACGCTCTTCCGATC*T) and 816	  
Mod2_TruSeq (Phos-GATCGGAAGAGCACACGTCTGAACTCCAGTCA). In the 817	  
preceding oligonucleotides, the asterisk and Phos represent phosphorothioate and 5’ 818	  
phosphate modifications, respectively.  819	  
 820	  
To specifically amplify UP barcodes and neighboring genomic fragment terminus by 821	  
PCR, we used the UP-tag-specific primer oFAB2923_Nspacer_barseq_universal, and 822	  
P7_MOD_TS_index1 primer. For the DOWN-tag amplification we used oFAB2924_ 823	  
Nspacer_barseq_universal and P7_MOD_TS_index2 primer. For the BAGseq UP 824	  
barcode and DOWN barcode site enriching PCR, we used JumpStart Taq DNA 825	  
polymerase (Sigma) in a 100 ul total volume with the following PCR program: 94ºC for 2 826	  
minutes and 25 cycles of 94ºC 30 seconds, 65ºC for 20 seconds, and 72ºC for 30 827	  
seconds, followed by a final extension at 72ºC for 10 minutes.  The final PCR product 828	  
was purified using AMPure XP beads according to the manufacturer’s instructions, 829	  
eluted in 25 ul of water, and quantified on an Agilent Bioanalyzer with a DNA-1000 chip. 830	  
Each BAGseq library was then sequenced on the HiSeq 2500 system (Illumina) with a 831	  
150 SE run to map UP and DOWN barcodes to genomic inserts in the Dub-seq E. coli 832	  
library.   833	  
 834	  
BAGseq data analysis 835	  
BAGSeq reads were analyzed with bagseq script from the Dub-seq python library with 836	  
default parameters (code available at https://github.com/psnovichkov/DubSeq). Fastq 837	  
files for UP and DOWN barcodes with associated (cloned) genomic fragments are 838	  
processed separately. For each read, the script looks for the flanking sequences around 839	  
a barcode and requires an exact match of 9 nucleotides on both sides and a minimum 840	  
quality score of 20 for each nucleotide in a barcode. The sequence downstream of the 841	  
identified barcode is considered to be a candidate genomic fragment and is required to 842	  
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be at least 15 nucleotides long for further processing. As a result, the initial list of the 843	  
extracted barcodes and candidate genomic fragments is constructed.  844	  
 845	  
All extracted genomic fragments were compared to the E. coli genome sequence with 846	  
BLAT using default parameters. Only hits with alignment block size of at least 15 847	  
nucleotides and at most one indel were considered. It is also required that the extracted 848	  
genomic fragment is mapped to one location in the genome. Thus, mappings to repeat 849	  
regions were ignored. We applied two additional filters to minimize the number of 850	  
erroneous associations between barcode and genomic location.  First, we applied the 851	  
same type of filter that we use for the analysis of BPSeq reads to filter out barcodes with 852	  
a 1-nucleotide error. 853	  
 854	  
Second, the same barcode can be associated with different genomic fragments 855	  
because of PCR artefacts (chimeras) or because multiple fragments were cloned 856	  
between the same pair of barcodes. To filter out erroneous barcode mappings, the 857	  
number of reads supporting different locations for the same barcode were calculated.  858	  
To distinguish the true location from the false one, the frequency of the most abundant 859	  
location (the number of supported reads) was compared with frequencies of all other 860	  
locations for the same barcode. A given association between the barcode and the 861	  
genomic location is considered to be true if the barcode does not have any other 862	  
associated locations or the abundance of this association is at least two times more 863	  
frequent than any other associations for the same barcode. As a result, the reference 864	  
set of associations between UP (and separately for DOWN) barcodes and genomic 865	  
locations is created, which we call ‘BAGseq reference set’. 866	  
 867	  
The BPseq reference set of barcode pairs and BAGseq reference set are combined 868	  
together to associate pairs of barcodes with genomic regions (to create the final ‘Dub-869	  
seq reference set’). This step is done using the bpag script from the Dub-seq python 870	  
library with default parameters. For each BPseq barcode pair, the script checks if the 871	  
associations between UP and DOWN barcodes with genomic locations are present in 872	  
the BAGSeq reference set. If both UP and DOWN barcodes (from BPseq reference set) 873	  
are mapped to the genome, then the script checks the length of the region between the 874	  
mapped locations and requires it to be between 100 nt and 6 kb. As a result, the final 875	  
Dub-seq reference list of barcode pairs associated with genomic regions is created. 876	  
Among total 10,600,088 reads for UP barcodes, usable reads were 3,884,931 (BAGseq 877	  
UP barcode reads supporting the Dub-seq reference set), representing about 36.65% of 878	  
total reads, whereas for total 9,671,635 reads for DOWN barcodes, usable reads were 879	  
2,499,399, representing about 25.84% of total reads (BAGseq DOWN barcode reads 880	  
supporting the Dub-seq reference set). 881	  
 882	  
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Competitive growth experiments: 883	  
For genome-wide competitive growth experiments, a single aliquot of the Dub-seq 884	  
library in E. coli DH10B was thawed, inoculated into 25 ml of LB medium supplemented 885	  
with chloramphenicol (30 ug/ml) and grown to mid-log phase. At mid-log phase, we 886	  
collected cell pellets as a common reference for BarSeq (termed start or time-zero 887	  
samples) and we used the remaining cells to set up competitive fitness assays under 888	  
different experimental conditions at a starting OD600 of 0.02. For carbon source growth 889	  
experiments, we used M9 defined medium supplemented with 0.3 mM L-leucine (as 890	  
DH10B is auxotrophic for L-leucine)47 and chloramphenicol. For experiments with stress 891	  
compounds, we used an inhibitory but sublethal concentration of each compound, as 892	  
determined previously15. All stress experiments were done in LB with chloramphenicol. 893	  
All pooled fitness experiments were performed in 24-well microplates with 1.2 mL of 894	  
media per well and grown in a multitron shaker. We took OD readings periodically in a 895	  
Tecan M1000 instrument to ensure that the cells were growing and to confirm growth 896	  
inhibition for the stress experiments. The assayed Dub-seq library cell pellets were 897	  
stored at -80C prior to plasmid DNA extraction. 898	  
 899	  
BarSeq  900	  
Plasmid DNA from Dub-seq library samples was extracted either individually using the 901	  
Plasmid miniprep kit (Qiagen) or in 96-well format with a QIAprep 96 Turbo miniprep kit 902	  
(Qiagen). Plasmid DNA was quantified with the Quant-iT dsDNA BR assay kit 903	  
(Invitrogen). The BarSeq PCR of UP barcodes was done as previously described13 with 904	  
~50 ng of plasmid template per BarSeq PCR reaction. To quantify the reproducibility of 905	  
both UP and DOWN barcodes in competitive growth experiments, we collected plasmid 906	  
DNA from nickel and cobalt experiments, and amplified both UP and DOWN barcodes 907	  
in two separate PCRs using the same plasmid library template. For BarSeq PCR of 908	  
DOWN barcodes, we used universal-forward-primer DT_BarSeq_p1_FW and reverse 909	  
primer DT_BarSeq_IT017. The PCR cycling conditions and purification steps were 910	  
same as for the UP barcodes13. All experiments done on the same day and sequenced 911	  
on the same lane are considered as a ‘set’.  912	  
 913	  
BarSeq data analysis and fragment score calculation 914	  
From HiSeq 4000 runs we obtained ~400 million of reads per lane, or 4.2 million reads 915	  
per sample (for multiplexing 96 samples) typically >60% reads were informative after 916	  
filtering out reads for sequencing errors and unmapped barcodes. BarSeq reads were 917	  
analyzed with barseq script from the Dub-seq python library with default parameters. 918	  
For each read, the script looks for the flanking sequences around each barcode and 919	  
requires an exact match of 9 nucleotides on both sides and a minimum quality score of 920	  
20 for each nucleotide in a barcode. The number of reads supporting each barcode is 921	  
calculated. We apply the same type of filter that we use for the analysis of BPSeq reads 922	  
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to filter out barcodes with single nucleotide substitutions relative to real barcodes (see 923	  
BPSeq section). As a result, the list of barcode and their counts is created. 924	  
 925	  
Calculation of fragment scores (fScores) 926	  
Given a reference list of barcodes mapped to the genomic regions (BPSeq and 927	  
BAGSeq), and their counts in each sample (BarSeq), we estimate fitness values of each 928	  
genomic fragment (strain) using fscore script from the Dub-seq python library with 929	  
default parameters. First, the script identifies a subset of barcodes mapped to the 930	  
genomic regions that are well represented in the time-zero samples for a given 931	  
experiment set. We require that a barcode have at least 10 reads in at least one time-932	  
zero sample to be considered a valid barcode for a given experiment set. Then the 933	  
fscore script calculates fitness score only for the strains with valid barcodes. 934	  
 935	  
Strain fitness (𝑓!) is calculated as a normalized log! ratio of counts between the 936	  
treatment (condition or end) sample s! and sum of counts across all (start) time-zero 𝑡! 937	  
 938	  
𝑓! = log!(  

!!!!
!!!!

) 939	  

 940	  
Then the strain fitness scores are normalized so that the median in each experiment is 941	  
zero. 942	  
 943	  
Calculating gene-score (gScore) 944	  
Given the fitness scores calculated for all Dub-seq fragments, we estimate a fitness 945	  
score for each individual gene that is covered by at least one fragment. As mentioned in 946	  
the Results, simply averaging the scores for the fragments that cover a gene gives 947	  
spurious results for non-causative genes that are adjacent to a causative gene. To 948	  
overcome this problem we modeled the fitness score of each fragment as the sum of 949	  
the fitness scores of the genes that are completely covered by this fragment. Our model 950	  
for estimating gene scores assumes that genes contribute independently to fitness, that 951	  
most genes have little impact on fitness, and that intergenic regions have no effect on 952	  
host fitness.   953	  
 954	  
To estimate gene scores, we cannot use ordinary least squares (OLS), the most 955	  
common type of regression, because of over fitting, which would produce unrealistic 956	  
high positive and low negative scores for many genes. We also considered 957	  
regularization methods (Ridge, LASSO, and ElasticNet), but these suffered from either 958	  
too much shrinkage of fitness scores (biasing them towards zero) or failed to eliminate 959	  
over fitting (see Supplementary note). Instead, we use Non-Negative Least Squares 960	  
(NNLS) regression71, where the predicted gene scores are restricted to take only 961	  
nonnegative values. If a gene with a potential benefit is next to (but not covered by) a 962	  
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fragment with negative fitness, most regression methods would inflate the benefit of the 963	  
gene and assign a negative score to the nearby gene. NNLS instead ignores the (often 964	  
noisy) negative scores for the nearby fragments. To estimate negative gene scores, we 965	  
also used NNLS, but with the signs of the fragment scores flipped. 966	  
 967	  
In our model, the expected fitness of a fragment is given by 968	  

𝑓! = 𝑔!"
!

 

were 𝑔!"   is a fitness score of a gene covered by 𝑖-th fragment completely. The NNLS 969	  
minimizes 970	  
 971	  

||𝐴𝑔 − 𝑓||!!, subject  to  𝑔 ≥ 0 
 972	  
where 𝑔 a vector of gene fitness scores to be estimated, 𝑓 is vector of the “observed” 973	  
fitness scores of fragments, 𝐴 a matrix of ones and zeros defining which gene is 974	  
covered by which fragment completely. Gene scores were calculated using the gscore 975	  
script from the Dub-seq python library with default parameters, which uses the nnls 976	  
function from the optimize package of the scipy python library.  977	  

High-confidence gene scores and estimating the false discovery rate 978	  

We used several filters to identify gene scores that were likely to be of high-confidence 979	  
and reliable. Whereas the non-negative regression was used to determine if the high 980	  
fitness of the fragments covering the gene are due to this gene or a nearby gene, these 981	  
filters were intended to ensure that the fragments covering the gene had a genuine 982	  
benefit. The first filter was |gene score| >= 2, as such a large effect occurred just 4 times 983	  
in 17 control comparisons between independently-processed but identical “start” 984	  
samples (0.2 per experiment). In contrast the actual conditions gave 40 large effects per 985	  
experiment on average (over 150 times more). 986	  
 987	  
Second, we noticed that some genes had high scores because of a single fragment with 988	  
a very high score. These fragments did not have high scores in replicate experiments, 989	  
so their high scores might be due to secondary mutations. To filter out these cases, we 990	  
performed a single-sample t test on the fragment scores (for the fragments that covered 991	  
the gene) and required P < 0.05. This test asks if the mean is significantly different from 992	  
a reference value. To handle uncertainty in the true centering of the fragment scores 993	  
(which were normalized to have a median of zero), we considered the mean of all 994	  
fragment scores for the experiment. We used this as the reference value (instead of 995	  
zero) if this mean had the same sign as the gene’s score. This makes the filter slightly 996	  
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more stringent. If the gene has just one fragment, then we cannot apply the t test, so we 997	  
instead require that |fragment score| be in the top 1% for this experiment. 998	  
 999	  
Third, we checked that the effect was larger relative to the expected noise in the mean 1000	  
of the fragment scores that cover the gene. The expected noise for each fragment can 1001	  
be estimated as sqrt(1/(1+count_after) + 1/(1+count_start)) / ln(2). This approximation is 1002	  
derived from the best case that the noise in the counts follows a Poisson distribution. 1003	  
The expected noise for the mean of the fragment scores is then 1004	  
sqrt(sum(fragment_noise2)) / nfragments. Note that z = mean(fragment score) / noise 1005	  
would (ideally) follow the standard normal distribution. We use |z| >= 4 as a filter; with 1006	  
4,303 genes being assayed, we would expect about 0.3 false positives per experiment.  1007	  
 1008	  
"Filtered effects" (that passed all three filters) were considered to be reliable. Reliable 1009	  
effects were considered to be high-confidence if the gene was covered by multiple 1010	  
fragments. Because of the risk of secondary mutations, a measurement for a gene with 1011	  
a single fragment was only considered high-confidence if it was reliable and was also 1012	  
supported by a large effect (|score| >= 2) in another experiment for that compound. 1013	  
 1014	  
The filtered effects were usually consistent across replicate experiments and represent 1015	  
reliable scores. We had two biological replicates for 64 of the 82 conditions (a 1016	  
compound at a given concentration) that we studied. Across these 64 pairs of replicate 1017	  
experiments, 85% of genes with filtered effects in one replicate were consistent (|score| 1018	  
>= 1.5 and the same sign) in the other replicate. Large effects (|score| >= 2) were more 1019	  
likely to replicate if they were filtered (85% vs. 59% otherwise). Among filtered effects 1020	  
for genes covered by more than one fragment, 39% of the effects that did not replicate 1021	  
were from a single condition (zinc sulfate stress at 1 mM). We did not identify any 1022	  
obvious issue for the data from this condition. In total, 4,303 genes are covered by at 1023	  
least one fragment, but there are only 4,151 genes with at least one gene score 1024	  
(adequate representation in at least one start sample). 1025	  
 1026	  
To estimate the false discovery rate for high-confidence effects, we randomly shuffled 1027	  
the mapping of barcodes to fragments, recomputed the mean scores for each gene in 1028	  
each experiment, and identified high-confidence effects as for the genuine data. This 1029	  
shuffling test will probably overestimate the FDR because it assumes that all of the 1030	  
variability in the fragment scores is due to noise. Also, we used the mean score, rather 1031	  
than regression-based gene score, in this test. This might also lead to an overestimate 1032	  
of the FDR. We repeated the shuffle procedure 10 times. On average, each shuffled 1033	  
data set had 75 high-confidence effects, while the actual data had 4,051 high-1034	  
confidence effects, so we estimated the false discovery rate as 75/4051 = 1.9%. 1035	  
 1036	  
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Calculating gene-pair fitness score 1037	  
Although our model assumes that the genes on a fragment contribute independently to 1038	  
fitness, there are cases where multiple nearby genes work together to confer a 1039	  
phenotype. For estimating such ‘epistatic’ synergistic fitness contribution by neighboring 1040	  
pair of genes, we included additional variables in our fitness calculation to account for 1041	  
the contribution of pairs of adjacent genes (and their intergenic regions). For a gene-pair 1042	  
to qualify to be valid hit, the score for the gene-pair has to be more than the individual 1043	  
gene scores from single-gene regression model, scores should be consistent across 1044	  
replicates and should be supported by more than one fragment. After manual filtering, 1045	  
we found 6 high scoring epistatic-effect instances where gene-pairs positively contribute 1046	  
to the host fitness under specific condition (Supplementary Table 5). Among these, 3 1047	  
gene-pairs have related functions (fetA-fetB on nickel, ampD-ampE on benzethonium, 1048	  
ackA-pta on D-lactate48) and make biological sense. However, in the other 3 high 1049	  
scoring gene-pairs arcA-yjjY, hns-tdk and yfiF-trxC, each gene is divergently transcribed 1050	  
and the reason behind combined fitness phenotype is not obvious. We speculate, the 1051	  
fitness phenotype in these cases may be function of intergenic regions in addition to the 1052	  
encoded genes. 1053	  
 1054	  
Experimental validation of single genes 1055	  
To experimentally validate some of top hits in our Dub-seq results we used the ASKA 1056	  
ORF collection29. The ASKA library consists of E. coli ORFs cloned on a pMB1 1057	  
replication origin plasmid and driven by an IPTG-inducible promoter. We extracted 1058	  
individual ASKA ORF plasmids from the collection, sequence confirmed and 1059	  
transformed the plasmids into our assay strain E. coli DH10B. As the plasmid copy 1060	  
number and the strength of promoter and ribosome binding site used in the ASKA ORF 1061	  
collection is different from the broad-host pBBR1 plasmid system used in E coli Dub-seq 1062	  
library, we screened for an optimum IPTG levels to induce the expression of specific 1063	  
gene in order to study the host fitness.  We grew the individual strains in 96-well 1064	  
microplates with 150 uL total volume per well. These plates were grown at 30ºC with 1065	  
shaking in a Tecan microplate reader (either Sunrise or Infinite F200) with optical 1066	  
density readings every 15 minutes.  1067	  
 1068	  
Library visualization tools 1069	  
We used the Dub-seq viewer tool from the Dub-seq python library 1070	  
(https://github.com/psnovichkov/DubSeq) to generate regions of the E. coli chromosome 1071	  
covering fragments (landscape mode) presented in Fig 2a. To generate fitness score 1072	  
plots as shown in Fig. 3a and 3b, and Supplement Figs. 4, 6 and 7, we used gene-1073	  
browser mode. We used Circa software (OmGenomics) to generate genome coverage 1074	  
plot shown in Fig. 2a.  1075	  
 1076	  
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Code and metadata availability 1077	  
Code for processing and analyzing Dub-seq data is available at 1078	  
https://github.com/psnovichkov/DubSeq  1079	  
 1080	  
Complete data from all experiments (read counts per barcode, fragment scores and 1081	  
gene scores) is deposited here: https://doi.org/10.6084/m9.figshare.6752753.v1 1082	  
 1083	  
Link to website with supplementary information and bulk data downloads: 1084	  
http://morgannprice.org/dubseq18/ 1085	  
 1086	  
 1087	  
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SUPPLEMENTARY INFORMATION 1283	  
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Supplementary Tables: 1285	  
Supplementary Table 1. List of 135 genes not represented in E. coli Dub-seq library 1286	  
Supplementary Table 2. List of protein-coding genes with details on number of Dub-1287	  
seq fragments covering the gene, and if the gene is essential (according to the Keio 1288	  
library5), has RB-TnSeq data15 and has Dub-seq data  (this work).  1289	  
Supplementary Table 3. Filtered gene scores for reliable effects in Dub-seq dataset 1290	  
and if they have representative data in RB-TnSeq mutant library15 1291	  
Supplementary Table 4. List of genes whose high dosage is known to yield positive 1292	  
fitness effects  1293	  
Supplementary Table 5. Novel gene-function associations with fitness score >=4; 1294	  
hypothesis and general notes 1295	  
Supplementary Table 6. List of primers used in this work 1296	  
Supplementary Table 7. List of plasmids used in this work 1297	  
Supplementary Table 8. List of strains used in this work 1298	  
 1299	  
 1300	  
Link to website with supplementary information:  1301	  
http://morgannprice.org/dubseq18/ 1302	  
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 1305	  
 1306	  
Supplementary Figures: 1307	  
 1308	  
 1309	  

 1310	  
 1311	  
 1312	  
Supplementary Fig. 1. BarSeq reproducibility: Comparison of UP and DOWN 1313	  
barcode BarSeq reads for  (a) Nickel and (b) Cobalt condition. (c) Comparison of UP 1314	  
barcode reads for two independent start (time-zero) samples. 1315	  

1316	  
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 1317	  

 1318	  
 1319	  
Supplementary Fig. 2. Fragment score comparisons: Fragment score (fscore) 1320	  
comparisons for all fragments in LB (x-axis) and LB with nickel (y-axis). (a) Fragments 1321	  
fully covering rcnA are highlighted in red. (b) Fragments fully covering rcnR are 1322	  
highlighted in red. 1323	  

1324	  
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 1325	  
 1326	  
 1327	  

 1328	  
 1329	  
Supplementary Fig. 3. Comparison of gene scores from regression analysis and 1330	  
mean gene scores: Comparison between gene fitness scores calculated using Non-1331	  
Negative Least Squares regression (NNLS) method and the mean score method under 1332	  
nickel stress  (a) Fitness score for rcnA (red circle) (b) Fitness score for rcnR (red 1333	  
circle). 1334	  

1335	  
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 1336	  
 1337	  

 1338	  
 1339	  
Supplementary Fig. 4. Fragment and gene Dub-seq scores: Dub-seq fragment 1340	  
(strain) data for different regions under elevated nickel stress (y-axis). Each line shows 1341	  
a Dub-seq fragment with those that completely cover the indicated gene are in red. The 1342	  
mean and regression scores for each indicated gene are shown below each plot. 1343	  
Compare scores for (a) yfgG with (b) yfgH, and  (c) cysE with (d) trmL. Note that the 1344	  
mean and regression scores for yfgH and trmL are different. The mean score is 1345	  
incorrectly high for yfgH and trmL and is due to the presence of yfgG and cysE on a 1346	  
number of fragments. 1347	  

1348	  
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 1349	  
 1350	  

 1351	  
 1352	  
Supplementary Fig. 5. Additional validation growth curves for Dub-seq high 1353	  
scoring genes.  (a) Growth of E. coli overexpressing murA under phosphomycin stress; 1354	  
emrE is a control. (b) Growth of E. coli overexpressing dcrB under sisomicin stress; 1355	  
yfeX is a control. (c) Growth of E. coli overexpressing mipA under benzethonium 1356	  
chloride stress; valS is used as a control. (d) Growth of E. coli overexpressing pssA 1357	  
under sisomicin stress; sugE is used as a control. 1358	  

1359	  
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 1360	  
 1361	  
 1362	  

 1363	  
 1364	  
Supplementary Fig. 6. Dub-seq gene-pair fitness scores: Dub-seq fragment (strain) 1365	  
data (y-axis) for region surrounding gene-pair of interest (x-axis). The covered 1366	  
fragments are shown in red and partially covered gene-pair-neighborhood fragments 1367	  
are shown in gray. The regression scores each gene-pair of interest are shown next to 1368	  
each plot. Compare scores for (a) fetA and fetB with fetA-fetB pair with (b) ampD and 1369	  
ampE, with ampD-ampE pair and  (c) ackA and pta with ackA-pta pair. We looked for 1370	  
the scores for fragments containing more than one gene that are significantly greater 1371	  
than the inferred sum of score of the constituent genes.  1372	  
 1373	  

1374	  
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Supplementary note: 1375	  

Ridge, Lasso, and Elastic Net 1376	  

The Ridge, Lasso, and Elastic Net regressions were implemented using the scikit-learn 1377	  
python library for machine learning. The regression was done on sparse representation 1378	  
of matrix A, without calculation of intercept since fragment scores were normalized (to 1379	  
set the median to zero). The regularization parameters were estimated using 3-fold 1380	  
cross validation (RidgeCV, LassoCV, and ElasticNetCV classes from the 1381	  
sklearn.linear_model package). The parameters were first estimated for each of 155 1382	  
experiments, and then the parameters that deliver the highest R-square across all 1383	  
samples were selected as optimal.  1384	  
  1385	  
The objective functions to be minimized and optimal regularization parameters for 1386	  
Ridge, Lasso, and Elastic Net are described below. 1387	  
 1388	  
Ridge 1389	  
 1390	  
Ridge is 𝐿! regularization with objective function: 1391	  
 1392	  
||𝐴𝑔 − 𝑓||!! +   𝛼||𝑔||!! 
 1393	  
where  ∝  controls the amount of regularization (shrinkage). The optimal 𝛼  =1.0 1394	  

Lasso 1395	  

Lasso is 𝐿! regularization with objective function: 1396	  
 1397	  
||𝐴𝑔 − 𝑓||!! +   𝛼||𝑔||!  
 1398	  
where 𝛼 controls the amount of regularization (shrinkage) and variable selection. The 1399	  
optimal 𝛼 =3.4 1400	  
 1401	  

Elastic Net 1402	  

Elastic Net is regularization with linear combination of 𝐿! and 𝐿! terms and objective 1403	  
function: 1404	  
||𝐴𝑔 − 𝑓||!! +   𝛼  𝛾||𝑔||! +   

!(!!!)
!

||𝑔||!!  1405	  
 1406	  
where  𝛼 controls the amount of regularization and 𝛾 defines the relative contribution of 1407	  
𝐿! and 𝐿!  terms/ The optimal parameters:  𝛼 =3.6; 𝛾 =0.7 1408	  
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The regression analysis was run using optimal parameters and then manual inspection 1409	  
of regression results obtained from all three methods (Ridge, Elastic Net and LASSO) 1410	  
was performed for known gene-function associations. We observed that Ridge and 1411	  
Elastic Net with optimal parameters tends to significantly underestimate the fitness 1412	  
scores for causative genes that expected to have high positive or negative fitness 1413	  
scores. This underestimation is caused by shrinkage effect introduced by both 1414	  
regularization approaches. At the same time, the LASSO, when used with optimal 1415	  
parameters, seems to lack this problem and produces the most accurate scores across 1416	  
all three approaches. As an example, this is shown for rcnA gene (condition: 1.2 mM 1417	  
Nickel) scores calculated from Ridge, Elastic Net and LASSO approaches 1418	  
(Supplementary Fig. 7a). However, LASSO with optimal parameters still did not solve 1419	  
OLS over fitting problem completely, and still gave the unrealistic extreme positive and 1420	  
extreme negative scores for neighboring genes (for example, comparison of rcnB and 1421	  
yehA, condition: 1mM Cobalt, Supplementary Fig. 7bc). In comparison, NNLS had no 1422	  
regularization parameters, and we did not observe over fitting issues.   1423	  
 1424	  
 1425	  
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 1426	  
 1427	  
Supplementary Fig. 7: Gene score estimation approaches: Example gene scores 1428	  
for (a) rcnA (b) rcnB and (c) yehA showing data over fitting and shrinkage by ridge, 1429	  
lasso and elastic net regularization methods. Left, Dub-seq viewer for fragments 1430	  
covering a specific gene completely (red), compared to partially covering or gene-1431	  
neighborhood fragments (gray). The gene scores estimated using different methods are 1432	  
shown on right. The gene scores highlighted in blue lines indicate issues of 1433	  
regularization methods (see Supplementary note). 1434	  
 1435	  
 1436	  
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