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Abstract. Objective: According to current theoretical models of working memory

(WM), executive functions (EFs) like updating, inhibition and shifting play an impor-

tant role in WM functioning. The models state that EFs highly correlate with each

other but also have some individual variance which makes them separable processes.

Since this theory has mostly been substantiated with behavioral data like reaction time

and the ability to execute a task correctly, the aim of this paper is to find evidence for

diversity (unique properties) of the EFs updating and inhibition in neural correlates

of EEG data by means of using brain-computer interface (BCI) methods as a research

tool. To highlight the benefit of this approach we compare this new methodology to

classical analysis approaches. Methods: An existing study has been reinvestigated

by applying neurophysiological analysis in combination with support vector machine

(SVM) classification on recorded electroenzephalography (EEG) data to determine the

separability and variety of the two EFs updating and inhibition on a single trial basis.

Results: The SVM weights reveal a set of distinct features as well as a set of shared

features for the two EFs updating and inhibition in the theta and the alpha band

power. Significance: In this paper we find evidence that correlates for unity and di-

versity of EFs can be found in neurophysiological data. Machine learning approaches

reveal shared but also distinct properties for the EFs. This study shows that using

methods from brain-computer interface (BCI) research, like machine learning, as a tool

for the validation of psychological models and theoretical constructs is a new approach

that is highly versatile and could lead to many new insights.

Keywords: working memory load; single trial classification; executive functions; elec-

troencephalography (EEG); updating; inhibition, support vector machine (SVM); ma-

chine learning
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1. Introduction

Working memory (WM) is a core construct in cognitive psychology that can be repre-

sented as a set of functions, which are responsible for the temporary storage and the

simultaneous processing of information during cognitive tasks (Miyake and Shah, 1999).

The still dominant multicomponent model of WM by Baddeley and colleagues (2012;

1974) distinguishes three main components of WM, two of which are memory-related

storage components for verbal and pictorial information. The third component is an

attention-related central-executive control structure, which comprises different execu-

tive functions (EFs) for coordinating the storage and transformation of information in

memory cf., (Baddeley, 1996, 2007). EFs play a pivotal role in many more recent WM

theories e.g., (e.g., Barrouillet et al., 2004; Cowan et al., 2005; Kane et al., 2004; Ober-

auer, 2009; Unsworth and Engle, 2007) and (Cowan et al., 2014). According to these

theories, the attentional control processes required to pursue WM tasks are responsible

for the severe limitation of human WM. Accordingly, individual differences in WM ca-

pacity are traced back to individual differences with regard to these EFs (Kane et al.,

2004; Unsworth and Engle, 2007).

Based on a latent-variable analysis of a bundle of executive tasks, Miyake et al. (2000)

developed one of the best-known models describing the structure of different EFs. Ac-

cording to this model, the three core EFs are named updating, inhibition and shifting.

Updating is described as a process of keeping information in WM up to date for a cer-

tain period of time (Ecker et al., 2010), for instance by manipulating this information or

by loading new information and unloading older pieces of information. Shifting can be

described as the adjustment of task rules currently kept in mind to new circumstances

(Monsell, 2003). Inhibition refers to preventing (currently irrelevant) information or

action tendencies from getting access to WM while being involved in a cognitive task

(Diamond, 2013). Miyake and colleagues (Miyake and Friedman, 2012; Miyake et al.,

2000) describe the relation between the three core functions in terms of unity and diver-

sity, as they share many properties but also have distinct characteristics as individual

functions.

1.1. Previous work: Neurophysiological assessment of WML/EFs

The assessment of working memory load (WML) in a global manner, without differenti-

ating neural correlates with respect to EFs, has been done in many studies before. The

amount of load can be measured and quantified in EEG data by means of neural corre-

lates in the power spectra but also in behavioral data like reaction time and the ability

to execute a task correctly. Neural correlates of WML in EEG data can be described

especially by differences in the theta and alpha band power. During an increase of WML

theta power has been reported to increase at frontal electrode sites, also known as event

related synchronization (ERS) (Gevins et al., 1997; Jensen and Tesche, 2002; Missonnier

et al., 2006). In contrast to that alpha power has been observed to decrease at paretial
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electrode sites during an increase in WML, which is also known as event related desyn-

chronization (ERD) (Gevins et al., 1997; Krause et al., 2010; Stipacek et al., 2003).

With regard to pupil diameter, it is known that an increased level of WML is reflected

in a larger diameter (Beatty and Lucero-Wagoner, 2000; Ewing and Fairclough, 2010a;

Karatekin et al., 2007; Laeng et al., 2011). Regarding ERPs, a decrease in the P300

amplitude at parietal sites for increased WML has been reported (Allison and Polich,

2008; Brouwer et al., 2012; Pratt et al., 2011; Watter et al., 2001). Especially spectral

features have been used so far, to categorize the current amount of load into high and

low e.g., (Brouwer et al., 2012; Putze et al., 2010; Walter et al., 2017), by means of

machine learning, thus in an automated manner, which has been shown to work reliable

and successfully.

The unity and diversity of EFs as individual components of WM, describing shared

and unique properties of the EFs, has so far mainly been investigated by means of sta-

tistical analyses of behavioral data in either healthy subjects or patients with frontal

lobe impairments, see e.g., (Burgess, 1997; Shallice and Burgess, 1993) and (Shallice and

Burgess, 1991). So far, it remains unclear whether the shared and unshared variances of

performance in different EF tasks can be mapped either, on a common attentional and

limited resource in the brain or, on EF-specific brain functions. One example of stud-

ies that aimed to answer this question by Collette et al. (2006; 2005) explored neural

substrates for the EFs updating, inhibition and shifting by means of positron emission

tomography (PET). Via conjunction and interaction analysis they compare a battery of

tasks for each EF to reveal both unity and diversity aspects within the collected brain

data. An assessment of differences in neural correlates by means of EEG data, that allow

a within subject and not only between subject comparison between EFs has, to the best

of our knowledge, not been done before, except for one study by Scharinger et al. (2015).

Scharinger et al. (2015) integrated an n-back task (imposing updating demands) within

a flanker task (imposing inhibition demands) to study the relation between the two EFs

updating and inhibition simultaneously within one perceptually and motorically highly

controlled task. In their study they manipulated demands on the two EFs independently

and analyzed indicators of WML, both at the behavioral level (reaction times (RTs) and

accuracies) and at the physiological level (pupil diameter, event-related potentials in the

EEG (ERPs) and EEG power spectra) to develop a detailed and brain-related account

of how load on different executive functions is interrelated.

1.2. Foundation: Study Scharinger and colleagues

The above mentioned study by Scharinger et al. (2015) presented a new study design

which seems very promising with respect to disentangle individual properties of EFs,

in this specific case updating and inhibition. Demands on both EFs are induced and

manipulated within the same experimental design by using an n-back task with a si-
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multaneously presented flanker. The design ensures that visual presentation and the

motoric requirements for the subjects are kept steady and simple, reducing the non-

EF variance in the data to a minimum. The n-back task is a widely used WM task

in neuropsychological research for studying effects of WM updating, e.g., (Chatham

et al., 2011; Chen et al., 2007; Ewing and Fairclough, 2010b; Gevins and Smith, 2000;

Jonides et al., 1997; Krause et al., 2000; Owen et al., 2005; Pesonen et al., 2007). The

simultaneously used flanker task is known to induce inhibition demands, when the flank-

ing letters are incongruent (i.e different) to the central and task relevant letter. The

perceptual differences lead to interference effects (Eriksen, 1995; Sanders and Lamers,

2002) which, in turn, provokes additional executive control to overcome the interference.

Scharinger et al. (2015) showed, first, that all load-related measures yielded the ex-

pected outcomes for an increase of the n-back levels (load on working memory updat-

ing) confirming the sensitivity of the used indicators as measures of WM updating load.

Second, all measures were also sensitive to inhibitory demands. Thus the task design

has been proven to be legitimate. The most important finding by Scharinger et al.

(2015) was, however, that the flanker interference effect did decrease under high WM

updating load as shown by the outcomes of all measures. Only for low load on updating

the flanker interference effect led to increased RTs and increased pupil dilation as well

as to decreased upper alpha frequency band power and decreased P300 mean ampli-

tude. In contrast, under high load on updating, no significant flanker interference effect

was observed (RT, pupil dilation, P300) or the effect even was reversed (EEG upper

alpha frequency band power). Scharinger et al. (2015) hypothesized that if the different

executive functions proposed by Miyake et al. (2000) were rather separate functions,

additional load on inhibition due to a flanker conflict within the n-back task paradigm

should lead to simple additive effects on all n-back levels for all of the aforementioned

measures. In contrast, if these three executive functions were more closely intertwined,

i.e., rely on a common attentional resource, it would be expected to observe interaction

effects in the load related measures for additional load on inhibition. Thus, the study

results suggest, that the EFs updating and inhibition might share underlying network

structures that serve controlled attention (unity of executive functions).

1.3. Aim of this study

The aim of this study is to evaluate if the EEG data provided by Scharinger and

colleagues also reveal evidence for the diversity of the EFs updating and inhibition.

Generally, diversities in terms of neural correlates in EEG data are evaluated by

calculating an averaged form of all relevant trials, since noise, random effects and

inter subject variability is reduced and only the characteristic properties remain. In

special cases in which individual differences are of importance to define a certain mental

state, the possibility for a distinction between states, could get lost though with this

classical analysis approaches. Using machine learning approaches to separate mental
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states individually for each subject on the basis of their EEG signals might be a solution

for this problem. We want to act on this suggestion and aim to find out if the two EFs

are distinguishable by means of machine learning approaches. In addition, a method for

proper feature interpretation will be applied to the machine learning approach to reveal

which features are of importance in the distinction of the EFs. Thus, revealing which

features can be correlated with diversity. The results will be compared to conventional

EEG analysis techniques to identify the advantages of the proposed analysis methods.

2. Material and Methods

2.1. N-back-flanker Task design

In this paper, we will reanalyze physiological data from an experiment reported by

Scharinger et al. (2015) that uses the integrated n-back flanker task to study interac-

tions between the two EFs updating and inhibition. The stimuli consisted of the four

letters, S, H, C and F. For each trial, one out of these four letters was randomly chosen

and presented centrally on the screen either flanked by the same letters (congruent con-

dition without inhibition demands, the same letter appeared three times both on the

left and right sides of the centered target letter, e.g., HHH H HHH) or by randomly

chosen different letters (incongruent condition with inhibition demands, one of the three

remaining letters appeared three times both on the left and right sides of the centered

target letter, e.g., FFF H FFF). All letters were presented in gray on black backgrounds

in Arial at 25-point font size. Each stimulus was shown for 500 ms, followed by a black

screen for 1500 ms. Thus, each trial lasted 2000 ms. For a schematical overview see

Figure 1. In the experiment, three levels of updating demands were implemented (n =

0, 1, and 2) in a block design. For each trial in a block the subjects indicated via key

press (yes/no key) whether the central letter of the current trial was identical to (tar-

get) or was different from (nontarget) the central letter they had seen in the sequence

n steps back. In the 0-back condition, before the stimulus sequence started a randomly

chosen letter (S, H, C, or F) was displayed as the n-back target letter for the whole

block (no updating required). During the following stimulus sequence, each time this

letter occurred as the central letter, subjects had to press the yes key, in all other cases,

the no key. Answers and reaction times of the subjects were recorded.

The n-back stimulus sequences were presented in blocks. In accordance with the tradi-

tional n-back task design, each block of 154 trials consisted of one n-back level. Each

n-back level was presented twice. Thus, subjects performed a total of six blocks. The se-

quence of blocks was randomly assigned for each subject, with the constraint that each

n-back level was presented once before an n-back level was presented for the second

time. One block lasted about 5 min. Within each block, half of the trials were tar-

gets, half of the trials were nontargets. About one third of the stimuli of each response

category were incongruent (e.g., FFF H FFF), two thirds were congruent (e.g., FFF
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F FFF). The first four trials of each block were always congruent nontargets and were

excluded from any further analyses. Stimuli were presented using E-Prime presentation

software (E-Prime 2 Professional, Psychology Software Tools, Inc.) with predefined

stimuli lists. The trial sequences within the blocks were pseudorandomized, to avoid

attenuation of the interference effect for incongruent stimuli due to conflict adaptation

processes (i.e., the so-called Gratton effect (Botvinick et al., 2001; Davelaar, 2012; Grat-

ton et al., 1992)), incongruent-incongruent stimuli sequences were excluded in advance

during construction of the stimuli lists. To further avoid any Gratton-like effects, con-

gruent trials following incongruent trials were excluded from any further data analyses.

In addition to that, in each block 20 stimuli consisting of 10 targets and non-targets

were randomly chosen and replaced by stimuli without a central letter (i.e., 10 targets

and 10 nontargets per block consisted only of the flankers on both sides of a gap). In

these cases, we instructed the subjects to rememberthe flanker letters of the current trial

for the following comparison. By means of this instruction, we wanted to avoid subjects

becoming increasingly unaware of the flanker stimuli during the course of a block. We

excluded these gap stimuli and the two immediately following stimuli from any further

analyses. At the beginning of the study, subjects performed training blocks for each

n-back level. Training was repeated until subjects reached an accuracy of at least 60

percent correct responses. During training, subjects accuracy was displayed at the end

of a block to give them feedback regarding their performance. No feedback was given

during the actual task presentation.

Figure 1. Experimental design and flow from Scharinger et al. (2015). An n-back

sequence was presented in blocks, accompanied by flanker letters to the right and left

of the n-back stimulus. All trials lasted two seconds of which 500 ms were stimulus

presentation and 1500 ms a blank screen before the next stimulus appeared.

2.2. Data recording

22 subjects (21 right handed, 12 females) participated in the study, for which they

were reimbursed with 8 e per hour. All subjects had normal or corrected to normal

vision and no reported neurological disorders. The study was approved by the local

ethics committee and written informed consent was obtained from all participants. 32

electrodes (Acticap Brain Products) were used for the recording at a sampling rate of
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500 Hz and placed according to the international 10/20 system (Jasper, 1958) with

the reference at right mastoid and the ground electrode at AFZ. In addition to EEG

recordings an eyetracking system (SMI iView X 2.7.13) was used to record subjects’

pupil diameter with a sampling rate of 250 Hz. For further details considering the

technical setup see Scharinger et al. (2015).

2.3. Preprocessing of the data

For the physiological data, only artifact-free trials with correct responses were used

for data analysis, with an additional exclusion of trials that might be effected by any

Gratton-like effect (see Section 2.1 above). The data was bandpass filtered between

0.4-40 Hz and re-referenced to common average. To remove artifacts a threshold of

100 µV was chosen and all trials exceeding this level were discarded. Trials including

eye movement artifacts were corrected using independent component analysis (ICA)

(rejection by visual inspection). In addition, a baseline correction using a -250-0 ms

prestimulus section was performed on all trials. These preprocessing steps resulted the

following amount of trials per factor level: 0-back, congruent, M = 54.05, SD = 5.24;

0-back, incongruent, M = 65.68, SD = 7.08; 1-back, congruent, M = 52.77, SD = 6.68;

1-back, incongruent, M = 64.54, SD = 9.50; 2-back, congruent, M = 44.05, SD = 8.89;

2-back, incongruent, M = 55.05, SD = 11.07.

2.4. Neurophysiological analysis

Scharinger et al. (2015) conducted 2x3-factorial ANOVAs to test for interaction

effects when combining WM updating load with flanker interference. These ANOVAs

demonstrated that flanker interference effects decreased under high WM updating load,

indicating a close connection of the two EFs in terms of their physiological correlates. In

addition to these findings, the current reanalysis will test whether there is also evidence

in the data for distinct physiological correlates indicating the diversity of the two EFs

updating and inhibition. Updating demands are supposed to be induced when the n-

back level is greater than 0 and inhibition demands are supposed to be induced when

the flanker is incongruent to the n-back stimulus. In our reanalysis, a machine learning

approach based on SVM classification will be used to separate load on these two EFs.

In particular, it will be tested how good individual trials can be classified into one out

of four factor levels based on the physiological responses collected during an epoch of

0-1000 ms after stimulus onset:

• Baseline trials (BL) without load on EFs (0-back, congruent)

• Inhibition trials (Inh) with load on inhibition only (0-back, incongruent)

• Easy updating trials (Up1) with load on updating only (1-back, congruent)

• Difficult updating trials (Up2) with load on updating only (2-back, congruent)

The remaining two factor levels containing mixed trials that impose both types of load

on EFs simultaneously (i.e., 1-back and 2-back with incongruent flanker) will not be
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analyzed by this classifier approach as they do not represent clear categories with regard

to the type of load they impose on EFs. Three types of physiological features were used

for classification: ERPs, EEG power spectra, and pupil diameter. For the investigation

of ERPs the grand average over all subjects and trials was computed for each of the

four factor levels separately. Based on the results of Scharinger et al. (2015), the ERPs

at electrode positions FZ, CZ, PZ were of major interest in the context of this task

as they yielded effects with regard to frontal positivity and also with regard to the

amplitude of P300 potentials. Apart from the ERP analysis, the data was also analyzed

in the frequency domain to get insights into the spectral properties of the two executive

functions. For the calculation of the power spectra Burgs maximum entropy method

was used with a model order of 32 and a bin size of 1. With regard to the pupil diameter,

the mean diameter for each trial during an epoch of 0-1000 ms was analyzed. To test

whether the differences in the ERPs, power spectra, and pupil diameter between the

factor levels are statistically significant a Wilcoxon ranksum test was conducted over all

subjects and trials. The resulting p-values were Bonferroni corrected and the significance

level was set to p < .05

2.5. Classification

To separate the EFs by means of machine learning, support vector machine (SVM)

classification was chosen as a possible way to achieve this goal. A SVM with a linear

kernel (C = 1) (Platt, 2000; Vapnik and Chervonenkis, 1974) was applied to differentiate

between the four different factor levels introduced above (BL, Inh, Up1, Up2) using

the libsvm implementation for Matlab (Chang and Lin, 2011; MATLAB, 2015). The

classification between factor levels was conducted for the following pairs for each subject

individually: Inh vs BL, Up1 vs BL, Up2 vs BL, Inh vs Up1 and Inh vs Up2. To ensure

stable results a 10-fold cross validation for each comparison was implemented, dividing

the available data into ten different test and training sets. The datasets (training set as

well as the test set) were balanced for each comparison, by removing all spare trials if

one of the classes had more trials than the other. Classification was performed on single

trial basis for each comparison. For classification, three different types of features were

used: ERPs in the time-domain, power spectra of the EEG data, and pupil diameter.

The time domain features are based on 0-1000 ms epochs, starting at stimulus onset

of the 17 channels (FP1, FP2, F3, FZ, F4, FC1, FC2, C3, CZ, C4, CP1, CP2, P3,

PZ, P4, O1, O2). All other electrodes were discarded to reduce the influence of noise

and artifacts in the data. Due to the sampling rate of 500 Hz one trial of ERP data is

represented by 500 x 17 features. As a way to improve signal-to-noise ratio of the data,

a spatial filtering method based on canonical correlation analysis (CCA) was applied

(Spüler et al., 2014) with a filter size of 27x17. The filter aims to minimize the variance

within a class and to maximize the variance between classes to improve the separability.

Classification using features from the frequency domain was conducted on the power

spectra between 4-13 Hz calculated on the same time frame (0-1000 ms after stimulus
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onset) with Burgs maximum entropy method for the same 17 channels (10 x 17 features).

A third feature set included the pupil diameter of both eyes (0-1000 ms after stimulus

onset, 500 x 2 features).

2.5.1. Cross-class classification Additionally, a cross-class classification analysis was

conducted to extract information about the potential overlap of relevant feature

characteristics between classes. Therefore, a classifier was trained on the distinction

between executive function (EF1) and the baseline condition (BL) and tested on the

other EF (EF2). If the relevant features and feature characteristics that distinguish EF1

and EF2 from BL overlap to a certain extend cross-classification accuracies should be

significantly above chance level. Otherwise chance level accuracy is to be expected, as

both available choices of labels are not applicable on the test trials.

2.5.2. Neurophysiological interpretable features To inspect the features used for the

distinction, a method developed by Haufe et al. (2014) was used that transforms

the weights of the SVM classifier into neurophysiological interpretable values. This

transformation is a necessary processing step since multivariate methods like SVMs

combine information from several channels to improve the signal to noise ratio, thereby

preventing the possibility to directly interpret the involved parameters that lead to the

decision of the classifier. The step that is done in a SVM is described by the authors as

a backward model that transforms data x(n) to the optimized and separable form s(n)

by multiplying a transformation matrix on the data (Eq. 1).

W Tx(n) = s(n) (1)

The transformation matrix represents the weights of the SVM which are mathematically

optimized but cannot be interpreted in terms of the neurophysiological importance of the

features that are used for the distinction of classes. To reveal the individual importance,

the so called activation pattern A is calculated by multiplying the covariance matrices

of the data with the weights of the SVM (see Eq. 2).

A =
∑
X

W
−1∑
S

(2)

By calculating activation patterns the underlying neurophysiological patterns that are

responsible for the distinction can be inspected, which can provide valuable information

analyzing the unity and diversity of different EFs.

Statistical testing was performed on classifications for which the accuracies were close to

chance level. The statistical significance of the results was determined by permutation

tests with 1000 iterations (Good, 2013; Nichols and Holmes, 2002). The classification

performance achieved in the permutations establishes an empirical null distribution

on random observations, which can be used to determine significance boundaries.

Therefore, in each iteration classification was performed in a 10-fold cross validation,

but with randomly assigned class labels in the training set instead of the correct class

labels. The achieved accuracy values were compared with the ones determined in the
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standard 10-fold cross validation in an ANOVA. Significance level was determined to

be at p < .05, stating that the original classification performance is significant when

the performance values are higher than the 95th percentile of the calculated empirical

distribution.

3. Results

3.1. Neurophysiological analysis of the data

3.1.1. P300 evaluation ERPs were evaluated in averaged form for each condition at

the electrode positions FZ, CZ and PZ. In Figure 2 the three subplots A, B and C show

the grand average over all subjects for all four described factor levels (BL, Inh, Up1

and Up2). It can be seen that the conditions differ in amplitude, but the waveform

remains rather constant. At position PZ (Figure 2 C) the waveform can be identified as

a P300. Despite the differences within and across electrodes, the tendency: BL > Inh >

Up1 > Up2, in terms of the amplitude can be observed at all electrode positions (with

minor exceptions). Figure 2 also shows the time segments that differ significantly (p <

.05) for each comparison between conditions at the three electrode positions analyzed.

At position FZ almost no differences in the ERPs can be found across conditions, but

at CZ and PZ significant differences in amplitude can be found across all comparisons

between 200 and 750 ms.

Figure 2. ERPs, 0-1000 ms from stimulus onset are depicted from the four different

conditions BL (0-back, congruent), Inh (0-back, incongruent), Up1 (1-back, congruent)

and Up2 (2-back, congruent) at positions Cz(A), Fz(B), Pz(C). The values represent

the grand average over all subjects and trials. On the x-axis the time is represented in

seconds, whereas the y-axis displays the amplitude of the ERPs in µV. Below the ERPs,

the statistical evaluation is represented, revealing which time segments of the ERPs

differ significantly between the conditions. Each grey bar states that the amplitude

differs significantly (p < .05) for the respective comparison in the marked points in

time.
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Figure 3. A: Pupil diameter of the left eye for the time frame of 0-1000 ms from

stimulus onset sorted and averaged over all trials and subjects belonging to one

condition. Displayed are the four different conditions BL (0-back, congruent), Inh

(0-back, incongruent), Up1 (1-back, congruent) and Up2 (2-back, congruent). Each

line displays the averaged diameter of one condition. B: The variance in the pupil

diameter across all trials and subjects is represented in boxplots. Each box displays

one condition at timepoint 0.2 s after stimulus onset. The bottom and top of the box

represent the first and third quartiles, and the red band inside the box represents the

median (the second quartile).

Figure 4. Power spectra of the four different conditions, BL (0-back, congruent), Inh

(0-back, incongruent), Up1 (1-back, congruent) and Up2 (2-back, congruent) calculated

from 4-13 Hz on the time frame 0-1000 ms from stimulus onset at positions Cz(A),

Fz(B), Pz(C). Each line represents the grand average over all subjects and trials. Below

the averaged power spectra, the gray bars represent the sections in the power spectra

which differ significantly (p < .05) between the conditions.

3.1.2. Alpha and theta power Figure 4 shows the power between 4-13 Hz at different

electrode positions calculated on a one second time frame after stimulus onset. Again

the three positions FZ, CZ and PZ were chosen and can be found in this order in Figure

4 A, B and C. Frontal theta activity is visible at electrode position FZ as clear peak at 6
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Hz (A), as well as parietal alpha activity at electrode position PZ (C) peaking at 11 Hz.

The theta activity can be identified as an ERS since the power increases with the amount

of induced load, whereas the alpha activity can be identified as an ERD as the power

decreases with an increasing amount of load. Position CZ shows no notable spectral

changes. Again the same pattern in value strength can be observed as in the ERPs

and the pupil diameters. The higher the WML the higher and more concise the neural

activity, in this case represented by the ERD/ERS in alpha and theta power. Frontal

theta is highest for Up2 and lowest for BL, whereas Up2 shows the lowest parietal alpha

power and BL the strongest. Figure 4 also shows the significant differences between the

conditions for the three electrode positions between 4-13 Hz. Some comparisons show

a lack of differentiable information in the power spectrum, but overall a broad number

of features indicate that the EFs might differ from each other with regard to relevant

features and feature characteristics. When comparing Inh vs Up1, Inh vs BL and Up1

vs BL not always distinct features can be found describing the variance of the EFs.

3.1.3. Pupil diameter The grand average of the pupil diameter (over all trials and

subjects for 0-1000 ms after stimulus onset) can be seen in Figure 3 A. It reveals the same

tendency as the ERPs for the individual conditions but inverted (increased amplitude

of pupil diameter and decreased P300 amplitude with increasing load levels). Figure

3 B shows the variance of the pupil diameter values exemplary for the timepoint 200

ms. As the diameter seems to behave the same throughout all conditions (concerning

the displayed waveform) this timepoint was chosen as a showcase to get an insight on

how stable the pupil diameter values are. The variance seems to be quite high, but the

tendency remains clearly visible.

3.2. Classification results

The feasibility to distinguish the three conditions imposing demands on EFs (Inh, Up,

Up2) from baseline (BL) demands, as well as from each other, was evaluated using

different classification approaches. In the following the accuracies of different choices

of features will be reported, starting with ERPs, continuing with the pupil diameter of

both eyes and the power spectrum between 4-13 Hz.

3.2.1. Classification on ERPs Classification was performed on the ERPs using the 17

mentioned channels. See Table 1 for the accuracy values that have been achieved in

the 10-fold cross-validation, for each distinction. It can be seen, that the Up2 condition

can be much better differentiated from BL and Inh demands than the Up1 condition.

Differentiating Inh from BL demands appears to be most difficult as the achieved values

do not appear to be much above chance level. Statistics revealed though that all achieved

accuracies are significantly above chance level, as indicated by the annotations in the

table. The influence of CCA as a spatial filter on the classification results in terms of

accuracy has also been evaluated in Table 1. An increase in accuracy can be reached in
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all cases.

Table 1. Classification accuracies (and standard deviations) achieved in a 10-fold

cross-validation with a linear kernel on 0-1000 ms time frame. One feature set

comprised the ERPs of the 17 midline channels, the second feature set comprised

these ERPs treated with a CCA as a spatial filter (27x 17). Significances are indicated

as follows: * p < .05, ** p < .005, *** p < .0005

Feature Set Inh vs BL Up1 vs BL Up2 vs BL Up1 vs Inh Up2 vs Inh

ERP Acc 55.83 % ∗∗∗ 56.65 % ∗∗∗ 67.73 % ∗∗∗ 62.21 %∗∗∗ 70.09 %∗∗∗

Stdv 5.38 6.32 8.92 7.38 8.41

ERP (CCA) Acc 61.12 % ∗∗∗ 61.20 % ∗∗∗ 73.38 % ∗∗∗ 68.23 % ∗∗∗ 74.73 % ∗∗∗

Stdv 6.24 6.71 9.24 5.28 8.20

3.2.2. Classification on pupil diameter In Table 2 the classification accuracies that can

be achieved by using the pupil diameter values only are displayed. Again all values are

significantly above chance level. As for the ERP features, differentiating Inh from BL

demands appears to be most difficult. For all other comparisons the accuracies that

can be achieved with the pupil diameter are even higher than for the ERP features,

although the number of used features was considerably smaller.

Table 2. Classification results for using the pupil diameter of both eyes as feature

set. All displayed results are 10-fold cross validated during SVM classification with a

linear kernel. Significances are indicated as follows: * p < .05, ** p < .005, *** p <

.0005

Feature Set Inh vs BL Up1 vs BL Up2 vs BL Inh vs Up1 Inh vs Up2

Pupil Acc 53.41 % ∗∗∗ 61.77 % ∗∗∗ 77.42 % ∗∗∗ 60.46 % ∗∗∗ 75.76 % ∗∗∗

Stdv 5.51 8.28 9.54 8.51 11.28

3.2.3. Classification on power spectra Table 3 shows the achieved accuracies when

using the power spectra from 4-13 Hz as features in the individual comparisons. The

presented accuracies show the same pattern as the ones achieved by using ERP or pupil

dilation features, yet they are slightly lower. Nevertheless, all results are statistically

significant. In addition to the classification rates, the weights of the used SVM were also

evaluated. Figure 5 shows the weights in the interpretable form as suggested by Haufe

and colleagues. Figure 5 A provides all values in a heatmap, whereas B and C show

the topological distribution of the weights averaged over theta and alpha band power

respectively. This analysis reveals that mainly frontal theta and parietal alpha seem

to play a role for the distinction. A finer pattern is shown in the topological plots (B)

indicating that inhibition seems to be a process that correlates more with central theta

synchronization, whereas updating with a little bit more frontal theta activity. The

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/389395doi: bioRxiv preprint 

https://doi.org/10.1101/389395


UNITY AND DIVERSITY IN WORKING MEMORY LOAD 14

fact that updating and inhibition demands cannot only be distinguished from baseline

demands but also from each other can be taken as evidence for the diversity of executive

functions with regard to their neurophysiological signatures. The different weights of

the used SVMs (power spectra used as features) also provide insights into the feature

characteristics of the two executive functions.

Table 3. Classification accuracies achieved in a 10-fold cross-validation with a linear

kernel on the power spectra between 4-13 Hz, calculated on the 0-1000 ms time frame

from stimulus onset. Significances are indicated as follows: * p < .05, ** p < .005, ***

p < .0005

Feature Set Inh vs BL Up1 vs BL Up2 vs BL Up1 vs Inh Up2 vs Inh

Power Acc 52.48 % ∗ 52.68% ∗ 63.17% ∗∗∗ 55.46 % ∗∗∗ 64.13% ∗∗∗

Stdv 7.62 7.09 7.40 7.59 9.77

3.2.4. Cross-class classification Cross-class classifications were performed to reveal if

joint feature characteristics in either the spectral or ERP features are shared in large

proportions by the two EFs. The thereby obtained results can be seen in Table 4. The

reported accuracies describe the percentage of trials of the test condition that have been

classified as BL condition. The percentage of trials classified as training condition can be

calculated by 100 minus the percentage classified as BL. All results provided are close to

random except the Up2 vs BL distinction in the frequency as well as in the time domain.

The statistical analysis revealed that the distinction Inh vs Up2 is significantly better

than random, whereas all other comparisons are not. The significant effect indicates

that a classifier trained on Up2 vs BL trials will classify Inh trials significantly above

chance level (around 60 %) as BL trials and not as Up2 trials. So the classifier trained

on one EF does not recognize the demands imposed onto another EF. This effect as

well as the chance level classifications for the other conditions provides evidence that

the neurophysiological signatures of the two EFs are substantially different so that no

cross-class classifications are possible.

4. Discussion

The aim of this paper is to provide neurophysiological evidence for the diversity of

executive working memory functions based on the analysis of EEG data. To achieve that

standard neurophysiological analysis techniques are combined with machine learning

approaches to extract neural correlates of the EFs in EEG data. By this we want to

show the benefits of using machine learning in a context like this. It enables to use

inter subject variability as an advantage while trying to separate mental states or more

general, experimental conditions within EEG data. Mathematical optimization in form

of SVMs is applied to the data by taking all available information into account. We
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Figure 5. SVM weights in neurophysiological interpretable form, calculated for every

subject individually. Shown are weights that are assigned to each feature in the

frequency domain according to its importance, averaged over all subjects. A: Displayed

are the absolute weights for all features in a heatmap. B: The weights of theta band

are averaged over the frequency bins 4 - 7 Hz and displayed in a topological plot. C:

Displays the topological distribution of the weights averaged over the alpha band (8 -

13 Hz).

aim to establish the usage as a supplementing technique to extract as much information

as possible from EEG data, since the methodology provides advantages compared to

standard techniques.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/389395doi: bioRxiv preprint 

https://doi.org/10.1101/389395


UNITY AND DIVERSITY IN WORKING MEMORY LOAD 16

Table 4. The table provides cross-class classification for ERP features as well as

for the power spectra. The classifier was trained on EF1 vs BL and tested on trials

imposing demands on EF2 only. Therefore, the here presented accuracies represent

the percentage of trials classified as BL and 100 - the here displayed percentage reveals

the share of trials classified as EF1 respectively. Significances are indicated as follows:

* p < .05, ** p < .005, *** p < .0005

Feature Set Trainset Inh vs BL Inh vs BL Up1 vs BL Up2 vs BL

Testset Up1 Up2 Inh Inh

Power Acc 51.55 % 47.86 % 52.84 % 61.26 % ∗∗∗

Stdv 9.33 12.13 8.09 9.41

ERP Acc 52.93 % 51.22 % 49.81 % 57.92 % ∗∗∗

Stdv 9.37 9.33 10.45 9.56

4.1. Neurophysiological analysis

The standard analysis of the ERPs, averaged over the individual factor levels, reveals an

elicited P300 which decreases in amplitude throughout the conditions in the following

order: BL > Inh > Up1 > Up2. A similar pattern of results was found in the pupil

dilation data as well as in the power spectra. The pupil diameter increases with

increasing WML, whereas the power spectra yield well known indicators for WML,

namely alpha desynchronization and theta synchronization cf., (Ewing and Fairclough,

2010a; Gevins et al., 1997). The feature sets do not seem to show characteristic patterns

which can be used to differentiate the two EFs, even though the comparisons between the

conditions revealed statistically significant differences in the ERPs and power spectra at

several electrode positions. It is more likely that the differences are due to the general

amount of WML that is present throughout the task. Since updating is induced by

the main task and inhibition only by a secondary stimulus presentation to which no

explicit response was necessary, it can be assumed that the induced load is likely to be

higher for updating than for inhibition. Moreover it is uncontroversial that updating

demands elicited by the 2-back task are more challenging than the ones elicited by the

1-back task, as more letters need to be constantly updated in WM. A decrease in P300

amplitude, as is present in our data, is also well in line with previous findings from the

literature with respect to an increase of overall WML (Ewing and Fairclough, 2010a;

Watter et al., 2001). Standard analysis techniques therefore reveal differences between

the four factor levels but they can only be linked to the general amount of WML and

not to specific properties of the individual EFs.

Despite consistency with literature, another aspect can be considered with respect to

the comparably weak correlates of inhibition. In a more recent version of their model

Miyake and Friedman (2012) state that the inhibition ability is the core property of all

EF and Friedman emphasizes this statement by postulating there is no unique variance

describing inhibition (Friedman et al., 2011,0). Potentially, this hypothesis could provide

a theoretical explanation why inhibition trials provided the overall weakest results,
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neurophysiologically as well as in terms of classification accuracy. However, it could

also be argued that the secondary nature of the flanker stimulus inducing the inhibition

demands is the reason for that. No explicit reaction to this stimulus was demanded in

contrast to the central stimulus used for inducing updating demands. Designing a task

that puts the inhibition demands more into focus might resolve this issue and reveal

clearer and stronger neural correlates for inhibition.

4.2. Classification

As a new approach that aims to disentangle individual characteristics of the EFs, we

applied machine learning to the data. In this case we chose SVMs, but other methods

such as LDA would perform similarly (Lotte et al., 2007). The use of single trial data

for machine learning is a necessary step as the ML algorithm needs the single trial data

to learn the distribution of the data. One of the benefits of the ML approach compared

to standard techniques is, that inter-subject variability is incorporated rather than

eliminated from the analysis. Hence differences that show variability across subjects but

are present steady within the dataset, will be factored in account when investigating a

possible distinction of properties. Therefore, the training for each subject individually,

guarantees to find an optimal model for each subject. Another benefit is that a broad

number of features from many channels can be taken into account at once. Basis is a

mathematical optimization approach, which might be able to reveal patterns that are

not visible with conventional methods. With this approach it could be shown that a

significantly better than random distinction was possible between the EF conditions

on the basis of single trial ERPs and also single trial power spectra. Therefore, in

either of the two feature sets differences can be found that enable a distinction between

the two EFs and between EFs and baseline demands. The fact that updating and

inhibition demands cannot only be distinguished from baseline demands but also from

each other speaks in favor of a diversity of executive functions with regard to their

neurophysiological signatures. The achieved accuracies measure the success of the

distinction, which is higher for single trial ERPs and mean pupil diameter than for

the power spectra. A general observation that can be made is that the accuracy values

mirror the gradient that was found in the measured physiological signals. The bigger

the difference in induced WML between the conditions, the higher the accuracy for the

respective distinction by SVM classification for all three feature sets. To rule out that

the differences between the conditions rely on the amount of induced WML only and

not on individual variance caused by the EFs, a cross-class classification was performed.

Cross-class classification indicates how much the characteristics of the EFs overlap. If

signal strength (reflected by ERP amplitude, ERD/ERS) would be the only difference

between the conditions, the overlap should be large and cross-class classification

accuracies should be significantly above chance level. Cross-class classification was

tested for ERP and spectral features and in both cases three out of four tests provided

accuracies around chance level. The only exception was a classifier trained on Up2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/389395doi: bioRxiv preprint 

https://doi.org/10.1101/389395


UNITY AND DIVERSITY IN WORKING MEMORY LOAD 18

vs BL that was tested on Inh trials. It turned out that Inh is rather classified as

BL than as Up2, revealing that Inh seems to be closer to BL demands than to Up2

demands. This effect and the fact that in all other cases only random accuracies could

be achieved in cross-class classification provides evidence for the hypothesis that there

are larger differences in the signals reflecting different EFs than those visible when using

conventional methods for neurophysiological analysis.

In addition to this, the weights of the SVM classification approach (based on power

spectra features) were inspected more closely to find out which features are prominently

used in the distinction. The resulting values indicate that especially features in the

occipital/parietal alpha and in the frontal theta yielded the highest weights. These

are also features that are known from the literature to strongly correlate with WML.

Apart from these WML related features, no other features seem to play a prominent

role according to the interpretable weights (see Figure 5). Thus, it seems that the SVM

classification for the analysis of the diversity of the two EFs takes only the relevant

neural signatures related to WML into account. The inspection of the SVM weights also

revealed different pattern that shows differences in the theta band power for updating

and inhibition. Inhibition correlates with central theta, whereas updating with a more

frontal theta band power synchronization. This difference in feature characteristics

renders the two EFs differentiable on the basis of their neural signatures, thereby,

accounting for the diversity of the two EFs. Yet, the same values reveal a common

correlation with occipital/paretial alpha desynchronization in both EF, hence accounting

for the unity of these functions. Since the experimental design was chosen very carefully

reducing all non-EF related variance to a minimum, it seems legitimate to assume that

the discovered differences in the patterns can be traced back to the EFs and not to

any confounds from external stimuli. Overall, we conclude that both aspects of the

theoretical model put forward by Miyake can be confirmed with actual brain data. We

also conclude that using machine learning in addition to classical analysis approaches

is a valuable and maybe even necessary extension when aiming to answer psychological

questions as has already been promoted by Yarkoni and Westfall (2017).

4.3. Limitations

Although it could be demonstrated, that both individual EFs were characterized by

their own variance separating it from the other, no claim can be made yet with regard

to shifting demands, to fully prove or disprove the statements by Miyake and Friedman.

Only a rather strong conclusion can be drawn, with regard to updating and inhibition,

namely, that the two executive functions are implemented by two different processes that

can be distinguished from each other by means of their underlying neurophysiological

signatures. To further confirm the model of Miyake and colleagues, the third executive

function shifting also needs to be evaluated. This requires to design a new task,

integrating all three executive functions in one experimental setup, to ensure equal

conditions for all comparisons and distinctions. It is necessary to keep non-EF variance
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at a minimum to avoid confounds and to ensure the validity of the analysis. Based on this

setup it can be analyzed whether shifting demands also have distinct neural signatures

that can be separated from inhibition and updating demands to further demonstrate

the diversity aspect of EFs. Analyzing shifting demands might also shed new light on

the unity aspect of EFs that could be demonstrated in the current study. In addition to

this it might also be useful to design similar experiments in which the EFs are induced

by different task. Despite being known for inducing load on a specific EF, it can be

assumed that non of the tasks is of such a singular nature, that only one resource is

used. Applying this approach on a task battery will reveal a better picture with respect

to the diversity of EFs.

A general remark is that the presented approach can only be seen as a supplementing

method, but not as a standalone technique. It only makes sense to apply ML to data

when it has been ensured that existing variance in the data is only due to the mental

states of interest and not to artifacts introduced by visual presentation or other artifacts

of any kind. To this end, it also needs to be acknowledged that classification on pupil

data was done to see how well this simple feature correlates with the WML. It is clear

that the pupil diameter cannot be a indicator for EFs but only for WML in general.

Still, the high correlation with the overall load and the high classification accuracies

when using the pupil diameter as a feature, opens up the possibility to use it as a simple

measure for WML detection or as an additional measure to EEG to stabilize or even

improve WML detection on the basis physiological features.

5. Conclusion

The approach chosen in this paper to disentangle neurophysiological signatures of

cognitive functions by means of machine learning provide insights that support the

theoretical model of Miyake and colleagues describing the unity and diversity of EFs.

It can be shown that the two executive functions updating and inhibition, which

both induce WML, can be separated on the basis of single trial ERPs and power

spectra. Using power spectra yielded less accurate results but allowed to apply a

new method developed by Haufe and colleagues to reveal patterns in the spectra that

can be extracted and linked to the two individual executive functions. Inhibition is

characterized by an increased frontal activity in the theta band, whereas updating

demands are characterized by an increased central activity in the theta band. The

results therefore, substantiate the hypothesis that the two executive functions should

be considered as two separable processes in WM. Our approach of applying machine

learning techniques to neurophysiological data in order to substantiate theoretical

distinctions in functional models can also be a promising approach for other research

areas in cognitive neuroscience. It supplements the classical approaches and is thereby

able to extract more knowledge out of existing data, then standard analysis techniques

can provide.
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Krause, C. M., Pesonen, M., and Hämäläinen, H. (2010). Brain oscillatory 4–30

hz electroencephalogram responses in adolescents during a visual memory task.

Neuroreport, 21(11):767–771.

Krause, J., Taylor, J. G., Schmidt, D., Hautzel, H., Mottaghy, F. M., and Müller-
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