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Paralysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal 11 

muscle as a consequence of motor neuron degeneration. Interactions between motor neurons 12 

and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events 13 

that drive these processes in intact spinal tissue remains poorly understood1,2,3,4. Here, we use a 14 

spatially resolved view of disease-driven gene expression changes to stratify these events, 15 

reveal the relevant sub-populations of cells involved in each stage of disease progression, and 16 

characterize the underlying molecular mechanisms that trigger and drive the course of disease. 17 

Based on the well characterized cellular organization of the spinal cord and the importance of 18 

intercellular interactions in ALS disease progression, we applied spatial transcriptomics5,6,7 (ST) 19 

to obtain spatially and anatomically resolved quantitative gene expression measurements of 20 

mouse spinal cords over the course of disease, as well as in postmortem tissue from ALS 21 

patients. We developed a novel Bayesian generative model for assembling a spatiotemporal 22 

atlas of gene expression in ALS that integrates cell-type, anatomical region, space, and time. 23 

We identify novel pathways implicated in ALS progression, key differences between microglia 24 

and astrocyte populations at early time-points and in different anatomical regions, and discern 25 

several transcriptional pathways shared between murine models of ALS and human 26 

postmortem spinal cords. We provide a general experimental-computational design for mapping 27 

and understanding the transcriptional landscape of diseases in complex tissues. An interactive 28 

data exploration portal for our ST analysis is available at als-st.nygenome.org.  29 

 30 

ST generates quantitative transcriptome-wide RNA sequencing (RNAseq) data via capture of 31 

polyadenylated RNA on arrays of spatially barcoded DNA capture probes5,6,7. We applied ST to 32 

spatially profile gene expression in lumbar spinal cord tissue sections (L3-L5) from SOD1-G93A 33 

(ALS) and SOD1-WT (control) mice at pre-symptomatic, onset, symptomatic, and end-stage 34 

time points (Supplementary Table 1). We then applied ST to profile gene expression in 35 

postmortem lumbar and cervical spinal cord tissue sections from either lumbar or bulbar onset 36 
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sporadic ALS patients. We analyzed spatially resolved transcriptome profiles from over 76 37 

thousand ST spots, mapping to ~1200 spinal cord tissue sections of 67 mice, and over 60 38 

thousand ST spots mapping to 80 postmortem spinal cord tissue sections from six patients 39 

(Supplementary Table 1).  40 

 41 

We annotated each ST data point with an anatomical annotation region (AAR) tag, then used 42 

these tags to register data to a common coordinate system (Extended Data Fig. 1; Extended 43 

Data Fig. 2; Supplementary Table 1). To estimate gene expression levels accurately and detect 44 

significant regional, anatomical, and cell type changes in ST data within and between 45 

conditions, we formulated a novel hierarchical generative probabilistic model. Our model 46 

incorporates spatial data from multiple time points, anatomical locations, and tissue sections, 47 

allowing us to study differential expression in distinct AARs within and across conditions 48 

(Extended Data Fig. 1).  49 

 50 

We corrected for missing data due to undersampling and bias, which has been a major problem 51 

in spatial and single cell RNAseq studies. As a result, we reliably quantitated the spatial 52 

distribution of 11,138 genes in mouse and 9,624 genes in human spinal cord sections. 53 

Furthermore, principal component analysis of the complete mouse ST data reveals that the 54 

majority of the variance is explained by spatial location, disease state, and genotype (Extended 55 

Data Fig. 3), and not by major batch effects.  56 

 57 

Our analysis recapitulates the specific regional and temporal expression patterns for genes with 58 

previously described regional expression profiles (Mbp, Ebf1, and Slc5a7)8,9,10 and roles in ALS 59 

progression (Aif1, Gfap)11. Immunofluorescence (IF) imaging of the protein products of these 60 

genes demonstrates spatial concordance with our ST analysis (Fig. 1; Supplementary Tables 2 61 

and 3). Our observations, shown for example by Fcrls, Aif1, Gfap and Aldh1l1, suggest that 62 
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microglial dysfunction occurs well before symptom onset, precedes astroglial dysfunction in 63 

ALS, and that this early microglial dysfunction is proximal to motor neurons (Supplementary 64 

Table 3; Extended Data Fig. 4).  65 

 66 

To further explore the microglial activation program, we focused on a mechanism involving 67 

TREM2 reported in several neurodegenerative disease models12,13,14. TREM2 and TYROBP 68 

form a receptor complex that can trigger phagocytosis or modulate cytokine signaling when 69 

engaged by membrane lipids, or lipoprotein complexes14,15. ST analysis suggests the 70 

spatiotemporal order of this TREM2-mediated mechanism in ALS; Tyrobp is upregulated pre-71 

symptomatically and before Trem2 in the ventral horn and ventral white matter, Lpl and B2m are 72 

upregulated pre-symptomatically specifically in the ventral horn, while Apoe and Cx3cr1 are not 73 

(Fig. 2; Supplementary Table 3; Extended Data Fig. 4). These genes become widely 74 

upregulated in spinal cords of symptomatic mice (Supplementary Table 3). Thus, our ST 75 

analysis suggests that TREM2/TYROBP mediated signaling is an early step in disease relevant 76 

microglial changes in gene expression. Further, the spatiotemporal ordering of gene expression 77 

changes that we observe in this mechanism differs from previously reported results utilizing 78 

single cell RNA sequencing of sorted microglia12,13, demonstrating the value of our spatially-79 

resolved high dimensional analyses. 80 

 81 

Trem2 mutations are associated with several neurodegenerative diseases15,16,17,18,19 and, 82 

through mTOR signaling in myeloid cells15,Trem2 expression modulates autophagy. Mutations 83 

in several autophagy related genes are associated with ALS15. ST analysis and IF imaging show 84 

that genes involved in autophagy and the endolysosomal system are dysregulated in the ALS 85 

spinal cord (Extended Data Fig. 5; Supplementary Table 3). Ablation of autophagy by 86 

conditional knockout of Atg7 in cholinergic cells, including motor neurons (ChAT-Cre+/+; Atg7fl/fl; 87 

SOD1-G93A), leads to earlier symptom onset but prolonged survival in ALS mice20. To 88 
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investigate which pathways might link dysfunction in autophagy to motor neuron loss in ALS, we 89 

applied our methods to these mice (Atg7 cKO). As expected, we observe that expression of 90 

Gfap and Aif1, and activity of the TREM2 microglial activation axis, are greatly reduced when 91 

autophagy is ablated in motor neurons, particularly in AARs distal to motor neuron somata 92 

(Supplementary Table 3).  93 

 94 

To spatially resolve cell-type specific activities of disease-relevant pathways in an unbiased 95 

manner, we carried out a co-expression analysis of our mouse ST data. We confirmed the 96 

attenuated gliosis in Atg7 cKO20 and identified 31 major co-expression modules (Methods; Fig. 97 

3a; Supplementary Table 4) of diverse spatiotemporal and pathway activities (Fig. 3b; Extended 98 

Data Fig. 6,7a; Supplementary Table 5). Examining these modules in the context of cell-type 99 

specific gene expression data21,22 reveals that many of the modules are comprised of genes 100 

selectively expressed in cell types representing distinct but spatiotemporally correlated 101 

biological activities (Extended Data Fig. 7b). To dissect the roles of these cell types, we further 102 

grouped the genes of each module based on their cell-type specific expression pattern, resulting 103 

in submodules (Methods; Fig. 3c; Supplementary Table 6). These submodules enabled the 104 

identification of distinct pathway activities in astrocytes, microglia, and endothelial cells during 105 

gliosis in disease relevant AARs at key points in disease progression, and revealed regional 106 

subpopulations within distinct cell types16,17 (Fig. 3; Supplementary Table 6). For example, we 107 

identified 25 submodules (of a total of 433) that are enriched for astrocyte-expressed genes. 108 

These 25 astrocyte submodules are distributed across 20 co-expression modules, and exhibit 109 

diverse spatiotemporal and pathway activities (Supplementary Table 6,7; Extended Data Fig. 8). 110 

Thus, our ST analysis identifies gene expression programs characteristic of regional astrocyte 111 

populations23 that display disease relevant spatiotemporal dynamics. 112 

 113 
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Moreover, we can resolve the effect of ablating autophagy in cholinergic neurons on regional 114 

astrocyte populations (Extended Data Fig. 6). For example, modules 21 and 22 are strongly 115 

affected by ablation of autophagy (Extended Data Fig. 6). Both modules are highly enriched for 116 

astrocyte-expressed genes (Supplementary Table 7). Amongst the genes in module 22, Pten, 117 

Akt3, Kras, and Rb1cc1 are of interest, as they are involved in sphingolipid signaling, 118 

neurotrophin signaling, EGFR signaling, chemokine, and autophagy pathways. Interestingly, 119 

while sphingolipid signaling is perturbed in module 22, sphingolipid metabolism is dysregulated 120 

in module 8, which is enriched for microglia-expressed genes and includes Hexa and Hexb. 121 

HEXA and HEXB catalyze ganglioside GM2 breakdown, and are mislocalized in a subset of 122 

motor neurons (Extended Data Fig. 5). GM2 retention in lysosomes leads to accumulation of 123 

autophagy markers including SQSTM1 (P62), and is neurotoxic18. Modules 21 and 22 display 124 

similar temporal dynamics but show distinct spatial expression patterns; module 21 differs from 125 

module 22 in that it is preferentially expressed in the white matter. Thus, there appear to be two 126 

distinct astrocyte gene expression programs that both display transient, AAR specific changes 127 

in gene expression, and are upregulated when autophagy is ablated in cholinergic neurons.  128 

 129 

To extend our mouse studies to human disease, we applied our ST workflow to human 130 

postmortem spinal cord (cervical and lumbar) tissue from six ALS patients. Three patients 131 

presented clinically with bulbar symptom onset, and three patients presented with lower limb 132 

symptom onset. Our analysis recapitulates characteristic spatial expression patterns (neuron-133 

expressed SNAP25 is preferentially expressed in the grey matter and oligodendrocyte-134 

expressed PLP1 in the white matter, Extended Data Fig. 9). An unbiased co-expression 135 

analysis resulted in 28 expression modules (Extended Data Fig. 10a,b; Supplementary Table 8). 136 

The spatial mapping of modules demonstrates AAR characteristic patterns, some of which vary 137 

along the rostrocaudal axis (Fig. 4a) or differ between white matter and grey matter (Extended 138 

Data Fig. 10b). Moreover, some of these modules have expected spatially localized pathway 139 
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activities and share similar pathway activity with the murine ALS model (Extended Data Fig. 140 

10c; Supplementary Table 9). Consistent with previous studies24, our human data shows 141 

variability in gene expression in the ventral horn related to distance from the site of symptom 142 

onset (Supplementary Table 10). Several such changes correlate with the changes observed in 143 

the ventral horn of ALS mice (Supplementary Table 3,10). For instance, acetylcholinesterase 144 

(ACHE), the activity of which has been linked to neuromuscular defects in ALS16,19, shows a 145 

consistent pattern across patients and ALS mice (Fig. 4b,c). Taken together, our human dataset 146 

demonstrates the feasibility of applying ST5,6,7 to study complex neurodegenerative diseases 147 

using postmortem tissue. 148 

 149 

This study provides a comprehensive spatiotemporal, transcriptome-wide gene expression 150 

dataset with a unique combination of resolution, replication, and biological perturbation. In 151 

addition to our experimental roadmap for spatial transcriptomics, we have described key 152 

computational advances that increase the effective resolution and reliability of inferences drawn 153 

from spatially resolved data. We demonstrate that our procedure scales to real human and 154 

clinical settings, and allows us to draw inferences from murine models and test them in clinical 155 

samples. As such, we expect the work presented here to be a substantial resource and spur 156 

further mapping of the central nervous system and its modes of dysfunction. 157 

 158 

Methods 159 

 160 

Murine ALS models 161 

B6SJLSOD1-G93A transgenic and SOD1-WT transgenic mice were obtained from Jackson 162 

Laboratories (Bar Harbor, ME), and maintained in full-barrier facilities at Columbia University 163 

Medical Center in accordance with ethical guidelines established and monitored by Columbia 164 

University Medical Center’s Institutional Animal Care and Use Committee. SOD1-G93A mice 165 
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were monitored closely for onset of disease symptoms, including hindlimb weakness and weight 166 

loss. Disease end-stage was defined as the inability to become upright in 15s after being placed 167 

on their back. Aged Atg7flox/flox; ChAT-Cre; SOD1-G93A mice were a generous gift of Tom 168 

Maniatis of Columbia University Medical Center. 169 

 170 

Spinal cord collections and sectioning for Spatial Transcriptomics analysis 171 

Mice were transcardially perfused with 1X Phosphate buffered saline (PBS) followed by spinal 172 

cord dissection. The L3-L5 lumbar region was isolated based upon ventral root anatomy and 173 

embedded in Optimal Cutting Temperature (OCT, Fisher Healthcare, USA). The samples were 174 

then plunged into a bath of dry ice and pre-chilled ethanol until freezing and stored at -80°C.  175 

Postmortem cervical and lumbar spinal cord sections from sporadic ALS patients were obtained 176 

from the Target ALS Multicenter Postmortem Core (www.targetals.org). Frozen tissue blocks 177 

were then post-embedded in pre-chilled OCT and stored at -80°C. Cryosections were cut at 178 

10μm thickness onto ST slides, and stored at -80°C for a maximum period of 7 days. 179 

 180 

Immunostaining and microscopy 181 

Mice were transcardially perfused with 1X PBS followed by 4% buffered paraformaldehyde 182 

(Sigma-Aldrich, USA). Spinal cords were dissected and then post-fixed in 4% paraformaldehyde 183 

buffered in 1X PBS. The tissues were then cryoprotected in 30% sucrose diluted in 1X PBS, 184 

embedded in OCT and stored at −80°C. Cryosections were cut at 10μm thickness onto 185 

Superfrost plus slides (VWR International, USA). Sections were blocked in 1X PBS 186 

supplemented with 5% donkey serum (Jackson Immunoresearch, USA), 0.5% Bovine Serum 187 

Albumin (BSA, Sigma Aldrich, USA) and 0.2% Triton X-100 (Sigma-Aldrich, USA) for 1h at room 188 

temperature. This was followed by primary antibody staining at 4°C overnight, washing in 1X 189 

PBS with 0.2% Triton X-100 (PBS-T), and then secondary antibody incubation at room 190 

temperature for 1h and washed in PBS-T. The slides were mounted in Vectashield (Vector 191 
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Laboratories, USA) and cover slipped (VWR, USA). Primary antibodies were diluted 1:250 192 

except for SLC5A7 (EMD Millipore; MAB5514; 1:100), GFAP (Abcam; Ab4674; 1:500), 193 

SQSTM1 (Abcam; Ab56416; 1:500) and MBP (Abcam; Ab209328; 1:1000). AIF1, TYROBP, 194 

CTSD, and CTSS (Ab178847; Ab124834; Ab75852; Ab18822) antibodies were obtained from 195 

Abcam; EBF1 from Millipore (Ab10523); TREM2 from Novus (Af1729); and HEXA from Thermo 196 

Fisher Scientific (PA5-45175).  Secondary antibodies were Alexa Fluor conjugated and obtained 197 

from Jackson ImmunoResearch. Confocal images were acquired on a Zeiss LSM 780 with a 198 

20x/0.8 Plan-APOCHROMAT objective (Carl Zeiss Microscopy, Germany) or a 63x/1.4 Plan-199 

APOCHROMAT objective (Carl Zeiss Microscopy, Germany). Epifluorescence images were 200 

acquired using the same system; both fitted with a Zeiss Axiocam 506 mono (Carl Zeiss 201 

Microscopy, Germany). Images were processed using Zen 2012 (Carl Zeiss Microscopy, 202 

Germany) and Fiji 2.0.0-rc-65/1.15w25. Gamma was adjusted uniformly within experiments for 203 

clarity of presentation.  204 

 205 

Preparation of quality control and library preparation slides 206 

For quality control experiments and library preparation, the slides were prepared as described 207 

previously5,26. In short, a poly-dT (IDT, USA) capture sequence was covalently linked to 208 

Codelink (Surmodics, USA) activated glass slides, following the manufacturer’s guidelines. For 209 

library preparation slide production, 33μM spatially barcoded poly-dT20VN oligonucleotides 210 

(IDT, USA) were deposited as 100pL droplets onto Codelink slides as suggested by the 211 

manufacturer. The array printing was performed by ArrayJet LTH (Scotland, UK) according to 212 

the system requirements. Each library preparation slide had a total of 1007 spatially barcoded 213 

positions distributed over a ~42mm2 area printed in six replicates. Each spatially barcoded ST 214 

spot had a diameter of 100μm, with a center-to-center distance of 200μm between the spots. 215 

 216 

Histology staining and imaging for Spatial Transcriptomics 217 
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These steps were described previously5,26. Tissue sections were fixed in methanol-free 218 

formaldehyde (Thermo Fisher Scientific, USA) buffered in PBS for 10 min. After fixation, the 219 

tissues were dried with isopropanol, HE stained and mounted with 85% glycerol. All of the 220 

mouse samples were imaged using the Metafer slide scanning platform (v3.12.8 Metasystems, 221 

MetaSystems GmbH) equipped with a 20x/0.8 Plan-APOCHROMAT (Carl Zeiss Microscopy, 222 

Germany) and the resulting images stitched with Vslide (v1.1.115, MetaSystems GmbH). All of 223 

the human images were processed as described in the Immunostaining and microscopy 224 

section. In both cases, images were exported as high-resolution .jpg files used in all the 225 

following image processing steps. 226 

 227 

Optimization of conditions using fluorescent cDNA  228 

Optimal conditions for spatially barcoded ST experiments were determined separately for 229 

mouse and human tissue by generating fluorescently labeled cDNA tissue prints as described in 230 

Ståhl et al5. In short, quality control slides were made as described in Preparation of quality 231 

control and library preparation slides and human and mouse tissues sectioned. While the 232 

fixation and staining conditions remained the same5, the pre-permeabilization conditions were 233 

changed to a 20min 20U collagenase I (Thermo Fisher Scientific, USA) treatment at 37°C. The 234 

reaction was substituted with 1X Hank's Balanced Salt Solution without phenol red (Thermo 235 

Fisher Scientific, USA) and 20μg BSA (NEB, USA). The pepsin permeabilization conditions 236 

were shortened to 6min for mouse samples and 8min for human samples. cDNA synthesis at 237 

42°C overnight was performed supplemented with Cy3-dCTPs (PerkinElmer Inc, USA) to 238 

generate and fluorescent print of spatial positions where the cDNA reaction took place. The 239 

fluorescent print was imaged using an Agilent high resolution C scanner for microarray imaging 240 

(Agilent Technologies, USA) at 10% gain in the Cy3 channel. Images taken during HE imaging 241 

and Cy3 imaging were overlaid in Fiji25 and the fluorescent signal outside the tissue boundaries 242 
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measured to < 10%. These optimized pre- and permeabilization conditions were used 243 

throughout the study. 244 

 245 

In situ Spatial Transcriptomics reactions 246 

These steps were described previously5 and in Optimizations of conditions using fluorescent 247 

cDNA printing. In short, collagenase permeabilization was conducted followed by pepsin 248 

permeabilization. Reverse transcription was done overnight. Tissue was removed by incubation 249 

in proteinase K (Qiagen, Germany) at 56°C for 1h when processing mouse samples or 4h in 250 

case of human samples at 2X enzyme amounts. After probe release by a Uracil-Specific 251 

Excision Reagent, the resulting spatially barcoded cDNA libraries were collected. The remaining 252 

background and unused probes on the array surface were detected by a mix of complementary 253 

Cy3-modified surface probes ([CY3]AGATCGGAAGAGCGTCGTGT and 254 

[CY3]GGTACAGAAGCGCGATAGCAG; both added at 0.1μM concentration in 1X PBS). The 255 

probe reaction was incubated for 10min at room temperature; washed in 1X PBS and spun 256 

dried before mounting the slide with SlowFade Gold Antifade Mountant (Thermo Fisher 257 

Scientific, USA) and imaging. Images were again exported as spots.jpg files. 258 

 259 

Spatial Transcriptomics library preparation, sequencing and demultiplexing 260 

These steps were described previously26 using fragmented and barcoded human RNA as the 261 

carrier material. The spike-in constituted around 25% of the libraries. ST cDNA libraries were 262 

diluted to 4nM and sequenced on the Illumina NextSeq 550 platform (Illumina, USA) using 263 

paired-end sequencing (R1 30bp, R2 55bp). Reads from mouse samples were aligned to the 264 

Ensembl mouse genome and transcriptome annotation references (GRCm38.v79) containing 265 

the protein-coding genes and lincRNAs whilst excluding mitochondrial transcripts. Reads from 266 

the human samples were aligned to the Ensembl human genome and annotation reference 267 

(GRCh38.v79) similarly as to the mouse samples. Samples were sequenced at a mean depth of 268 
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61.7 million paired-end reads depth which resulted in an average library saturation at 78.1%. 269 

The ST Pipeline27 version 0.8.5 was used in all analyses. The median number of genes and 270 

UMI transcripts detected per spatial spot was 1,415 (10th percentile is 490 and 90th percentile 271 

is 3,145) and 2,227 (10th percentile is 666 and 90th percentile is 6,348) in mouse and 938 (10th 272 

percentile is 419 and 90th percentile is 1,621) and 1,255 (10th percentile is 515 and 90th 273 

percentile is 2,409) in human samples, respectively. To focus our analysis on reliably detected 274 

genes across spots, we filtered out the genes that were detected in less than 2% of the spots, 275 

resulting in 11,140 mouse and 9,627 human genes for subsequent analysis. 276 

 277 

Image and Spatial Transcriptomics data processing  278 

HE and Cy3 spots.jpg images were manually aligned using Adobe Photoshop (Adobe Systems, 279 

USA) and ST spots underlying the tissue selected. The centroids of the spots were determined 280 

using the Fiji “Analyze particles” plugin25 and the ST pipeline27 file was the filtered to contain 281 

only centroid-adjusted spatial array coordinates and the respective gene-expression count 282 

values. In case a sectioning artifact was present, the corresponding ST spot was subtracted 283 

from the analyses. This file format was used in all consequent analyses in the study. 284 

 285 

Spatial Transcriptomics spot annotation 286 

We designated 11 anatomical annotation regions (AARs) for spinal cord tissue sections 287 

(Extended Data Fig. 2a). These regions were designed on the basis of known major functional 288 

or molecular divisions. AARs were designed such that the regions could be easily and reliably 289 

assigned on the basis of gross morphology and cytology. Each ST spot could be manually 290 

assigned with an anatomical region tag. To streamline the annotation process, we developed a 291 

custom software with a graphical user interface 292 

(https://github.com/simonsfoundation/spatial_transcriptomics_viz) that overlays corresponding 293 

ST spot and HE images and enables a quick assignment process of a ST spot to an AAR. The 294 
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obtained anatomical annotations were used in the statistical analyses as well as in the tissue 295 

registration process described in the following paragraphs. 296 

 297 

Detection of individual tissue sections from arrays 298 

To detect separate tissue sections from arrays and link ST spots with tissue sections, we used 299 

the following computational approach. First, the detected ST spots were placed on a two-300 

dimensional integer lattice by rounding their x and y coordinates to the nearest integers. Then, 301 

the obtained points in the lattice were labeled so that the connected (structure element is 302 

[[0,1,0],[1,1,1],[0,1,0]]) regions are assigned the same integer value. Afterwards, tissue sections 303 

with less than 10 ST spots were discarded, and the spots with less than 100 (in mouse) and 10 304 

UMIs (in human) were discarded due to the low sequencing depth. Notably, this filtering step 305 

can break the neighboring structures of the detected tissue sections and lead to ST spots 306 

without any adjacent ST spots, resulting in singular precision matrices (see more on conditional 307 

autoregressive prior below; Supplementary Methods). To account for this possibility, we 308 

discarded the spots that do not have neighboring spots after filtering (structure element is 309 

[[0,1,0],[1,1,1],[0,1,0]]). Finally, all the detected tissue sections were manually checked to 310 

ensure their consistency. All the subsequent analyses were done using the original (that is, non-311 

rounded) ST spot coordinates. 312 

 313 

Statistical analysis of ST data 314 

For statistical analysis of our ST data we use a hierarchical probabilistic (generative) model that 315 

integrates all data simultaneously to correct for undersampling/zero-inflation, model space in 316 

both explicit (x,y) and reconstructed (z) dimensions, and model genotype, time and technical 317 

effects (https://github.com/tare/Splotch). At the core of the model we use a generalized linear 318 

model based using the zero-inflated Poisson (ZIP) distribution with a log link function. We 319 

formulate a hierarchical generative probabilistic model with three major components to capture 320 
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variation in ST data: 1) a linear effect modeling time and biologically driven variation (β), 2) a 321 

spatial random effect, modeling biologically substantive spatial variation (φ), and 3) spot-level 322 

variation (ε), modeling spot specific technical variation. Specifically, the rate parameter λ (the 323 

quantity of interest for many of the analysis described in this work) of the ZIP likelihoods 324 

depends on x, β, φ, and ε as follows log λ = xT β + φ + ε, where x contains one hot encoded 325 

spot annotation (all indices are omitted here for brevity). 326 

Next, we will briefly describe these different model components (for complete details of our 327 

model, including assumptions and approximations needed for its implementation and code 328 

availability and use, see Supplementary Methods). The linear model is built upon the ST spot 329 

annotations, and thus its role is to capture offsets (average) in expression of genes in distinct 330 

anatomical regions. Importantly, λ captures latent expression levels at individual spots. 331 

Moreover, we encode the hierarchical experimental design in the linear model, resulting in a 332 

multilevel model that has parameters at different levels representing genotype and time point 333 

combinations, sexes, and individuals (e.g. βSOD1-WT,p30 → βMale,SOD1-WT,p30 → (βMouse#1, βMouse#2, 334 

βMouse#3) in mouse. Whereas, in human we only have two levels so that the first level represents 335 

the four different onset (bulbar, lumbar) and sampling location (cervical and lumbar) 336 

combinations and the second level is modeling individuals. As a result, the linear model 337 

component allows us to share information from multiple tissue sections in model inference to 338 

improve the estimation of the model parameters. Clearly, the linear model is not flexible enough 339 

to explain the variation in the ST data in full; therefore, we extend the model by adding a spatial 340 

random effect (φ) component for capturing remaining spatial correlations. Specifically, we use 341 

conditional autoregressive (CAR) prior that has been popular in various spatial data analysis 342 

tasks28,29. The adjacency matrices (for the conditional autoregressive prior) representing the 343 

correlation structures of the ST spots of all the detected tissue sections were derived using the 344 

coordinates of the tissue section ST spots (see above). That is, the possible neighbors of a 345 
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given ST spot are the nearest ST spots above, below, left, and right on the ST array design. 346 

Moreover, the precision and spatial autocorrelation parameters of CAR prior are assigned prior 347 

distributions and their posterior distributions are estimated. Our early experiments showed that 348 

despite these two spatial model components there was unexplained variation; to account this, 349 

we include a spot-level parameter (ε) for modeling remaining variation at the level of individual 350 

spots. The parameter (θp), representing the probability of extra zeros (zero-inflation), and other 351 

parameters are given weakly informative priors (Supplementary Methods). Differential exposure 352 

of ST spots (sequencing depth) is considered through a size factor si as follows log (λi si) = xi
T β 353 

+ φi + εi + log si (Supplementary Methods); we used the number of UMI counts per spot divided 354 

by the median UMI count across spots (2,227 and 1,225 in mouse and human, respectively) as 355 

the size factors. 356 

Our statistical model was implemented in Stan30. Sampling from posterior was done using 357 

NUTS (CmdStan 2.16.0) with default settings and running 4 independent chains with 1,000 (500 358 

warmup and 500 sampling iterations) iterations per chain. The convergence of the sampling 359 

chains was checked using the Gelman-Rubin convergence diagnostic31. As genes are 360 

independent in our model, we can utilize distributed computing to infer their models. For all 361 

considered mouse and human genes, we analyze their full data set simultaneously; that is, for 362 

each mouse and human gene, the statistical model is conditioned on 76,136 and 61,031 data 363 

points, respectively. This Bayesian inference procedure produces samples for all model 364 

parameters from posterior distributions; e.g., we can quantify our knowledge on λ and β (at 365 

different levels) to allow various subsequent analyses. 366 

Studying differential expression at the level of individual spots between tissue sections is 367 

impractical due to many reasons, for instance, tissue sections are placed differently on the spot 368 

array, variable tissue compositions between tissue sections, random nature of the mRNA 369 

capture, and low UMI counts. Therefore, we base our differential expression detection on the 11 370 

distinct anatomical regions using the linear model described above. The posterior distributions 371 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/389270doi: bioRxiv preprint 

https://doi.org/10.1101/389270
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

of the multilevel latent parameters β (11-dimensional vectors) per gene summarize our 372 

knowledge on the average expression in different anatomical regions. Notably, due to the 373 

relationship between β and λ,  a one unit change in β translates to a multiplicative change of e 374 

in λ. For instance, by comparing βMale,SOD1-WT,p30 and βFemale,SOD1-WT,p30 we should be able to tell 375 

whether the gene of interest is differently expressed between males and females in SOD1-WT 376 

at P30. Whereas, βSOD1-WT,p70 and βSOD1-G93A,p70  should let us detect differentially expressed 377 

genes between SOD1-WT and SOD1-G93A at P70. That is, we want to quantify how different 378 

two distributions are and give a significance value to the quantified difference. To do this, we 379 

take an approach used previously for quantifying differences between posterior distributions, 380 

e.g., in order to detect alternative splicing and differential methylation32,33. Briefly, we define a 381 

random variable ∆β = β1 - β2 (in this study we only compare one-dimensional distributions) and 382 

derive its prior and posterior distributions. The posterior distribution of ∆β is estimated using the 383 

posterior samples of β1 and β2. If the posterior distribution of ∆β has a significant probability 384 

density around zero, then it suggests that the posterior distributions β1 and β2 are similar. To 385 

estimate the significance to this, we use the Savage-Dickey density ratio to compare densities 386 

of ∆β at zero before and after observing data p(∆β=0)/p(∆β=0|D). The p(∆β=0|D) values are 387 

obtained by evaluating the kernel density estimated probability density functions 388 

(scipy.stats.gaussian_kde with the Scott bandwidth estimator). Whereas, the term p(∆β=0) can 389 

be obtained analytically from prior. The Savage-Dickey density ratio approximates Bayes 390 

factors, and thus we can use Jeffreys’ interpretation34 to assess obtained values. 391 

 392 

Detecting differential expression between conditions 393 

To detect differentially expressed genes between conditions, we study the posterior samples of 394 

β coefficients. For instance, in order to to find the genes that are specifically (up or down) 395 

expressed in the ventral horn at P30 in SOD1-WT compared to SOD1-G93A we compare the 396 

posterior samples {βventral horn,SOD1-WT,p30}1..samples and {βventral horn,SOD1-G93A,p30}1..samples using the 397 
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Savage-Dickey density ratio. Similarly, to detect genes that are differentially expressed between 398 

P70 and P100 in the ventral lateral white in SOD1-G93A we compare {βventral lateral white,SOD1-399 

G93A,p70}1..samples and {βventral lateral white,SOD1-G93A,p100}1..samples. 400 

 401 

Detecting regional differential expression 402 

To detect genes with specific regional expression patterns, we study the posterior samples of β 403 

coefficients. For instance, genes that are specifically (up or down) expressed in the ventral horn 404 

compared to all the other annotation categories (Extended Data Fig. 2a) at P30 in SOD1-WT 405 

can be detected by comparing the posterior samples {βventral horn,SOD1-WT,p30}1..samples and {βmedial 406 

grey,SOD1-WT,p30, βdorsal horn,SOD1-WT,p30, βventral medial white,SOD1-WT,p30, βventral lateral white,SOD1-WT,p30, βmedial lateral 407 

white,SOD1-WT,p30, βdorsal medial white,SOD1-WT,p30, βcentral canal,SOD1-WT,p30, βventral edge,SOD1-WT,p30, βlateral edge,SOD1-408 

WT,p30, βdorsal edge,SOD1-WT,p30}1..samples using the aforedescribed Savage-Dickey density ratio. 409 

Whereas, to detect genes that are differentially expressed in the ventral horn compared to other 410 

grey matter regions (medial grey and dorsal horn) at P70 in SOD1-G93A we compare the 411 

posterior samples {βventral horn,SOD1-G93A,p70}1..samples and {βmedial grey,SOD1-G93A,p70, βdorsal horn,SOD1-412 

G93A,p70}1..samples. 413 

 414 

Tissue section registration 415 

To register mouse tissue sections, we base our approach on the manual ST spot annotations 416 

(assignment to 11 anatomical regions) and the highly stereotypical spinal cord structure. This 417 

annotation-based approach is more robust than attempting to register directly HE images of 418 

tissue sections of variable (incomplete or disrupted) morphologies. Here, we describe the the 419 

registration workflow. First, we attempt to find four centroids for the regions defined by dorsal 420 

horn and ventral horn annotated ST spots per detected tissue section (Extended Data Fig. 2d). 421 

This is done by applying 2-means clustering on dorsal horn and ventral horn annotated ST spot 422 

coordinates separately. To see whether we have detected two separate clusters (likely 423 
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representing left and right dorsal/ventral horns), we compute and assess the L2 distances 424 

between the centroids of the detected clusters: if the distance is less than 3 (set by inspecting 425 

spot distributions on typical tissue sections), then the centroids are not apart, and we have not 426 

reliably detected left and right regions. Depending on the starting point and the clustering result 427 

we decide how to continue (Extended Data Fig. 2d). Notably, human cervical spinal cord tissue 428 

sections are treated differently because of their physical size (Extended Data Fig. 2d). For 429 

instance, if we have detected left and right dorsal horns and left and right ventral horns, then we 430 

transform the spatial coordinates of the ST spots for each tissue section by rotation such that 431 

the dorsal horn and ventral horn centroids respectively align on the vertical axis, and the dorsal 432 

horn centroids are above the ventral horn centroids (Extended Data Fig. 2d). After the rotation 433 

step, we translate the ST spot coordinates such that a position equidistant from these centroids 434 

is at the origin of the coordinate system (Extended Data Fig. 2d). Finally, all the registered 435 

tissue sections were manually checked to ensure their accuracy. 436 

 437 

Spatiotemporal and disease-dependent co-expression analysis 438 

To study spatiotemporal and disease-dependent co-expression patterns in mouse spinal cord, 439 

we consider all the spot-level estimates (λ) from our statistical model (a matrix with 11,138 rows 440 

(genes) and 76,136 columns (spots)). First, we calculate Pearson correlation coefficients across 441 

all spots of all pairs of genes, resulting in an 11,138 by 11,138 correlation matrix. Next, we apply 442 

hierarchical clustering (L1 norm and average linkage) on the correlation matrix to group genes 443 

of similar co-expression pattern across genes. The threshold for forming flat clusters was 444 

selected so that the main blocks on the diagonal belong to separate clusters. 445 

To study the detected co-expression modules more closely, we visualize registered 446 

spatiotemporal and disease-dependent expression patterns. However, we should not directly 447 

calculate average expression of genes (λ values) as the genes are expressed at different levels; 448 
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therefore, we first standardize λ values across spots within genes, and then calculate average 449 

expressions of genes of interest across spots. 450 

Co-expression analysis was carried out similarly with human ST data (9,624 genes and 61,031 451 

spots) as with mouse ST data described above, with one exception, the λ values above the 99th 452 

percentile for each gene were clipped to the 99th percentile before calculating the correlation 453 

matrix. Additionally, we standardize the human λ values across spots within patients for each 454 

gene due to the greater biological variation. 455 

 456 

Hexagonal binning of ST data 457 

Hexagonal binning of ST data was done as implemented in matplotlib.pyplot.hexbin. The default 458 

reduce_C_function (mean) was used. Bins with less than 3 ST spots were discarded in the 459 

visualization unless stated otherwise.  460 

 461 

Comparison of mouse and human 462 

To study gene expression changes between distal and proximal regions in human, we compare 463 

the posterior samples of β coefficients representing distal and proximal regions by calculating 464 

their posterior difference (∆β) distribution per AAR per patient. Analysis is done at the level of 465 

patients because of the greater biological variability in humans. A gene is considered to have a 466 

consistent regulation pattern across the patients if all the patients’ posterior means of ∆β (distal-467 

proximal) are either > 0.2 or < -0.2. Furthermore, a gene is considered to have a consistent 468 

regulation pattern across species if it has consistent regulation pattern in human and the 469 

posterior mean of ∆β (SOD1-WT - SOD1-G93A) in mouse has the same sign as in human 470 

(distal-proximal) and the magnitude of ∆β in mouse is at least 0.5. 471 

 472 

Analysis of publicly available data 473 
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The table containing the FPKM values for genes across seven cell types in the mouse cerebral 474 

cortex generated by Zhang et al21 was downloaded from 475 

https://web.stanford.edu/group/barres_lab/brain_rnaseq.html. The FPKM values were used as 476 

is. The count table generated by single nucleus RNA sequencing of adult mouse lumbar spinal 477 

cord was provided along the publication by the authors22 . Additionally, Sathyamurthy et al.22 478 

kindly provided cluster assignments (inferred cell types) for each of the cells, which enabled us 479 

to calculate average CPM values per gene per inferred cell type. 480 

We calculated scaled average expressions per data set by dividing the average expression 481 

values per gene by the maximum average expression values across cell types of the study. We 482 

assumed that a gene was not expressed in the data set if the maximum average expression 483 

value across cell types was less than 1 and, in that case, the scaled average expression values 484 

were set to 0. When comparing our results with the publicly available data, we only considered 485 

the genes that were detected by Zhang et al21 and Sathyamurthy et al22. 486 

The hierarchical clustering of the scaled average gene expression values was done using L1 487 

norm and average linkage. The genes were grouped into clusters by using the automatic 488 

threshold selection as implemented in scipy.cluster.hierarchy.dendrogram.  489 

For identifying the submodules containing astrocyte-expressed genes we used the mouse 490 

cerebral cortex data set by Zhang et al21. First, we took the aforementioned scaled average 491 

gene expression values. Second, we used the Wilcoxon signed-rank test to see whether the 492 

submodule is enriched of astrocyte-expressed genes. Specifically, we compared the expression 493 

distribution of the genes belonging to the considered co-expression submodule in astrocytes 494 

with their expression distributions in neurons, myelinating oligodendrocytes, oligodendrocyte 495 

precursors, microglia, endothelial, and newly formed oligodendrocytes. Then, we took the 496 

maximum of the obtained six p-values; the considered submodule is enriched of astrocyte-497 

expressed genes only if the maximum p-value is less than 1e-2. The same procedure can be 498 
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used to identify submodules enriched of genes that are specifically expressed in other cell 499 

types. 500 

 501 

Data availability  502 

 503 

Raw mouse data has been deposited to NCBI’s Sequence Read Archive (SRA) under project ID 504 

PRJNA481056. Raw human data has been deposited at New York Genome Center and is 505 

available upon request submitted to alsdata@nygenome.org. All processed data and images 506 

used in the analyses have been deposited to als-st.nygenome.org. Source Data for Figs. 1-4 is 507 

provided with the paper.  508 

 509 
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 645 
 646 
Figure 1. Spatially and temporally resolved gene expression in the mouse spinal cord. (a) 647 

A schematic diagram of a Hematoxylin and Eosin stained cross-section of mouse lumbar spinal 648 

cord with anatomical annotation regions (AARs) overlaid (left panel). Scale bar is 500μm. A 649 

multichannel visualization of colocalized spatial mRNA expression of Ebf1 (green), Slc5a7 650 

(blue), and Mbp (purple) (middle panel). All analyzed and registered ST spots (N=19,380) from 651 

the SOD1-WT tissue sections were considered. The posterior means of the rate parameters λ 652 

are visualized simultaneously using three colors. Representative Z maximum projection of 10µm 653 

confocal image stack of EBF1 (green), SLC5A7 (blue), and MBP (purple) immunofluorescence 654 

in mouse lumbar spinal cord (N = 7 animals) (right panel). Scale bar is 500μm. (b) Spatial 655 

mRNA expression of microglial-expressed Aif1 and astrocyte-expressed Gfap in SOD1-WT and 656 

SOD1-G93A lumbar spinal cords at P70 and P100. The value of a bin is calculated as the mean 657 

of the ST values (posterior means of λ) within the bin area. The number of ST spots per 658 

condition is listed. (c) Representative Z maximum projections of 10µm confocal image stacks of 659 

AIF1 (green) and GFAP (magenta) immunofluorescence in SOD1-WT and SOD1-G93A spinal 660 

cords at P70 and P100 (N = 12 animals). Scale bars are 250µm.  661 
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 662 
Figure 2. Pre-symptomatic dysregulation of TREM2/TYROBP mediated signaling.  663 

(a) The posterior distributions of coefficient parameters β of Tyrobp of different AARs in SOD1-664 

WT (blue), SOD1-G93A (red), and Atg7 cKO (yellow) at P30, P70, P100, and P120. The 665 

coefficient parameters β capture offsets of expression (in natural logarithmic space) in distinct 666 

AARs across all tissue sections of a given condition. (b) As in (a), with the focus here on Trem2. 667 

(c) Spatial mRNA expression of Tyrobp in SOD1-WT and SOD1-G93A spinal cords at P70. The 668 

bin value is the mean of the ST values (posterior means of λ) within the bin area. The number of 669 

ST spots per condition is listed. (d) Representative Z maximum projections of 10µm confocal 670 

image stacks TYROBP (green) and TREM2 (magenta) immunofluorescence in SOD1-WT and 671 

SOD1-G93A ventral-lateral spinal cords at P70 (N = 6 animals). The scale bar is 250µm.672 
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 673 
Figure 3. Spatiotemporal dynamics of gene expression during disease progression in 674 

ALS.  675 

(a) Biclustering of the mouse ST data reveals spatially and temporally co-expressed genes. The 676 

dashed vertical purple line in the dendrogram denotes the break. The identifiers given to the co-677 

expression modules are listed. (b) Average spatiotemporal expression dynamics of genes in co-678 

expression modules 8 and 11 are visualized. The number of ST spots per condition is listed. (c) 679 

Analysis of cell type specific expression of genes in co-expression module 8 by hierarchical 680 

clustering of the genes using independent gene expression data of brain cell types21 and spinal 681 

cord cell types22. The dashed vertical purple line in the dendrogram denotes the break. The 682 

identifiers given to the co-expression submodules are listed on right of the dendrogram. 683 

Selected genes of interest are highlighted on right. (d) Analysis of enriched KEGG pathways 684 

among the genes of the submodules depicted in (c) (one-tailed Fisher’s exact test with 685 

Benjamini-Hochberg correction, FDR < 0.1) Adjusted p-values per KEGG category per 686 

submodule are shown.  687 
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 688 

Figure 4. Spatiotemporal transcriptome of human post-mortem spinal cord tissue from 689 

ALS patients.  690 

(a) Average spatiotemporal expression dynamics of the genes of the human co-expression 691 

modules 25 and 27 are visualized. The number of ST spots per condition are listed. (b) The 692 

posterior difference distributions of the ventral horn coefficients of ACHE per patient are 693 

visualized. The differences are calculated between the distal and proximal regions with respect 694 

to the onset location. The different line colors represent different patients. (c) Spatial mRNA 695 

expression of ACHE in human post-mortem lumbar spinal cord and cervical spinal cord tissue 696 

sections are visualized. The proximal and distal regions with respect to the onset location are 697 

illustrated separately. The bin value is the mean of the ST values (posterior means of λ) within 698 

the bin area. The number of ST spots per condition are listed. 699 

 700 
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Extended Data Figure 1 | Schematic representation of analytical 

workflow. Spatially resolved RNAseq data is acquired from discrete ST array 
features, mapping sparsely onto individual spinal cord sections. Through 
replication, registration, and standardization, we densely and evenly sample 
transcriptome-wide expression across the lumbar spinal cord. Using the 
analytical methods developed in this study, we identify coordinated expression 
modules that span several cell types. By examining these expression modules in 
the context of cell-type specific expression data, we narrow the focus to the 
activities of individual cell types within expression modules. (a) Four 
hematoxylin and eosin stained mouse lumbar spinal cord sections in the context 

of the ST array used in acquisition of spatially resolved RNAseq data from these 
sections. (b) Spatial expression of Mbp from all registered arrays. Expression 
levels are color encoded from lowest (Green) to highest (Red) for all spots 
(N=70,523) from all registered arrays, and assigned to a spot drawn at the 
registered spatial coordinate for each measurement. (c) Co-expression analysis 
identifies coordinated expression modules (left panel). The activities of these 
modules is examined in their spatiotemporal context, and compared across 
genotypes (middle panel). Genes comprising one such expression module are 
examined in the context of cell type specific expression data (right panel). 
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Extended Data Figure 2 | Anatomical annotation regions (AARs) and the 
procedure to register tissue sections by using AARs. (a) A schematic diagram 
of how the 11 considered AARs were defined. (b) Spatial distribution of AARs 
after the mouse tissue sections have been registered. All the registered mouse 
tissue sections are considered. The different colors depict different AARs. The 
contour lines are calculated per AAR. (c) Two-dimensional histogram using 
hexagonal binning summarizing the spatial distribution of registered mouse ST 
spots. All the registered mouse tissue sections are considered. The contour lines 
are calculated as in (b). (d) We consider seven different possible scenarios (on 

rows) and describe our procedure step-by-step (on columns) separately for 
those. Each procedure proceeds from left to right. In the case of the scenario 
depicted on the first row, we identify left and right ventral and dorsal horn 
centroids using AARs. Then, we rotate tissue sections so that the discrepancies 
between the y coordinates of the left and right ventral horn and the left and right 
dorsal horn centroids are minimized. Finally, we translate tissue sections so that 
they are centered around the origin using the aforementioned AARs. Depending 
on the case, the aforedescribed procedure is modified as depicted.

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/389270doi: bioRxiv preprint 

https://doi.org/10.1101/389270
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Extended Data Figure 3 | Principal component analysis (PCA) of mouse ST 
data. (a) The percentage of the variance (red curve) explained by each principal 
component as a function of the principal component number. The cumulative 
percentage of the variance (black curve) explained as a function of the number 

of considered principal components. (b) Spatiotemporal distribution across 
genotypes of projected ST data on the first principal component. The number of 
ST spots for each condition are listed. (c) As in (b), with the focus here on the 
second principal component.  
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Extended Data Figure 4. Spatiotemporal expression dynamics of Fcrls, Sall1, 
Tmem119, Gfap, Aldh1l1, Tyrobp, and Trem2. (a) Spatial mRNA expression of 
Fcrls in SOD1-WT (left panel) and SOD1-G93A spinal cords (middle panel) at 
P30 (first row), P70 (second row), P100 (third row), and P120 (fourth row). 
Spatial mRNA expression difference is calculated and illustrated between SOD1-
WT and SOD1-G93A per time point (right column). The value of a bin is 
calculated as the mean of the ST values (posterior means of the rate parameters 
λ) within the bin area. Bins with less than 3 ST spots are discarded. The number 
of ST spots per condition are listed. (b) As in (a), with the focus here on Sall1. 
(c) As in (a), with the focus here on Tmem119. (d) As in (a), with the focus here 
on Gfap. (e) As in (a), with the focus here on Aldh1l1. (f) Temporal 
dysregulation of Mpeg1, Fcrls, Hexb, Sall1, Tmem119, Gfap, Aldh1l1, Tyrobp, and 

Trem2 in the SOD1-G93A ventral horn is visualized. The values are calculated 
based on the coefficient data of Extended Data Table 3. That is, we calculated the 
difference (shown in circles) of the posterior means of the SOD1-G93A and 
SOD1-WT ventral horn coefficients per time point. The error bars extend to the 
difference ± the standard deviation, where the square of the standard deviation 
is the sum of the squares of the standard deviations of the ventral horn 
coefficient. (g) Spatial mRNA expression of Tyrobp in SOD1-WT (left panel) 
and SOD1-G93A spinal cords (middle panel) at P100 (first row) and P120 
(second row). The value of a bin is calculated as the mean of the ST values 
(posterior means of the rate parameters λ) within the bin area. Bins with less 
than 3 ST spots are discarded. The number of ST spots per condition are listed. 
(h) As in (g), with the focus here on Trem2.
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Extended Data Figure 5 | Lysosomal markers are dysregulated and 
mislocalized in multiple cell types in SOD1-G93A. (a) Temporal dysregulation 
of Ctss, Ctsz, Cyba, Cybb, Cd68, and Hexb in the SOD1-G93A ventral horn is 
visualized. The values are calculated based on the coefficient data of Extended 
Data Table 3. That is, we calculated the difference (shown in circles) of the 
posterior means of the SOD1-G93A and SOD1-WT ventral horn coefficients per 
time point. The error bars extend to the difference ± the standard deviation, 
where the square of the standard deviation is the sum of the squares of the 
standard deviations of the ventral horn coefficient. (b) Representative Z 
maximum projection from 10μm thick confocal image stacks of CTSD (red), 
CTSS (green), and GFAP (blue) protein immunofluorescence (N = 5 animals). 

Motor neuron somata (dashed lines) were segmented using TUBB3 
immunofluorescence (not shown). Lysosomal markers CTSD and CTSS form 
large, brightly labeled puncta in motor neuron somata, astrocytes (arrows) and 
other GFAP negative glial structures in P100 SOD1-G93A spinal cords that are 
not present in SOD1-WT. (c) Representative single confocal image planes of 
HEXA (green) and SQSTM1 (magenta) immunofluorescence (N = 5 animals). 
Motor neurons display varying levels of aberrant HEXA protein localization in 
SQSTM1 negative structures in pre-symptomatic P70 SOD1-G93A spinal cords 
that are not present in SOD1-WT. SQSTM1 aggregates are also apparent only in 
SOD1-G93A motor neurons.
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Extended Data Figure 6 | Spatial distribution of co-expression modules. 
Average spatiotemporal expression dynamics of the genes of the co-expression 

modules depicted in Fig. 3a are visualized. The number of genes per co-
expression module are listed.
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Extended Data Fig. 7 | Analysis of co-expression modules using KEGG 
pathways and cell type specific expression data. (a) Analysis of enriched KEGG 
pathways among the genes of the modules depicted in Fig. 3a (one-tailed Fisher’s 
exact test with Benjamini-Hochberg correction, FDR < 0.1). The heatmap 
visualizes the adjusted p-values per KEGG category per module. Only the KEGG 
pathways enriched in at least one module are listed. The module identifiers listed 

on x axis match to the ones listed in Fig. 3a. (b) Overlay of cell type specific 
expression data on the co-expression modules of Fig. 3a. The heatmaps visualize 
scaled expression values. The scaled expression values are obtained per gene and 
per data set by dividing the expression values across cell types by the maximum 
expression value of that gene across the seven cell types. The order of the genes 
(rows) match to the order of rows of Fig. 3a.  
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Extended Data Fig. 8 | Submodules that consist of astrocyte-expressed genes. 
Inferred co-expression network of astrocyte-expressed genes is illustrated. There 
is an edge between two genes if their absolute Pearson correlation coefficient is 
at least 0.6. Only the genes with at least one edge are visualized (Extended Data 
Table 7 has the full list of genes). The genes belonging to module 6, 8, 22, and 30 

are highlighted in yellow, red, blue, and purple, respectively.  Average 
spatiotemporal expression dynamics of the genes of the astrocyte submodules 
detected in co-expression modules 6 (yellow), 8 (red), 22 (blue), and 30 (purple) 
are visualized. The number of genes per co-expression module are listed.
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Extended Data Fig. 9 | Spatiotemporal expression dynamics of Snap25 and 
Plp1 in human and mouse spinal cords. (a) Spatial mRNA expression of 
SNAP25 in lumbar onset (first row) and bulbar onset (second row) human 
spinal cords. The proximal (first column) and distal (second column) locations 
relative to onset are considered separately. The value of a bin is calculated as the 
mean of the ST values (posterior means of the rate parameters λ) within the bin 
area. Bins with less than 3 ST spots are discarded. The number of ST spots per 

condition are listed. (b) As in (a), with the focus here on PLP1. (c) Spatial 
mRNA expression of Snap25 in SOD1-WT (left panel) and SOD1-G93A spinal 
cords (second panel) at P30 (first row), P70 (second row), P100 (third row), and 
P120 (fourth row). The value of a bin is calculated as the mean of the ST values 
(posterior means of the rate parameters λ) within the bin area. Bins with less 
than 3 ST spots are discarded. The number of ST spots per condition are listed. 
(d) As in (c), with the focus here on Plp1.  
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Extended Data Fig. 10 | Co-expression analysis of human ST data. (a) 
Biclustering of the human ST data of 9,624 genes and 61,031 ST spots set to 
reveal spatially and temporally co-expressed genes. The dashed vertical purple 
line in the dendrogram denotes the cutting point. The numerical identifiers 
given to the co-expression modules are listed on right of the dendrogram. (b) 
Average spatiotemporal expression dynamics of the genes of the co-expression 
modules of (a) are visualized. The number of genes per co-expression module 

are listed. (c) Analysis of enriched KEGG pathways among the genes of the 
modules depicted in (a) (one-tailed Fisher’s exact test with Benjamini-Hochberg 
correction, FDR < 0.1). The heatmap visualizes the adjusted p-values per KEGG 
category per submodule. Only the KEGG pathways enriched in at least one 
submodule are listed. The module identifiers listed on x axis match to the ones 
listed in (a). 
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Supplementary Table 1. Sample and annotation statistics. Number of mice/patients, tissue 1 

sections, and spots per condition are listed. Number of spots per AAR for mouse and human ST 2 

data are listed. 3 

 4 

Supplementary Table 2. Differential expression results of comparisons between regions. 5 

Table contains differential expression results of comparisons between regions per gene per time 6 

point. For instance, we compared expression per gene between ventral horn and dorsal horn, 7 

and ventral horn against all the other 11 AARs. Bayes factors and posterior means and 8 

standard deviations of compared β distributions are listed. 9 

 10 

Supplementary Table 3. Differential expression results of comparisons between 11 

conditions. Table contains differential expression results of comparisons between conditions 12 

per gene per time point. Bayes factors and posterior means and standard deviations of 13 

compared β distributions are listed. 14 

 15 

Supplementary Table 4. Genes comprising the mouse co-expression modules. Genes 16 

comprising the modules illustrated in Fig. 3a are listed. 17 

 18 

Supplementary Table 5. KEGG pathway analysis of mouse co-expression modules. 19 

Results of the analysis of enriched KEGG pathways among the genes comprising the modules 20 

depicted in Fig. 3a are listed. Only statistically significant KEGG pathways for each module are 21 

listed (one-tailed Fisher’s exact test with Benjamini-Hochberg correction, FDR < 0.1). 22 

 23 

Supplementary Table 6. Mouse coexpression submodules and their KEGG pathway 24 

analysis results. Genes of the submodules together with their cell-type expression values are 25 

listed. Results of the analysis of enriched KEGG pathways among the genes comprising the 26 
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submodules are listed. Only statistically significant KEGG pathways for each module are listed 27 

(one-tailed Fisher’s exact test with Benjamini-Hochberg correction, FDR < 0.1). 28 

 29 

Supplementary Table 7. Astrocyte-enriched submodules. Genes comprising the 30 

submodules enriched in astrocyte-expressed genes are listed (Methods). 31 

 32 

Supplementary Table 8. Genes comprising the human co-expression modules. Genes 33 

comprising the modules illustrated in Supplementary Fig. 10a are listed. 34 

 35 
Supplementary Table 9. KEGG pathway analysis of human co-expression modules. 36 

Results of the analysis of enriched KEGG pathways among the genes comprising the modules 37 

depicted in Fig. 3a are listed. Only statistically significant KEGG pathways for each module are 38 

listed (one-tailed Fisher’s exact test with Benjamini-Hochberg correction, FDR < 0.1). 39 

 40 

Supplementary Table 10. Ventral horn coefficient differences. The posterior means of the 41 

human ventral horn coefficient difference (∆β) distributions (distal-proximal). The differences of 42 

the human coefficients are calculated within patients. Only genes that show consistent pattern 43 

across patients are listed. Posterior means of the ventral horn mouse coefficient difference (∆β) 44 

(between SOD1-WT and SOD1-G93A) distributions are listed. 45 

 46 

Supplementary Methods. Our statistical model for analyzing spatial transcriptomics data. 47 

Provides a mathematical introduction to elements of our model, including hierarchical zero-48 

inflated Poisson models, Poisson generalized linear models, and conditional autoregressive 49 

models. We then outline our hierarchical probabilistic model for spatial transcriptomics data and 50 

detail its application to human and mouse data.  51 

 52 
 53 
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Supplementary Methods: Spatiotemporal

Dynamics of Molecular Pathology in

Amyotrophic Lateral Sclerosis

Here we describe our statistical model for analyzing spatial transcriptomics
(ST) data. First, we provide a mathematical introduction to introduce elements
of our core model, including hierarchical zero-inflated Poisson (ZIP) models,
Poisson generalized linear models, and conditional autoregressive (CAR) mod-
els. Following this introduction we will outline our hierarchical probabilistic
model for spatial transcriptomics data and detail its application to both human
and mouse ST data sets.

Background

Zero-inflated Poisson likelihood

Here we model transcriptome count data as a Poisson process interacting (hier-
archically) with other model components. An appropriate Poisson model that
can be used to model this core count process can be stated as (Gelman et al.,
2013)

λ|αλ ∼ Γ(αλ1, αλ2),

y|λ ∼ Poisson(λ),
(1)

where the rate parameter λ has a Gamma prior with parameters αλ1 and αλ2.
Here the rate represents λ the underlying level (rate) of transcription (the latent
value of interest in ST), and y represents the observed counts.

A key problem in ST and single cell genomics are small sample sizes (per
location and cell respectively) and technical biases leading to high rates of miss-
ing data, termed here ’zero inflation’. Notably, the traditional Poisson model
defined in Equation (1) fails in the cases where we have more zero-valued ob-
servations than expected from a Poisson model (Lambert, 1992). To account
for an expected inflation of zeros, the following extension of the aforementioned

1
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hierarchical Poisson model has been proposed (Lambert, 1992)

θp|αp ∼ Beta(αp1, αp2),

θ|θp ∼ Bernoulli(θp),

λ|αλ ∼ Γ(αλ1, αλ2),

y|θ, λ ∼

{
y = 0 if θ = 1

y ∼ Poisson(λ) if θ = 0
.

(2)

That is, the hierarchical zero-inflated Poisson model (ZIP) given in Equation (2)
consists two components: 1) a component that generates zeros and 2) a compo-
nent that generates counts according to a Poisson distribution. Notably, both
of the components are able to emit zeros. Effectively, by using ZIP we have
the ability to introduce more probability mass to the outcome of zero and an
excess of observations, y, can be tolerated without inappropriately excessively
dragging aggregate posterior estimates to zero.

Often, the mixture model described in Equation (2) is stated as follows

θp|αp ∼ Beta(αp1, αp2),

λ|αλ ∼ Γ(αλ1, αλ2),

y|λ, θp ∼ ZIP(λ, θp).

(3)

After marginalizing out the binary parameter θ, we can state the ZIP likelihood
function as

p(y|λ, θp)

{
θp + (1− θp) exp(−λ) if y = 0

(1− θp)λ
y exp(−λ)

y! if y > 0
, (4)

where θp represents the probability of extra zeros. Importantly, the likelihood in
Equation (4) does not contain any discrete parameters, and thus we can utilize
Hamiltonian Monte Carlo (HMC) for obtaining posterior samples (Neal et al.,
2011).

Exposure

The Poisson distribution and the ZIP distribution above are defined in terms
of rate, where rate is events per exposure. For instance, observed transcript
or UMI counts (count) depend on the overall sequencing depths (exposure).
Therefore, for considering different exposures si in the model, we transform
rate λ to counts yi as follows

λ =
yi
si
⇔ yi = λsi (5)

Then, we can model outcomes yi, i = 1, 2, . . . , N of different exposures, si, i =
1, 2, . . . , N , as (Gelman et al., 2013)

yi ∼ Poisson(λsi), (6)

where λ is a common rate parameter.
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Poisson regression and fitting core count model

Poisson regression models include Poisson generalized linear models (GLMs)
which assume that the logarithm (other link functions can be chosen) of the
rate parameter of the Poisson likelihood, λ, can be modeled by a linear model
(Cameron and Trivedi, 2013; Gelman et al., 2013). As an example, let us con-
sider the following Poisson GLM

log(λ) = xTβ, (7)

where x is the design vector and β is the coefficient vector. Let us assume
that we have tuples (xi, yi), i = 1, 2, . . . , N representing observations. Then the
task is to infer β using data under some inference scheme, such as maximum
likelihood or Bayesian inferences (Gelman et al., 2013).

Conditional autoregressive (CAR) prior

Conditional autoregressive (CAR) models have been popular in modeling spatial
autocorrelation in spatial data (Gelfand and Vounatsou, 2003; Jin et al., 2005;
Wilson et al., 2017). In more detail, CAR prior assumes that the value at a given
location is conditional on the values of neighboring locations. Notably, how the
neighborhood is defined is a modeling question. For example, neighbors could
be defined as proximal spots on the array, or as spots in corresponding anatom-
ical regions, or as spots that are proximal in a reconstructed z-axis in a common
coordinate). Furthermore, let the random vector ψ = (ψ1, ψ2, . . . , ψN )T repre-
sent N locations with a CAR prior. Then, the CAR prior of ψ can be expressed
via conditional distributions

ψi|a,B, τi, ψ−i ∼ N

a∑
j∈−i

bijψj , τ
−1
i

 , i = 1, 2, . . . , N, (8)

where τi are the conditional precision parameters, a ∈ [0, 1) is a positive spa-
tial autocorrelation parameter, B = {bij} where bii = 0, and −i = {j|j ∈
{1, 2, . . . , N} ∧ j 6= i} (Joseph, 2016). The joint distribution of ψ can obtained
using Brook’s lemma

ψ|a,B,Dτ ∼ N
(
0, (Dτ (I− aB))

−1
)
, (9)

where Dτ = diag(τ1, τ2, . . . , τN ) (Joseph, 2016). The following condition ensures
that Dτ (I− aB) is a symmetric matrix (Gelfand and Vounatsou, 2003)

bijτi = bjiτj , ∀i, j. (10)

Next, let us introduce a computationally attractive CAR prior well suited
to modeling the spatial coordinate (and other similarity relationships) present
in integrated (multiple slices to make a z-axis) ST data sets (Joseph, 2016). Let
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W = {wij} be the adjacency matrix representing neighborhood structure of the
locations be defined by

wij =

{
1 if i is a neighbor of j and i 6= j

0 otherwise
. (11)

Clearly, the number of neighbors of location i is then mi =
∑N
j=1 wji. Moreover,

let us assume D = diag(m1,m2, . . . ,mN ). Additionally, let us assume Dτ = τD
and B = D−1W. Then, the joint distribution of ψ simplifies to (Joseph, 2016)

ψ|a, τ,W ∼ N
(
0, (τ (D− aW))

−1
)
. (12)

Note that every location has to have at least one neighbor and the matrix D can
be calculated from the adjacency matrix W. Importantly, this CAR prior can
be implemented effectively in Stan (Carpenter et al., 2017) by exploiting sparse
matrix multiplication and a fast determinant solving approach (Jin et al., 2005;
Joseph, 2016).

Statistical analysis of ST data

Notations

Let there be Ngenes genes and Ntissues tissue sections. Moreover, let us denote

the number of spots on jth tissue section as N
(j)
spots. Then, the total number of

spots over tissues is Nspots =
∑Ntissues

j=1 N
(j)
spots.

The number of reads for ith gene on jth tissue at kth spot is denoted as
yi,j,k. Then, the total number of gene reads, Mj,k, on jth tissue at kth spot is

Mj,k =
∑Ngenes

i yi,j,k. The annotation information of kth spot on jth tissue is
one hot encoded in xj,k ∈ {0, 1}11.

Finally, for notational purposes, let ρ(m, s, g, t) be a bijective function N4 →
N that maps mouse, sex, genotype, and time point indices to a unique tissue
section index. Whereas in human, we define a bijective function ρ : N3 → N
that maps onset (o), location (l), and human (h) indices to a unique tissue
section index. These functions are used in the model definition to simplify the
indexing of the coefficient vectors; that is, we can reference coefficient vectors
with a unique tissue specific index j as βi,ρ−1(j), or with mouse (m), sex (s),
genotype (g), and time point (t) indices as βi,m,s,g,t.

Overview

To model spatial gene expression distributions using ST data, we formulate
a hierarchical generative zero-inflated Poisson regression model. To improve
parameter estimates, we wish to analyze multiple tissue sections together. A
straight-forward analysis of replicates at the level of individual spot is imprac-
tical: 1) the spot locations vary between tissue sections, 2) compositions of cell
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Figure 1: Our schema to decompose variation per gene in ST data into three
components. Using spot annotations we can share information across multiple
tissue sections to estimate latent expression values of anatomical regions (left).
Additionally, we aim to estimate local spatial autocorrelation (middle). Re-
maining variation is accounted at the level of individual spots. Note that in
practice all spots are analyzed simultaneously.

types are likely vary between tissue sections, 3) random sampling of a small sub-
set of mRNA molecules, and 4) UMI counts are low. Therefore, our regression
model has a linear component that allows us to integrate data across multiple
tissue sections via annotations of the spots based on their location on the tissue
(anatomical regions). In addition, we include a CAR component that allows us
to consider spatial correlation and a spot-level component to capture variation
at the level of individual spots (Figure 1).

Model components

We construct our linear model based on the annotations of the spots obtained
through their location on the tissue. Clearly, the number of annotation cate-
gories depends on the tissue type and the biological question, and it balances
between spatial resolution and number of samples. In this study, we use 11
different anatomical regions decided on the basis of known major functional
divisions of spinal cord (Extended Data Figure 2a). Notably, our linear model
construct has many advantages: first, the annotations-based linear model en-
ables us to model quick changes in tissue type, which might be tricky to handle
with Gaussian random fields and similar approaches, and second, it enables us to
simultaneously consider spots across multiple tissue sections at the annotation
category level, leading to more reliable estimations at the annotation category
level. The contribution of the linear model component can be simply stated as
xT
j,kβ where the vector xj,k ∈ {0, 1}11 has one hot encoded annotation of kth

spot on jth tissue section and the vector β ∈ R11 contains coefficients represent-
ing latent expression levels of anatomical regions. Importantly, we encode our
experimental design in the linear model through multilevel modeling of β, and
thus estimate latent expression levels and quantify variation at different levels
(e.g. between sexes and individuals). Notably, we use different multilevel linear
models for analyzing human and mouse ST data to reflect the differences in the
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experimental designs.
The assumption of gene expression uniformity within an annotation category

is biologically unrealistic when estimating gene expression at the level of indi-
vidual spot. To overcome this restriction, we incorporate a CAR component, for
sharing information between nearby spots, at the level of individual tissue sec-
tion in the model, ψi,j . These CAR components capture spatial autocorrelation
not explained by the linear component. To use the CAR model, we first have
to define the neighbor structure of the spots; in this study, we assume that the
neighbors of a given spot are its adjacent present spots on the two-dimensional
lattice (4-neighborhood).

Due to intrinsic biological variation there is expected to be independent
variation at the level of individual spots. To take this type of variation into
account, we consider spot-level variations εi,j,k not captured neither by the
linear nor the CAR components.

To take into account spots’ different exposures, we use sequencing depth as
a proxy to the exposure and calculate the exposures sj,k as

sj,k =
Mj,k

median({Mj,kj |j = 1, 2, . . . , Ntissues, kj = 1, 2, . . . , N
(j)
spots)

. (13)

As a consequence of estimating exposure from sequencing depth, we will not
be modeling absolute gene expression (numbers of messenger RNA molecules)
levels across spots. Moreover, all the exposures sj,k are positive. Additionally,
the exposure of the sample with the median sequencing depth is 1, whereas the
exposures of the samples with greater sequencing depth than the median are
greater than 1.

Prior definitions

The coefficient vector βi,g,t is given a weakly informative Gaussian prior (βi,g,t ∼
N (0, 22I)). The parameters σsex

i and σmouse
i representing variation between

sexes and mice, respectively, are given truncated Gaussian priors (σsex
i , σmouse

i ∼
N≥0(0, 1)) reflecting our ignorance of the level of variation. The parameter θpi
representing the probability of extra zeros is given a weakly informative Beta
prior (θp ∼ Beta(1, 2)) which is slightly skewed towards zero. The spatial auto-
correlation parameter ai is given a uniform prior between 0 and 1 (ai ∼ U(0, 1)).
The conditional precision parameter τi is assigned a weakly informative inverse
Gamma prior (τi ∼ Γ−1(1, 1)). Finally, the parameter εi,j,k representing spot-
level variation is given a hierarchical Gaussian prior (εi,j,k|σi ∼ N≥0(0, σ2

i )),
where σi is given a truncated Gaussian prior (σi ∼ N≥0(0, 0.32) supporting
relatively low levels of variation.
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Definition

The resulting statistical model (Figure 2) used to analyze mouse ST data out-
lined above can be formally defined as follows

σsex
i |ασ ∼ N≥0(0, 1),

σmouse
i |ασ ∼ N≥0(0, 1),

βi,g,t|αβ ∼ N (0, 22I),

βi,s,g,t|βi,g,t, σsex
i ∼ N (βi,g,t, σ

sex
i

2I),

βi,m,s,g,t|βi,s,g,t, σmouse
i ∼ N (βi,s,g,t, σ

mouse
i

2I),

ai|αa ∼ U(0, 1),

τi|ατ ∼ Γ−1(1, 1),

ψi,j |ai, τi,Wj ∼ N
(
0, (τi (Dj − aiWj))

−1
)
,

σi|αε ∼ N≥0(0, 0.32),

εi,j,k|σi ∼ N (0, σ2
i ),

λi,j,k = exp
(
xT
j,kβi,ρ−1(j) + ψi,j,k + εi,j,k

)
,

θpi |αp ∼ Beta(1, 2),

yi,j,k ∼ ZIP(sj,kλi,j,k, θ
p
i ),

(14)

where i = 1, 2, . . . , Ngenes, j = 1, 2, . . . , Ntissues, and k = 1, 2, . . . , N
(j)
spots.

The graphical representation of the model described in Equation (14) is
illustrated in Figure 2. The posterior distribution function of Equation (14) is
proportional to the product of prior probability density functions and likelihood
function

p(β, ψi,:, ai, τi, σi, σ
sex
i , σmouse

i , εi,:,:, θ
p
i , |α,W,X, s) ∝

p(σsex
i |ασ)p(σmouse

i |ασ)p(σi|αε)p(τi|ατ )p(θpi |αp)p(ai|αa)[
Ngenotypes∏

g=1

N
(g)
timepoints∏
t=1

[
p(βi,g,t|αβ)

[N(g,t)
sexes∏
s=1

[
p(βi,s,g,t|βi,g,t, σsex

i )

N
(s,g,t)
mice∏
m=1

p(βi,m,s,g,t)|βi,s,g,t, σmouse
i )

]]]]
[
Ntissues∏
j=1

N
(j)
spots∏
k=1

p(εi,j,k|σi)

]
[
Ntissues∏
j=1

p(ψi,j |αi, τi,Wj)

][
Ntissues∏
j=1

N
(j)
spots∏
k=1

p(yi,j,k|λi,j,k, sj,k, θpi )

]
,

(15)

where β = (βi,:,:, βi,:,:,:, βi,:,:,:,:), α = (αβ , ασ, αa, ατ , αε, αp), W = {Wj |j =
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θi
yi,j,k

αp

k=1,2,...,Nspots

λi,j,kxj,k

sj,k

φi,j Wj

j=1,2,...,Ntissues

τi

ατ αa

ai

αε

εi,j,k

i=1,2,...,Ngenes

t=1,2,...,Ntimepoints

g=1,2,...,Ngenotypes

αβ

m=1,2,...,Nmice

s=1,2,...,Nsexes

βi,m,s,g,t

βi,s,g,t

βi,g,t

ασ

ρ(m,s,g,t) →
 j

σi
mouse

σi
sex

p

σi

(g)

(g,t)

(s,g,t)

λi,j,k = exp xT
j,kβi,ρ−1(j) + ψi,j,k + i,j,k

(j)

Figure 2: A graphical representation of the statistical model used to analyze
mouse ST data. The white and grey circles represent observed and latent vari-
ables, respectively. The grey squares represent user-definable parameters that
define prior distributions of latent variables. The plates represent repetitions
of different parts of the model, for example, in each gene has its own θpi and
each tissue section has its own spot adjacency matrix Wj . The left part of
the model constructed around β random variables represents the linear model
component. Whereas, the model branches governing the random variables ψ
and ε are the spatial random effect and spot-level variation components, respec-
tively. The parameters σsex

i and σmouse
i capture variation between sexes and

mice, respectively. For instance, βi,g,t and σsex
i define the distribution of βi,s,g,t.

For visualization purposes, the function ρ is used to map g (genotype), t (time
point), s (sex), and m (mouse) indices to a single tissue section index j.
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1, 2, . . . , Ntissues}, X = {xj,k|j = 1, 2, . . . , Ntissues ∧ k = 1, 2, . . . , N
(j)
spots}, and

s = {sj,k|j = 1, 2, . . . , Ntissues ∧ k = 1, 2, . . . , N
(j)
spots}.

The statistical model used to analyze human ST data has only minor changes
in the linear model component, with the principle change being that we do not
condition on sex, that we directly model donor effect, and that we do not model
time and genotype (as the limitations of the clinical setting make including these
dimensions in the design impractical).

σhuman
i |ασ ∼ N≥0(0, 1),

βi,o,l|αβ ∼ N (0, 22I),

βi,h,o,l|βi,o,l, σhuman
i ∼ N (βi,o,l, σ

human
i

2
I),

ai|αa ∼ U(0, 1),

τi|ατ ∼ Γ−1(1, 1),

ψi,j |ai, τi,Wj ∼ N
(
0, (τi (Dj − aiWj))

−1
)
,

σi|αε ∼ N≥0(0, 0.32),

εi,j,k|σi ∼ N (0, σ2
i ),

λi,j,k = exp
(
xT
j,kβi,ρ−1(j) + ψi,j,k + εi,j,k

)
,

θpi |αp ∼ Beta(1, 2),

yi,j,k ∼ ZIP(sj,kλi,j,k, θ
p
i ),

(16)

where i = 1, 2, . . . , Ngenes, j = 1, 2, . . . , Ntissues, and k = 1, 2, . . . , N
(j)
spots. The

graphical model of Equation (16) is illustrated in Figure 3. Furthermore, the
posterior distribution function of Equation (16) is

p(βi,:,:, βi,:,:,:, ψi,:, ai, τi, σi, σ
human
i , εi,:,:, θ

p
i , |α,W,X, s) ∝

p(σhuman
i |ασ)p(σi|αε)p(τi|ατ )p(θpi |αp)p(ai|αa)[

Nonsets∏
o=1

Nlocations∏
l=1

[
p(βi,o,l|αβ)

[N(o,l)
humans∏
h=1

p(βi,h,o,l)|βi,o,l, σhuman
i )

]]]
[
Ntissues∏
j=1

N
(j)
spots∏
k=1

p(εi,j,k|σi)

][
Ntissues∏
j=1

p(ψi,j |αi, τi,Wj)

]
[
Ntissues∏
j=1

N
(j)
spots∏
k=1

p(yi,j,k|λi,j,k, sj,k, θpi )

]
,

(17)

where α = (αβ , ασ, αa, ατ , αε, αp) , W = {Wj |j = 1, 2, . . . , Ntissues}, X =

{xj,k|j = 1, 2, . . . , Ntissues∧k = 1, 2, . . . , N
(j)
spots}, and s = {sj,k|j = 1, 2, . . . , Ntissues∧

k = 1, 2, . . . , N
(j)
spots}.
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θi
yi,j,k

αp

k=1,2,...,Nspots

λi,j,kxj,k

sj,k

φi,j Wj

j=1,2,...,Ntissues

τi

ατ αa

ai

αε

εi,j,k

i=1,2,...,Ngenes

l=1,2,...,Nlocations

o=1,2,...,Nonsets

αβ

h=1,2,...,Nhumans

βi,h,l,o

βi,g,t

ασ

ρ(h,l,o) →
 j

σi
human

p

σi

(l,o)

λi,j,k = exp xT
j,kβi,ρ−1(j) + ψi,j,k + i,j,k

(j)

Figure 3: A graphical representation of the statistical model used to analyze
human ST data. The white and grey circles represent observed and latent vari-
ables, respectively. The grey squares represent user-definable parameters that
define prior distributions of latent variables. The plates represent repetitions of
different parts of the model, for example, in each gene has its own θpi and each
tissue section has its own spot adjacency matrix Wj . The left part of the model
constructed around β random variables represents the linear model component.
Whereas, the model branches governing the random variables ψ and ε are the
spatial random effect and spot-level variation components, respectively. The
parameter σhuman

i captures variation between humans. For instance, βi,l,o and
σhuman
i define the distribution of βi,h,l,o. For visualization purposes, the func-

tion ρ is used to map o (onset), l location, and h (human) indices to a single
tissue section index j.
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Figure 4: The prior distributions of β(1) (on left), β(1) (on middle), and ∆β =
β(1) − β(2) (on right) are illustrated in the top row, whereas, the posterior
distributions of the corresponding random variables are visualized in the bottom
row in the same order. The prior and posterior densities at ∆β = 0 are listed
on right; in this example the Bayes factor is be approximately 2.8.

Detecting differential expression from ST data

In many biological applications, we wish to quantify differential gene expres-
sion between various conditions; for instance, between different genotypes, time
points, or spatial annotation categories. As mentioned above, we can do this by
studying the estimated β coefficients. First, let us assume without loss of gener-
ality that we want to quantify the difference between β(1) and β(2) representing
two different conditions. Next, let us define a random variable ∆β = β(1)−β(2),
which captures the difference of β(1) and β(2). For instance, if the distribu-
tion of ∆β is tightly centered around zero, then the distributions of β(1) and
β(2) are highly similar to each other. To interpret the ∆β |D, αβ (a posteriori),
we compare it with ∆β |αβ (a priori). Formally, this comparison is done using
the Savage-Dickey density ratio that approximates Bayes factors (Dickey, 1971;
Wagenmakers et al., 2010)

BF ≈ p(∆β = 0|αβ)

p(∆β = 0|D, αβ)
, (18)

where the probability density functions are evaluated at zero. The aforemen-
tioned Savage-Dickey procedure is graphically illustrated in Figure 4. The
Savage-Dickey density ratio has been used previously for detecting alterna-
tive splicing and differential methylation from posterior distributions (Katz
et al., 2010; Äijö et al., 2016) Importantly, p(∆β |αβ) can be derived analyt-
ically, whereas, p(∆β |D, αβ) has to approximated using the obtained posterior
samples.
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